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ABSTRACT
Purpose: Obesity is associated with metabolic dysregulation, but the underlying metabolic 
signatures involving clinical and inflammatory profiles of obese asthma are largely 
unexplored. We aimed at identifying the metabolic signatures of obese asthma.
Methods: Eligible subjects with obese (n = 11) and lean (n = 22) asthma underwent body 
composition and clinical assessment, sputum induction, and blood sampling. Sputum 
supernatant was assessed for interleukin (IL)-1β, -4, -5, -6, -13, and tumor necrosis factor 
(TNF)-α, and serum was detected for leptin, adiponectin and C-reactive protein. Untargeted 
gas chromatography time-of-flight mass spectrometry (GC-TOF-MS)-based metabolic 
profiles in sputum, serum and peripheral blood monocular cells (PBMCs) were analyzed by 
orthogonal projections to latent structures-discriminate analysis (OPLS-DA) and pathway 
topology enrichment analysis. The differential metabolites were further validated by 
correlation analysis with body composition, and clinical and inflammatory profiles.
Results: Body composition, asthma control, and the levels of IL-1β, -4, -13, leptin and 
adiponectin in obese asthmatics were significantly different from those in lean asthmatics. 
OPLS-DA analysis revealed 28 differential metabolites that distinguished obese from lean 
asthmatic subjects. The validation analysis identified 18 potential metabolic signatures (11 
in sputum, 4 in serum and 2 in PBMCs) of obese asthmatics. Pathway topology enrichment 
analysis revealed that cyanoamino acid metabolism, caffeine metabolism, alanine, aspartate 
and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, pentose 
phosphate pathway in sputum, and glyoxylate and dicarboxylate metabolism, glycerolipid 
metabolism and pentose phosphate pathway in serum are suggested to be significant 
pathways related to obese asthma.
Conclusions: GC-TOF-MS-based metabolomics indicates obese asthma is characterized by 
a metabolic profile different from lean asthma. The potential metabolic signatures indicated 
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novel immune-metabolic mechanisms in obese asthma with providing more phenotypic and 
therapeutic implications, which needs further replication and validation.
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INTRODUCTION

Asthma is one of the most common chronic respiratory diseases affecting 1%–18% of the 
population in different countries, which is characterized by chronic airway inflammation 
with underlying heterogeneous inflammatory mechanisms that result in multiple clinical 
phenotype.1-4 Although there is a positive declining trend for asthma mortality,5 asthma plus 
allergic rhinitis is the most frequently diagnosed multiple respiratory disorders, which has a 
significant impact on disease burden across the Asia-Pacific region.6 Obesity is also a major 
public health concern, whose prevalence has dramatically and concurrently increased with 
asthma over the last decades.7 Epidemiological studies have shown that obesity is associated 
with increased risk of incident asthma8 and other allergic diseases.9 It has also been proved 
that obesity is associated with worse clinical outcomes and decreased response to asthma 
medication,8 “Obese asthma” phenotype has been identified in unbiased cluster analyses,10 
but the underlying mechanisms remain poorly understood.

As well known, obesity is associated with metabolic dysregulation which is one of the 
most important pathophysiological mechanisms underlying obesity-related diseases.11 In 
recent decades, there is growing evidence that metabolic alterations are associated with 
immunological inflammation and worse clinical outcomes in obese asthma.12-14 At the 
same time, metabolomics has emerged as a new tool to identify metabolites as biological 
markers for disease state, susceptibility, to monitor response to treatment, and to determine 
the therapeutic potential targets.15 It is of great clinical relevance to search for metabolic 
signatures discriminating obese asthma based on metabolomics techniques, which may 
reveal the linking mechanisms of obesity and asthma, and improve current treatments of 
patients by allowing a more precision and personalized medicine.

To the best of our knowledge, there is only 1 metabolomics study exploring the 
pathophysiologic mechanisms of obese asthma.16 In fact, the previous study has produced 
promising results in defining a distinct obesity-asthma metabotype. However, like most of 
the other metabolomics studies,17 it just reported metabolic profiles in the exhaled breath 
condensate (EBC) and did not explore further correlations between relevant metabolites 
and clinical characteristics or inflammation biomarkers. Probably, it is more difficult to 
obtain a reliable interpretation and correlation of these metabolites with the disease based 
on EBC sample, and it can be more justified with the use of bronchoalveolar lavage fluid 
(BALF), or induced sputum for exploratory studies that aimed at obtaining a close molecular 
mechanism of a respiratory disease.18 Moreover, obesity is well known as a status of low-
grade inflammation both systemically and in the lungs.19,20 Therefore, it is more plausible to 
examine the metabolic alterations in the peripheral blood and sputum of asthmatics with 
obesity to improve understanding of the molecular pathophysiologic mechanism.

In this study, we performed gas chromatography time-of-flight mass spectrometry (GC-TOF-
MS) using induced sputum, serum and peripheral blood monocular cells (PBMCs) samples to 
detect the local and systemic metabolites in obese asthmatic patients. Our data demonstrated 
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separation between obese asthmatic subjects and lean asthmatic subjects and identified 
several novel metabolic signatures relevant to clinical and inflammatory profiles of asthma.

