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Integrative genomics and genetics approaches have proven to be a useful tool in elucidating the
complex relationships often found in gene regulatory networks. More importantly, a number of
studies have provided the necessary experimental evidence confirming the validity of the causal
relationships inferred using such an approach. By integrating messenger RNA (mRNA) expression
data with microRNA (miRNA) (i.e. small non-coding RNAwith well-established regulatory roles in a
myriad of biological processes) expression data, we show how integrative genomics approaches can
be used to characterize the role played by approximately a third of registered mouse miRNAs within
the context of a liver gene regulatory network. Our analysis reveals that the transcript abundances
of miRNAs are subject to regulatory control by many more loci than previously observed for mRNA
expression. Moreover, our results indicate that miRNAs exist as highly connected hub-nodes and
function as key sensors within the transcriptional network. We also provide evidence supporting
the hypothesis that miRNAs can act cooperatively or redundantly to regulate a given pathway and
that miRNAs play a subtle role by dampening expression of their target gene through the use of
feedback loops.
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Introduction

The discovery of microRNAs (miRNAs), a class of endogen-
ously produced small non-coding RNA molecules, revealed an
additional mechanism by which genes are regulated and added
yet another dimension of complexity to the regulation of
biological systems (Lee et al, 1993; Reinhart et al, 2000). In just
the past decade alone, miRNAs have been implicated in
various biological processes including temporal development
events, cell-cycle regulation, metabolism, immunity, and
tumorigenesis (Esquela-Kerscher and Slack, 2006; Carleton
et al, 2007; Taganov et al, 2007; Wilfred et al, 2007; Zhao and
Srivastava, 2007). These small single-stranded molecules of
B22 nucleotides have been found to regulate multiple
pathways in several species, ranging from developmental
timing and neuronal patterning in worms (Lee et al, 1993;
Reinhart et al, 2000; Johnston and Hobert, 2003; Chang et al,
2004); to apoptosis and fat metabolism in flies (Brennecke
et al, 2003; Xu et al, 2003); to hematopoietic differentiation in

mice (Chen et al, 2004); to leaf morphogenesis and adaptive
stress response in plants (Palatnik et al, 2003; Mallory and
Vaucheret, 2006). In humans, over a third of the genome is
predicted to be regulated by miRNAs (Lewis et al, 2005) and
computational methods estimate that the mammalian miRNA
repertoire consists of close to 1000 miRNA genes—B3% of the
human genome (Bentwich et al, 2005; Berezikov et al, 2005).

While many miRNAs have been discovered via a combina-
tion of experimental and computational approaches, the
functional relevance of the majority of miRNAs remains
unknown. Moreover, while miRNAs have been implicated in
multiple disease areas, elucidating the mechanisms that detail
the path from miRNA expression to phenotype remains a
challenge. Because validation experiments are often time
consuming and laborious, several groups have developed
algorithms to predict the target RNA transcripts of miRNAs
in silico. The majority of these programs utilize the high degree
of complementarity between miRNA seed region and the 30

UTRs of their targets, predicted miRNA–messenger RNA
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(mRNA) target thermodynamics, and the sequence con-
servation of the binding motif (reviewed by Sethupathy et al,
2006; Martin et al, 2007; Maziere and Enright, 2007). Moreover,
other techniques ranging from brute-force motif-mining of
enriched motifs within the 30 UTR of known genes, to
sophisticated support vector machine learning techniques
have also been applied to miRNA target prediction. Multiple
groups have shown that the majority of these computational
programs, when used in isolation, report high false-positive
rates (B22–39%) and high false-negative rates (B35–52%)
(Sethupathy et al, 2006).

Several groups have now reported successful use of
integrative genomics and genetic approaches to investigate
the genetic basis of intermediate molecular phenotypes such
as gene expression and protein levels. Briefly, the approach
combines classical genetics, where DNA sequence variation is
examined and correlated with complex physical or behavioral
traits, and gene expression profiling with the broad goal of
elucidating the molecular underpinnings of complex traits. In
addition, others have developed algorithms and procedures to
identify statistically supported causal relationships between
multiple traits of interests (Schadt et al, 2005). Recently, Yang
et al (2009) validated eight of nine genes that were predicted to
be causal for obesity-related traits. These results illustrate the
tremendous success of using integrative genomics approaches
to dissect the landscape of complex traits and predict with high
accuracy the causal relationships between any given pair of traits.

We report here one of the first investigations into the genetic
basis of miRNA gene expression and demonstrate how integra-
tive genomics approaches can be used to explore the regu-
lation of miRNAs and miRNA-mediated regulation. Using a
highly sensitive and robust quantitative polymerase chain
reaction (qPCR) assay, we examined expression levels of 187
(or B30% registered miRNAs in miRBase (release 15)
(Griffiths-Jones, 2004; Griffiths-Jones et al, 2006, 2008))
within the context of a mouse liver gene regulatory network.
Our results suggest that the transcript abundances of these
miRNA are under more complex regulation (i.e. more subtle
regulation or are regulated by multiple loci) than those
previously observed for mRNA abundances. Our data further
suggest that many of the surveyed miRNAs are co-expressed
with mRNAs involved in DNA replication and the cell cycle in
liver tissue. Finally, we demonstrate that a number of miRNAs
detected typically exist as highly connected hub-nodes within
the liver transcriptional network that respond to perturbations
in mRNA transcript levels and drive changes in mRNA
expression profiles. Additionally, for the majority of surveyed
miRNAs, the number of mRNA statistically supported as causal
for regulating miRNA transcript exceeds the number of down-
stream mRNA transcripts predicted to respond to changes in
miRNA levels, illustrating the complexity of miRNA-mediated
regulation.