MATERIALS AND METHODS

Subjects and study design
This cross-sectional study assessed eligible patients with obese asthma (n = 11) and lean 
asthma (n = 22) who were recruited from the Asthma Clinic of West China Hospital, Sichuan 
University between August 2015 and February 2016. The obese asthma group was defined 
as having obesity with BMI ≥ 30.0 kg/m2, and the lean asthma group was defined as having 
normal weight between 18.5 and 25 kg/m2 according to the World Health Organization.21 
Asthma was based on a physician's diagnosis with a history of variable respiratory symptoms 
(e.g., wheeze, shortness of breath, chest tightness and cough) and either spirometric testing 
with a 12% or 200 mL improvement in forced expiratory volume in 1 second (FEV1) after 
400 mcg ventolin (GSK, Avda de Extremadura, Spain) or a 20% or greater decrease in FEV1 
with standard doses of methacholine (PD20FEV1 < 12.8 µmol) according to the Global 
Initiative for Asthma (GINA) guidelines1 and the National Asthma Education and Prevention 
Program (NAEPP).22 Only stable asthmatic patients, who had no exacerbation, respiratory 
tract infection or change in maintenance therapy in the previous 4 weeks, were included. 
Excluding criteria included unexplained weight change during the past 3 months, the 
existence of a previous diagnose of chronic respiratory disease and severe systemic disease 
such as lung cancer, bronchiectasis, heart disease, hypertension, diabetes or psychiatric 
disorders; medication use that may alter systemic inflammation and metabolism (e.g., 
hormonal contraceptives or statins); pregnant women; contraindication to spirometry or 
inability to complete study procedures. All patients were refrained from food intake on 
the day of sample collection in the same Asthma Clinic. The Clinical Research and Ethics 
Committee of West China Hospital (No. 2014-30) approved the study protocol, and written 
informed consent was obtained from all subjects.

Obesity and clinical assessment
All patients underwent assessment of obesity, demographics, medication use and asthma 
status using formatted questionnaires. Obesity was assessed by BMI, waist-to-hip ratio 
(WHR) and body composition. Height (cm), weight (0.1 kg), and waist (cm) and hip (cm) 
circumferences were recorded; body composition such as fat mass (FM), visceral fat area 
(VFA) and percent body fat (PBF) was measured by the body composition analyzer (InBody 
S10, Body Composition Analyzer; Biospace Co. Ltd., Seoul, Korea) according to the InBody 
S10 user's manual. Asthma control was evaluated using the Asthma Control Test23 (ACT), and 
the Asthma Quality of Life Questionnaire24 (AQLQ) was used to evaluate the impact of asthma 
in 4 life domains. Atopy was determined by skin prick testing (SPT) as previously described.25 
We measured exhaled nitric oxide (FeNO) before spirometric testing using a NIOX analyzer 
(Aerocrine, Solna, Sweden), according to American Thoracic Society/European Respiratory 
Society (ATS/ERS) recommendations. Spirometry (MedGraphics Corp., St. Paul, MN, USA) 
was performed in accordance with the ATS/ERS guidelines.26

Sputum induction and processing
Sputum induction and processing were performed based on standard methods as described 
in our previous studies.27 Sputum was induced after the pre-treatment of 400 mcg 
salbutamol (GSK) using 4.5% saline atomized by an ultrasonic nebulizer (Cumulus; HEYER 

630https://e-aair.org https://doi.org/10.4168/aair.2018.10.6.628

Metabolic Signatures in Obese Asthma



Medical AG, Bad Ems, Germany). If FEV1 was ≤ 40% of predicted, sputum was induced 
with 0.9% saline after it was deemed safe by the supervising physician. Sputum plugs were 
collected and an aliquot of 200 μL of sputum plug was quick-frozen immediately by liquid 
nitrogen and stored at −80°C for subsequent metabolism analysis. Further, a volume of 
1% dithiothreitol (SPUTOLYSIN Reagent; Calbiochem®, San Diego, CA, USA) was added 
equal to 4 times the remaining sputum w at 1,500 rpm for 10 minutes, and the sputum 
supernatant was aspirated and stored immediately at −80°C for subsequent detection. Total 
and differential cell counts were performed with centrifugation-smear (CYTOPRO 7620; 
WESCOR®, Inc., South Logan, UT, USA) and staining preparation by well-trained Chinese 
and Australia lab researchers.

Peripheral blood sample collection
Serum and PBMCs samples were collected using standardized methods provided in the 
Methods section in the supplement file. Serum and PBMCs samples were quick-frozen by 
liquid nitrogen and stored at −80°C prior to metabolism analysis.

Inflammatory mediators detection
C-reactive protein (CRP), leptin and adiponectin in serum was measured by sandwich ELISA 
(R&D SYSTEMS, Inc. Minneapolis, MN, USA). Interleukin (IL)-1β, IL-4, IL-5, IL-6, IL-8, 
IL-13 and tumor necrosis factor (TNF)-α in sputum supernatant as local inflammation were 
detected by a Luminex-based MILLIPLEX® MAP Human Cytokine/Chemokine Magnetic bead 
Panel Kit (EMD Millipore Corporation, Billerica, MA, USA), and were analyzed using the 
software of Milliplex Analyst 5.1 as it has been demonstrated that the Luminex-based xMAP® 
panel can be used for multi-analyte profiling of sputum using the routinely applied method of 
sputum processing with dithiothreitol.28,29

Metabolomics profiling
Sputum and peripheral blood metabolites were analyzed according to the procedure as 
described in the previously published metabolomics profiling methods.30,31 Briefly, the 
thawed sputum and serum were extracted with methanol following vortex for 30 seconds. 
Metabolites were extracted from PBMCs using extraction liquid (Vmethanol:Vchloroform 
= 3:1) following vortex for 30 seconds. The resuspended cells were snap-freezed in 
liquid nitrogen for 5 minutes, were thawed at room temperature, and were ultrasonized 
for 10 minutes in 4°C water bath. The freeze-thaw cycle is repeated 3 times. L-2-
chlorophenylalanine (1 mg/mL stock in dH2O; Shanghai Hengbai Biotech Co Ltd, Shanghai, 
China) was added as an internal standard. The samples were centrifuged at 12,000 rpm for 
15 minutes at 4°C. Supernatant was transferred to a 2-mL GC-MS glass vial and was vacuum-
dried at room temperature. The derivatized samples were obtained after the residue was 
incubated with methoxyamine hydrochloride (20 mg/mL in pyridine) for 30 minutes at 80°C, 
were bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) plus 1% (v/v) trimethylchlorosilane 
(TMCS) (REGIS Technologies, Morton Grove, IL, USA) for 2 hours at 70°C subsequently, and 
were cooled to room temperature prior to GC-MS analysis.

Metabolomic profiling was identified by GC-MS analysis, which was performed using an 
Agilent 7890 gas chromatograph system coupled with a Pegasus HT time-of-flight mass 
spectrometer. The system utilized a DB-5MS capillary column coated with 5% diphenyl 
cross-linked with 95% dimethylpolysiloxane (30 m × 250 μm inner diameter, 0.25 μm film 
thickness; J&W Scientific, Folsom, CA, USA). An aliquot of 1 μL of the analyte was injected 
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in a splitless mode. Helium was used as the carrier gas, the front inlet purge flow was 3 mL/
min, and the gas flow rate through the column was 1 mL/min. The initial temperature was 
kept at 50°C for 1 min and then raised to 290°C at a rate of 10°C/min, where it remained for 10 
minutes. The injection, transfer line and ion source temperatures were 280, 270, and 220°C, 
respectively. The energy was −70 eV in an electron impact mode. The mass spectrometry data 
were acquired in a full-scan mode with the m/z range of 33-600 (85-600 in PBMCs samples) at 
a rate of 20 spectra per second after a solvent delay of 366 seconds in sputum samples, 295.8 
seconds in serum samples and 460 seconds in PBMCs samples, respectively.

Multivariate statistical analysis and metabolic pathway analysis
Chroma TOF4.3X software of LECO Corporation and LECO-Fiehn Rtx5 database were used for 
raw peak exacting, the data baseline filtering and calibration of the baseline, peak alignment, 
deconvolution analysis, peak identification and integration of the peak area, missing values 
of raw data were filled up by half of the minimum value. In addition, internal standard 
normalization method was employed in this data analysis. The resulted 3-dimensional 
data involving the peak number, sample name and normalized peak area were fed to the 
SIMCA14 software package (Umetrics, Umea, Sweden) for principal component analysis 
(PCA) and orthogonal projections to latent structures-discriminate analysis (OPLS-DA). In 
order to obtain a higher level of group separation and get a better understanding of variables 
responsible for classification, supervised orthogonal projections to OPLS-DA were applied. 
The parameters for the classification from the software, R2Y and Q2Y, were used to evaluate the 
goodness-of-fit and goodness of prediction retrospectively. To further validate the model, the 
permutation tests (n = 200) was proceeded.

The LECO/Fiehn Metabolomics Library was used to identify the compounds with a similarity 
value for the compound identification accuracy, which is reliable if the similarity is > 700. 
To refine this analysis, the first principal component of variable importance projection (VIP) 
was obtained. The VIP values exceeding 1.0 were first selected as changed metabolites. 
The remaining variables were then assessed by Student's t test (P > 0.05), and variables 
were discarded with no significant change between 2 comparison groups. The identified 
differential metabolites were further searched on online database, Kyoto Encyclopedia of 
Genes and Genomes (KEGG), PubChem Compound, Chemical Entities of Biological Interest 
(ChEBI), Japan Chemical Substance Dictionary Web (NIKKAJI) and Chemical Abstracts 
Service (CAS), and the top altered pathways were identified by pathway topology enrichment 
analysis in MetaboAnalyst 3.0 (http://www.metaboanalyst.ca/) with the impact of each 
pathway calculated using the Relative-betweenness Centrality.32

Statistical analysis
As for demographic and clinical measurements, continuous variables are expressed as means 
± standard deviations or medians (interquartile ranges), depending on their distribution. 
Categorical variables are reported as absolute numbers and percentages. Group comparisons 
for continuous data were performed using either unpaired Student's t-tests (parametric data) 
or the Wilcoxon rank sum test (non-parametric data), with categorical variables evaluated by 
the χ2 test or Fisher's exact test. Pearson's (parametric data) or Spearman's (non-parametric) 
correlation was used to describe the specific correlation between differential metabolites and 
obesity or clinical and inflammation profiles, as previously described.33 A P value of less than 
0.05 was deemed statistically significant. Statistical analysis was performed with the SPSS 
software (version 21.0; IBM Corp., Armonk, NY, USA).
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RESULTS

Clinical and inflammation characteristics
The ACT scores were significantly lower in obese asthmatics than in lean subjects (P = 0.032).  
There was no statistical difference observed between the 2 groups in demographic data, 
smoking, quality of life, asthma duration, asthma medications, airway obstruction in 
FEV1%predicted and FEV1/ forced vital capacity (FVC), FeNO and IgE levels. Peripheral 
blood and sputum cell profiles were generally balanced between the 2 groups (Table 1). We 
also compared the differences in body composition between the 2 groups. Obese asthmatic 
subjects, as expected, had significantly higher BMI, FM, fat free mass (FFM), VFA and WHR 
than lean asthmatic subjects (all P < 0.05) (Table 2).

Obese asthmatic subjects had significantly higher leptin (P = 0.008) and lower adiponectin  
(P < 0.001) levels compared with lean asthmatic subjects, while the CRP level was comparable 
(P = 0.839). As for the inflammatory mediators in induced sputum supernatant, we found 
that IL-1β was significantly elevated in obese asthmatic subjects compared with lean 
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Table 1. Characteristics of asthmatic patients grouped according to body mass index
Variables Lean group Obese group χ2/F/Z P value
No. 22 11
Age (yr) 50 ± 11 48 ± 10 0.425 0.674
Sex, male/female 5/17 6/5 3.341 0.068
Asthma family history, No. (%) 11 (50.0) 5 (45.5) 0.281 0.869
Asthma duration (yr)* 8.0 (3.0, 16.0) 11.5 (3.5, 23.7) −0.728 0.486
Smoking history, current/ex/non-smoker 1/5/16 3/1/7 3.962 0.138
Smoking index (pack × yr) 0 (0, 2.18) 0 (0, 23.3) 0.516 0.693
Skin prink test, No. (%) 13 (72.7) 8 (59.1) 1.714 0.424
Asthma medications

BDP equivalent 480 (420, 480) 480 (0, 1,000) −0.524 0.640
ICS, No. (%) 20 (90.9) 8 (72.7) 1.886 0.170
Aminophylline, No. (%) 6 (27.3) 2 (18.1) 0.330 0.566
Leukotriene, No. (%) 11 (50) 3 (27.3) 1.551 0.213
LABA, No. (%) 20 (90.9) 8 (72.7) 1.886 0.170

Asthma severity, mild to moderate/severe 19/3 8/3 0.917 0.375
ACT score* 23 (21, 24) 20 (15, 22) −2.166 0.032
AQLQ score* 6.45 (5.88, 6.66) 6.16 (5.80, 6.69) −0.669 0.510
FEV1 (L) 1.92 ± 0.70 2.08 ± 0.73 −0.588 0.561
FEV1 (% pred.) 71.0 ± 21.2 68.2 ± 18.8 0.374 0.711
FEV1/FVC (%) 66.5 ± 12.8 68.2 ± 12.5 −0.367 0.716
FeNO (ppb) 37.2 ± 24.9 41.7 ± 30.5 −0.366 0.717
IgE (IU/mL) 195.69 (86.43, 548.98) 117.35 (36.36, 781.10) −0.048 0.962
Peripheral blood leukocyte classification (%)

Eosinophils* 2.7 (1.8, 5.4) 2.8 (1.3, 5.5) −0.088 0.948
Neutrophils 61.1 ± 9.1 65.8 ± 9.9 −1.281 0.211
Lymphocytes 28.4 ± 7.0 23.8 ± 7.1 1.709 0.099
Monocytes 6.1 ± 1.9 5.4 ± 1.2 1.059 0.299

Sputum cytology classification (%)
Eosinophils* 0.5 (0, 3.4) 0 (0, 1.9) −0.616 0.563
Neutrophils 37.0 ± 28.5 56.6 ± 35.9 −1.456 0.160
Lymphocytes* 0.3 (0, 0.8) 0.3 (0, 0.9) −0.670 0.879
Macrophages 60.5 ± 27.7 41.3 ± 36.7 1.430 0.167

Data are normally distributed and presented as means (standard deviations); Data are nonparametric, presented as median (quartile 1, quartile 3). χ2 and t tests 
were used to compare groups.
Obese group, obese subjects with asthma; Lean group, lean subjects with asthma; ACT, asthma control test; AQLQ, asthma quality of life questionnaire; BDP, 
beclometasone dipropionate; ICS, inhaled corticosteroids; LABA, long-acting beta agonist; FeNO, fractional exhaled nitric oxide; FEV1, forced expiratory volume 
in 1 second; FVC, forced vital capacity.
*P value from the rank sum test; Significance were defined as P < 0.05.



asthmatic subjects (P = 0.047). However, there were no statistical differences in IL-6, IL-8, 
TNF-α. Interestingly, in comparison with lean asthmatic subjects, obese asthmatic subjects 
showed higher levels of IL-4 (53.5 [48.38–72.34] vs. 10.30 [0.60–29.26] pg/mL, P = 0.004), 
and IL-13 (3.92 [2.74–8.64] vs. 2.46 [1.96–3.04] pg/mL, P = 0.017) (Table 2).

Metabolic profiles discriminates between OA and LA subjects
OPLS-DA analysis showed that obese subjects were separated from lean asthmatics (Fig. 1).  
Description in full was included in the Results section in this article's supplement. The 
differential metabolites in induced sputum, serum and PBMCs between obese asthmatic and 
lean asthmatic subjects are listed in Table 3. As depicted in the heat map (Fig. 2), it indicated 
that, in induced sputum, there were significantly increased metabolites such as benzoic acid, 
3-hydroxybutyric acid, hydrocinnamic acid, aspartic acid 2, xanthine, 4-aminobutyric acid 1, 
glutaric acid, gly-pro, d-glucoheptose 1, gluconic lactone 2, L-glutamic acid, phytosphingosine 
2, beta-glutamic acid 1, pyrrole-2-carboxylic acid, pyrophosphate 3 and 3-aminopropionitrile 
1, and reduced metabolites as indole-3-acetic acid and shikimic acid in subjects compared 
with lean asthmatic subjects. The most significant differential metabolites identified in 
sputum samples were further annotated on online database of KEGG (Fig. 3) with higher 
expression metabolites highlighted by red dots and lower expression labeled by blue dots. For 
the metabolic profile in serum, it showed an increase in valine, uric acid, N-Methy-DL-alanine 
and beta-glycerophosphoric acid, and a decrease in asparagine 1 and d-glyceric acid in subjects 
compared with lean asthmatic subjects, which was indicated in the heat map (Supplementary 
Fig. S1A). Meanwhile, PBMCs samples had an increase in 3-hydroxynorvaline 2 and a decrease 
in 3-hydroxybutyric acid, linolenic acid, isoleucine in the obese asthmatic patients comprised 
with lean asthmatic subjects (Supplementary Fig. S1B). Predictive accuracy of obese asthma 
and lean asthma using differential metabolites were assessed by calculating the areas under 
the receiver operating characteristic (ROC) curves for OPLS-DA model in SIMCA. The criterion 
parameter (YPredPS) retrieved from the current predictionset was used for thresholding and 
the ROC curve was created by plotting the true positive rate (TPR) versus the false positive rate 
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Table 2. Obesity assessments and inflammatory mediators
Variables Lean group Obese group χ2/F/Z P value
BMI (kg/m2) 22.2 ± 1.8 31.7 ± 1.9 −13.926 < 0.001
Body composition

Fat mass (kg)* 16.7 (12.6, 18.8) 23.9 (21.7, 27.1) −4.124 < 0.001
Fat free mass (kg) 38.6 ± 6.1 48.5 ± 6.5 −3.956 0.001
Percent body fat 29.4 ± 7.4 34.1 ± 5.5 −1.867 0.073
Visceral fat area (cm2)* 83.7 (66.5, 100.1) 105.5 (92.5, 117.3) −3.046 0.001
Waist-to-hip ratio 0.89 ± 0.06 0.98 ± 0.07 −3.471 0.002

Sputum supernatant (pg/mL)
IL-4* 10.30 (0.60, 29.26) 53.5 (48.38, 72.34) −2.761 0.004
IL-5* 1.79 (0.90, 2.17) 2.71 (0.66, 8.15) −0.494 0.630
IL-13* 2.46 (1.96, 3.04) 3.92 (2.74, 8.64) −2.367 0.017
IL-1β 16.62 (6.85, 37.15) 31.16 (19.32, 277.78) −2.009 0.047
IL-6* 17.47 (6.12, 67.09) 60.67 (20.57, 116.66) −1.516 0.142
IL-8* 1,150 (769, 2,473) 1,636 (1,209, 4,945) −1.622 0.106
TNF-α 21.17 ± 23.02 33.20 ± 26.14 −1.043 0.320

Serum (µg/mL)
CRP* 1.56 (0.60, 3.10) 1.55 (0.39, 4.23) −0.229 0.839
Leptin* 0.92 (0.18, 3.33) 4.11 (2.25, 15.57) −2.616 0.008
Adiponectin 7.53 ± 4.69 2.67 ± 1.52 4.119 < 0.001

Data are normally distributed and presented as means (standard deviations); Data are nonparametric, presented as median (quartile 1, quartile 3). χ2 and t tests 
were used to compare groups.
Obese group, obese subjects with asthma; Lean group, lean subjects with asthma; BMI, body mass index; CRP, C-reactive protein.
*P value from rank sum test; Significance were defined as P < 0.05.



{FPR = 1 − True Negative Rate (TNR)} at various threshold settings of the criterion parameter 
(YPredPS). In other words, the ROC curve visualizes the classifier's Sensitivity versus 1 
− Specificity. Each point on the ROC curve represents a pair sensitivity/specificity values 
corresponding to a particular decision threshold. As results shown in Fig. 4, the predictive 
regression models for obese asthma using differential metabolites indicated an excellent 
accuracy for both induced sputum and PBMC with the area under the curve (AUC) of 0.966 
and 0.916, respectively.

Pathway topology analysis
To analyze the most relevant pathways after identifying differential metabolites, the 
metabolic pathway topology enrichment analysis was applied with the impact value, 
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Fig. 1. OPLS-DA of metabolic profiles on samples from obese and lean asthmatic patients. (A, D and G) Score plot of OPLS-DA model obtained from OA and LA in 
sputum, serum and PBMCs samples retrospectively; The labels t[1] and t[2] along the axes represent the scores (the first 2 partial least-squares components) of 
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and −log(p) were calculated to evaluate the importance of the pathways underlying the 
pathophysiology mechanism in obese asthma. As a result, the pathway topology analysis for 
induced sputum indicated 14 potentially metabolic pathways involved in the development 
of obese asthma (Fig. 5A), the most important of which were cyanoamino acid metabolism 
(P = 1.8 × 10−3; impact: 0.333), caffeine metabolism (P = 3.3 × 10−3; impact: 0.031), alanine, 
aspartate and glutamate metabolism (P = 4.5 × 10−3; impact: 0.103), phenylalanine, tyrosine 
and tryptophan biosynthesis (P = 5.8 × 10−3; impact: 0.098), pentose phosphate pathway 
(P = 8.4 × 10−3; impact: 0.043). For serum samples, 5 pathways were identified (Fig. 5B), 
3 of which with the pathway impact higher than 0.01 were glyoxylate and dicarboxylate 
metabolism (P = 1.6 × 10−3; impact: 0.033), glycerolipid metabolism (P = 6.0 × 10−4; impact: 
0.021) and pentose phosphate pathway (P = 6.0 × 10−4; impact: 0.022). Unfortunately, we did 
not uncover any divergent metabolic pathways in PBMCs samples between obese asthmatic 
and lean asthmatic subjects as most of the differential metabolites identified could not match 
corresponding metabolites in KEGG database.

Validations of obesity-associated differential metabolites
Obesity-associated differential metabolites were validated using the confirmation of 
relationship between these differential metabolites and anthropometrical parameters and 
biomarkers (Leptin and adiponectin) of obesity (Fig. 6 and Supplementary Table S1).  
As a result, it indicated that most of identified metabolites significantly correlated to 
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Table 3. Identification of differentially expressed metabolites in different samples
Metabolites Formula Similarity R.T.(s) Mass Mean (OA) Mean (LA) VIP P value Fold change
Serum

Valine C5H11NO2 938 6.5716 144 0.292742 0.186863 1.52547 0.003389 1.566612
N-Methyl-DL-alanine C4H9NO2 910 6.24451 130 0.015362 0.009639 2.10309 0.032135 1.59383
Uric acid C5H4N4O3 907 11.755 441 0.053403 0.028716 2.35632 0.001708 1.859683
D-Glyceric acid C3H6O4 848 7.35796 73 1.54E-8 0.002588 2.79111 0.000235 5.94E-06
Asparagine 1 C4H8N2O3 795 9.54316 116 0.000475 0.002385 2.22053 0.032608 0.199208
Beta-Glycerophosphoric acid C3H9O6P 388 9.81424 318 0.001205 0.000867 1.91447 0.032232 1.389048

Sputum
Benzoic acid C7H6O2 927 10.2169 179 0.00549 0.003018 1.72251 0.049261 1.819276
3-Hydroxybutyric acid C4H8O3 898 8.8768 147 0.026021 0.014405 2.37554 0.004135 1.806478
Hydrocinnamic acid C9H10O2 867 12.521 104 0.071405 0.030318 1.90256 0.043112 2.355162
Aspartic acid 2 C4H7NO4 843 12.5444 160 0.004231 0.00249 1.7229 0.037086 1.698844
Xanthine C5H4N4O2 785 19.1697 353 0.004813 0.001108 2.87347 0.000656 4.342233
4-Aminobutyric acid 1 C4H9NO2 778 13.8746 174 0.006971 0.003197 1.7214 0.02602 2.180519
Glutaric acid C5H8O4 775 12.2927 55 0.003828 0.001934 2.11284 0.030307 1.979043
Indole-3-acetic acid C10H9NO2 725 18.6402 202 0.000964 0.002852 2.08922 0.016911 0.338039
Gly-pro C15H18N2O5 646 18.8113 174 0.002772 0.000998 1.56224 0.033051 2.777269
D-Glucoheptose 1 C7H14O7 638 20.2603 319 0.003925 0.001671 1.64081 0.021198 2.348362
Gluconic lactone 2 C6H10O6 586 17.9885 204 0.027971 0.017419 1.60699 0.039989 1.605824
L-Glutamic acid C5H9NO4 551 13.9056 84 0.004717 0.002192 1.95507 0.048317 2.151855
Phytosphingosine 2 C18H39NO3 548 24.1577 204 0.002671 0.000563 2.05209 0.018872 4.741507
Shikimic acid C7H10O5 547 16.9818 204 0.00028 0.001181 1.98896 0.018429 0.236641
Beta-Glutamic acid 1 C5H9NO4 467 14.7186 188 0.00702 0.001645 2.44955 0.025523 4.267577
Pyrrole-2-Carboxylic acid C5H5NO2 433 11.5609 117 0.000438 0.000239 1.8385 0.043951 1.830156
Pyrophosphate 3 H4P2O7 384 15.3792 158 0.001205 0.000714 1.40809 0.04607 1.68659
3-Aminopropionitrile 1 C3H6N2 326 12.1877 305 8.62E-05 4.70E-05 1.70748 0.048719 1.835127

PBMCs
3-Hydroxybutyric acid C4H8O3 611 645.124 147 0.000138 0.000297 1.29261 0.015636 0.465189
3-Hydroxynorvaline 2 C5H11NO3 454 815.886 147 0.002312 0.001617 2.14605 0.041258 1.430017
Linolenic acid C18H30O2 268 1385.06 222 0.000124 0.000374 3.5698 0.001251 0.331812
Isoleucine C6H13NO2 184 666.604 137 0.000189 0.000416 1.47027 0.043468 0.453583

R.T., retention time; OA, obese asthma; LA, lean asthma; VIP, variable importance projection; PBMC, peripheral blood monocular cell.



anthropometrical parameters and biomarkers of obesity. The relationships between 
anthropometrical parameters of obesity and differential metabolites were fully described in 
the “Results” section in this article's supplement.

Correlations of differential metabolites with clinical and inflammatory profiles
We further explored whether there were significant correlations of differential metabolic 
profiling with clinical characteristics in all subjects with asthma (Fig. 6 and Supplementary 
Table S2). Interestingly, it found some differential metabolites such as aspartic acid 2, beta-
glutamic acid 1, pyrrole-2-carboxylic acid, 4-aminobutyric acid 1, gluconic lactone 2 in induced 
sputum positively correlated to FEV1% and FEV1/FVC% reflecting airway obstruction (r > 0.45, 
P < 0.05). However, no differential metabolites in serum and PBMCs were statistically related 
with FEV1% or FEV1/FVC% except for isoleucine in PBMCs that positively correlated to FVC%  
(r = 0.37; P = 0.046). In induced sputum, phytosphingosine 2 had a liner correlation to ACT 
score (r = −0.508; P = 0.028) and glutaric acid was related with AQLQ score (r = 0.507; P = 0.027) 
when ACT and AQLQ were transformed into normal distribution parameter.
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Asthma was well characterized by airway inflammation. Therefore, we observed relationships 
of differential metabolites with airway inflammation (Fig. 6 and Supplementary Table S3). 
Firstly, it was found that d-glucopheptose 1 was associated with the percentage of neutrophils in 
induced sputum (r = 0.536; P = 0.040). Secondly, it was indicated that differential metabolites 
in induced sputum were significantly related with airway inflammatory biomarkers. In terms 
of TH2high cytokines, the IL-4 level was inversely associated with shikimic acid (r = −0.598;  
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P = 0.024), meanwhile IL-5 positively correlated to gly-pro (r = 0.651; P = 0.012) and IL-13 level 
to 3-hygroxybutyric acid (r = 0.593; P = 0.025). We also found that IL-1β levels correlated to 
d-glucoheptose 1 (r = 0.58; P = 0.029) and pyrophosphate 3 (r = 0.54; P = 0.047), and TNF-α 
levels to pyrophosphate 3 (r = 0.60; P = 0.024), and IL-8 levels to pyrophosphate 3 (r = 0.60; 
P = 0.023) and 3-aminopropionitrile 1 (r = 0.55; P = 0.04). Thirdly, for serum differential 
metabolites, it indicated d-glyceric acid was related with IL-13 (r = −0.48; P = 0.026), N-Methyl-
DL-alanine with IL-1β (r = 0.52; P = 0.014), uric acid with IL-6 (r = 0.47; P = 0.026) and IL-8  
(r = 0.48; P = 0.024). Fourthly, for differential metabolites in PBMCs, 3-Hydroxynorvaline 2 
was related with IL-13 (r = −0.47; P = 0.048), 3-hydroxybutyric acid with IL-1β (r = −0.50; | 
P = 0.036), and linolenic acid with IL-4 (r = −0.62; P = 0.006), IL-13 (r = −0.52; P = 0.027), and 
IL-1β (r = −0.51; P = 0.032).

Finally, we screened 18 potential metabolic signatures of obese asthma (Fig. 7). The 
differential metabolites from subjects with obese and lean asthma identified in OPLS-DA 
analysis were first validated, and their relationships with obesity assessments (BMI, fat, 
FFM, PBF, VFA, WHR, leptin or adiponectin) by correlation analysis were in 22 metabolites. 
Then, we further validated the 22 obesity-associated metabolites in relation to clinical and 
inflammation profiles of asthma by correlation analysis. Finally, there were 18 metabolic 
signatures associated both with obesity and asthma, which were pyrophosphate 3, 
d-glucoheptose 1, shikimic acid, aspartic acid, beta-glutamic acid 1, 4-aminobutyric acid 
1, phytosphingosine 2, xanthine, 3-aminopropionitrile 1, 3-hydroxybutyric acid, gly-pro in 
sputum (n = 11), and valine, uric acid, d-glyceric acid, N-Methyl-DL-alanine in serum (n = 4), 
and linolenic acid, 3-hydroxynorvaline 2, isoleucine in PBMCs samples (n = 3).

DISCUSSION

To the best of our knowledge, this is the first study to explore the relationship of obesity-
associated metabolic signatures in induced sputum and peripheral blood with clinical 
and inflammatory profiles of obese asthma. As a result, our study showed that obese 
asthmatic subjects were characterized by worse asthma control and more systemic/airway 
inflammation, and metabolic profiles of obese asthma differentiated from lean asthma 
identifying 28 significantly regulated metabolites in obese asthma based on GC-TOF-MS in 
induced sputum, serum and PBMCs samples. Furthermore, validation analysis revealed 18 
potential metabolic signatures of obese asthma, which significantly correlated to clinical 
and inflammatory profiles. Meanwhile, pathway topology analysis uncovered 8 most 
probable pathways involved in the development of obese asthma. Our findings indicated 
novel immunometabolic mechanisms in obese asthma, with providing more phenotypic and 
therapeutic implications.

Until now, most metabolomics studies focused on distinguishing asthma cases from healthy 
controls using serum, urine or breath, mainly for diagnostic purposes.17 There is a lack of 
studies investigating metabolic alterations directly in asthmatic lungs, which potentially 
generates unique perspectives for understanding disease mechanisms. Metabolomics 
analysis of BALF can provide an in-depth understanding of altered lung metabolism in 
experimental asthma and elucidate unique disease-relevant metabolite profiles.34 It is 
reasonable to use induced sputum samples as a typical bio-specimen with a complex mixture 
of cells, and large and small molecules for metabolic study, which is more advantageous to 
explore the underlining inflammation mechanism. In this study, we also investigated the 
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metabolic changes of PBMCs for the first time, which is suggestive of systemic inflammation 
response in obesity and asthma. Unfortunately, no significantly differential pathways but 
only a few metabolites identified in PBMCs cell culture samples were identified. Several 
challenges such as quenching of cell cultures, differential rates of proliferation and addition 
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of foreign molecules perhaps impede the accurate and informative investigation of metabolic 
alterations in PBMCs cell culture.

In terms of clinical characteristics, ACT scores were decreased in obese versus lean individuals, 
as confirmed in previous observations.35 Furthermore, a possible mechanism concerns systemic 
inflammation explaining the link between obesity and asthma36 is also found in our study as 
obese asthmatic patients had higher leptin and lower adiponectin levels in serum. Likewise, the 
biomarker of pro-inflammatory event (IL-1β) in sputum supernatant was significantly increased 
in asthmatic subjects with obesity compared with lean ones. This is in line with results of Kim 
et al.,19 who presented that obesity-associated asthma is facilitated by inflammation mediated 
by NLRP3, IL-1β and ILC3 cells. Other type 1 inflammatory mediators like IL-6, IL-8 and TNF-α 
were comparable between obese and lean asthma, which is also similar with the results from 
Sideleva et al.37 Interestingly, it was observed that type 2 cytokines such as IL-4 and IL-13 were 
elevated in obese patients. In fact, there are only a few studies investigating type 2 cytokines 
in obese asthma which also suggest an increased TH2 responses in obese asthmatic patients.38 
Our previous study has further demonstrated that IL-4 and IL-13 mediated the effects of obesity 
on asthma control.39 Based on recently published studies, raised type 2 cytokines would play 
a unique protective role by limiting adipose tissue inflammation and obesity, which has been 
proved by Darkhal et al.40 that the overexpression of the IL-13 gene in high-fat diet (HFD)-fed 
mice inhibits adipose tissue inflammation and blocks HFD-induced obesity. However, the 
protecting mediators in the obese would perhaps worsen asthma control.

This study has produced promising results in defining a distinct obese asthma metabotype, 
which is in line with a previous study of nuclear magnetic resonance-based metabolic 
profiling of obese asthmatics on EBC.16 The clear separation between obese and lean 
asthmatic subjects in 3 different samples' metabolic profiles, strongly suggests that they 
represent somewhat pathophysiological processes for obese asthma. The identified 
differential metabolites in this study such as pyrophosphate, shikimic acid, aspartic acid, 
glutamic acid, 4-aminobutyric acid, phytosphingosine, xanthine, uric acid, asparagine, 
valine, alanine, linolenic acid and isoleucine as well as corresponding metabolic pathways are 
also confirmed in other studies in asthma.17 Notably, those identified differential metabolites 
in OPLS-DA between obese and lean asthmatic patients, have been further validated by 
correlation analysis with obesity, clinical profiles and inflammation biomarkers, which are 
suggestive of metabolic signatures of obese asthma.

Among those differential metabolites relevant to obesity, uric acid was found to be not only 
positively correlated to leptin level in serum, but also related with IL-6 and IL-8 in sputum 
supernatant, which has been confirmed in previous studies that elevated serum uric acid is 
associated with adipokines41 and systemic inflammatory cytokines.42 Additionally, Kool et al.43 
have identified that uric acid is released in airways of allergen-chanllenged asthmatic patients 
and mice, which play an unexpected role in initiating and amplifying TH2 cell immunity and 
allergic inflammation in mice. In addition, linolenic was negatively related with IL-4, IL-13, 
and IL-1β. Our data also supports that dietary intake of linolenic acid are associated with 
decreased airway inflammation and improved asthma control.44 Thus, diet management of 
fatty acid deserves attention in asthma, especially patients with obese asthma.

Our study further found the relationships of differential metabolites with clinical profiling. As 
the results indicated, some metabolic signatures correlated to airway obstruction defined by 
FEV1% and FEV1/FVC%. For example, aspartic acid, glutamic acid and 4-aminobutyric acid 
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participate in alanine, aspartate and glutamate metabolism, which is associated with glycolysis, 
gluconeogenesis and the citric acid cycle by transamination to glutamic acid. Our findings 
suggest that the energy requirement is different in obese asthmatic patients with respect to 
lean asthmatic patients, which is consistent with the results of the previous study.16 Meanwhile, 
it has been demonstrated that leptin's antiobesity effects are mediated by synaptic release of 
gamma-aminobutyric acid (GABA, 4-aminobutyric acid)45 and γ-aminobutyric acid A receptors 
(GABAARs) agonists acutely relax airway smooth muscle and alleviate bronchoconstriction.46 
Consequently, GABA plays an important protective role both in obesity and asthma which 
may lead to new therapeutic strategies for the management of obese asthma. We also found 
that phytosphingosine had a negative liner correlation to ACT score, suggests elevated 
phytosphingosine in obese asthma would worsen asthma control, which requires more evidence 
to better understand underlying mechanisms, even although a recent study provides evidence 
that phytosphingosine has potential relevance in the pathogenesis of experimental asthma.47

Moreover, the identified metabolic signatures are proved to participate in the most important 
pathway involved in obese asthma based on topology analysis. Other than the pathways 
discussed previously, it is worth note that the glyoxylate and dicarboxylate metabolism has 
also been reported in the previous study16 as one of the most probable pathways involved 
in class separation between lean and obese asthmatic patients. Although glyoxylate and 
dicarboxylate metabolism has been related with mitochondrial dysfunction that would result 
in decreased ability to detoxify reactive oxygen species in aged female subjects.48 the related 
metabolic enzymes and genes that correlated the metabolic perturbations require further 
investigation to illustrate in obese asthma.

Interestingly, the pentose phosphate pathway has been identified in both sputum and 
serum samples, which is an important metabolic pathway parallel to glycolysis. It generates 
nicotinamide adenine dinucleotide phosphate and pentoses (5-carbon sugars) as well as 
ribose 5-phosphate, and the first one in the cell is to prevent oxidative stress. However, 
overexpression of glucose-6-phosphate dehydrogenase, a rate-limiting enzyme of the pentose 
phosphate pathway, promotes oxidative stress and expression of pro-inflammatory cytokines in 
macrophages, which induce insulin resistance in adipocyte.49 Our findings have suggested that 
anomalous pentose phosphate pathway perturbations in obese conditions might deteriorate 
energy homeostasis and oxidative stress, thereby accelerating inflammation in obese asthma.

Our study has several limitations that need to be addressed. First, the results need further 
replication and validation as the sample size in our study is limited and it is not well matched 
demographically (e.g., sex, smoking, and medication), even though there were no significant 
differences in baseline characteristics between the groups. Secondly, because of the cross-
section study design, it cannot establish a causal relationship but rather an association. 
Thirdly, lack of validation of the identified metabolites in an additional population set as well 
as lack of healthy controls and obese subjects without asthma limits the interpretation of the 
differential metabolites in relation to asthma pathophysiology, while our validation analysis 
by exploring the relationships of differential metabolites with obesity assessments and 
clinical or inflammation profiles of asthma would strengthen the results.50 Fourthly, as for 
the libraries and unavailability of reference standards, some of the detected metabolites are 
unidentified, which somewhat limits the exploring of the potential metabolic signature.

In conclusion, obese asthma shows worse asthma control, and systemic and airway 
inflammation, and metabolic analysis indicates that obese asthma is characterized by a 
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different metabolic profile from lean asthma. Obesity-associated metabolic signatures in 
induced sputum and peripheral blood correlated to clinical and inflammatory profiles of 
asthma, which indicates novel immunometabolic mechanisms in obese asthma, with providing 
more phenotypic and therapeutic implications, but needs further replication and validation.
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