Results

Integrating genotype, mRNA expression and phenotypic data
from experimental mouse cross populations has proven to be a
successful method for identifying genes supported as causal
for complex traits like disease. We present here the results of a

study designed to explore the association between miRNAs
and their target mRNAs using an integrative genomics
approach. In order to collect substantial tissue mass for all
three profiling assays, we elected to perform this study in liver.
Using an F2 mouse cross, we collected both mRNA expression
and genotype information from liver. Next, in order to focus on
the additional layer of regulation provided by miRNAs, we
profiled expression levels of 187 miRNAs. At the time the
study was being designed, these miRNAs represented all
known miRNA sequences. Taking into account the rapid pace
of miRNAs discovered in the past decade, we note that the
miRNAs surveyed currently represent a large subset of
discovered miRNAs (B31% of registered miRNAs in miRBase
database (release 15)).

Linkage analysis techniques were then applied to infer
regulatory relationships between DNA loci and the two classes
of expression traits, that is, mRNA and miRNAs. We
next characterized the miRNA–mRNA relationships using
a simple correlation analysis and applied a variation of a
previously developed statistical inference technique to infer
regulatory relationships between mRNA and miRNAs. The
regulatory predictions from this statistical procedure were
recently validated in a study where eight out of nine
predictions were experimentally tested and successfully
validated using either transgenic mice or knockouts mouse
models of the predicted genes. Whereas a large number of
studies have focused on the downstream targets of miRNAs,
our results present a unique perspective on the regulatory roles
of miRNAs by investigating predicted causal regulators of
miRNAs in addition to the downstream mRNA targets of miRNAs.

mRNA and miRNA eQTL mapping in the BXD
mouse study

To study the genetic basis of variation in miRNA transcript
abundance levels, we constructed an F2 intercross population
using two inbred mouse strains, C57BL/6J and DBA/2J,
hereafter referred to as the BXD cross. To avoid sex-specific
effects, we selected 127 male animals for miRNA and mRNA
expression profiling. Each animal was genotyped using a
dense panel of SNP markers (covering nearly 100% of the DNA
variation segregating in the F2 population) and RNA was
isolated from liver samples from each F2 animal and profiled
on a whole-genome microarray consisting of 39 557 non-
control probes. In addition, we profiled the intensity levels of
187 individual miRNAs using a highly sensitive and robust
high-throughput primer extension (PE) qPCR assay (Raymond
et al, 2005). Of the set of miRNAs investigated, transcripts with
missing values in X60 animals and were presumed to be
poorly detected and removed from the data set.

Using standard parametric linkage analysis techniques, we
treated the expression levels of both mRNAs and miRNAs as
quantitative traits to identify regulatory loci generally referred
to as expression quantitative trait loci (eQTLs). In the case of
miRNAs, at a LOD score significance threshold of 44.9
(corresponding to a false-discovery rate (FDR) threshold of
10%), we identified 10 eQTLs corresponding to 10 miRNA
traits (B5% of the miRNA traits examined). At this threshold,
we would at most expect a single false positive by random
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chance. Of the 10 eQTLs identified, 5 eQTLs map to the same
location as their corresponding physical transcript (i.e. cis
eQTLs (Doss et al, 2005)). Here, a cis eQTL is defined to
contain the structural gene within the 15-cM region flanking
the peak LOD score. A number of distinct miRNAs processed
from the same polycistronic transcript (e.g. mmu-miR-15a/16,
mmu-miR-200a/200b) also showed a high degree of correla-
tion in expression levels and mapped to the same eQTL
(Figure 1). The highest LOD score of 10.8 corresponded to
mmu-miR-145 mapping to chromosome 7 and on average,
each eQTL explained 21% of the observed variation.

In contrast, we identified 5293 eQTLs for 5107 of the 39 557
mRNA transcripts (B13%) profiled in the BXD cross at a LOD
score threshold of 44.9 (corresponding to an FDR o5%),
with a maximum LOD score of 85. Adjusting the LOD score
threshold to achieve an FDR o10% (LOD score 44.4) resulted
in a total of 7309 eQTLs for 6837 mRNA expression traits
(B17%). Of these, 2712 (or 37%) were cis eQTLs. Thus by
percentage, at the 10% FDR threshold, more than three times
as many mRNA eQTL were detected when compared with the
miRNA expression traits. On average, each eQTL explained
28% of the observed expression trait variation (the minimum
percent variation explained was 15%).

There are a number of possible explanations for the reduced
rate of eQTL detection observed for the miRNA. First, miRNA
traits could potentially give rise to a more complex eQTL
signature. Here, we refer to the complexity of the eQTL
signature by the number of eQTLs within a given signature and
the effect size accounted for by each locus. Hence, assuming
that the effect produced by any single DNA variant is reduced
in comparison to that of mRNA eQTLs, we might not be
sufficiently powered to detect the bigger set of eQTL with
smaller effect sizes. Alternatively, miRNAs may be more tissue

specific than mRNAs, where detecting the genetic variance
component requires one to be in the right context. Finally, it is
also possible that the genetic variance component for miRNAs
is significantly less than the genetic variance component for
mRNA traits, although our analyses herein suggest this is
unlikely to be the case.

Because miRNAs are known to downregulate mRNAs, we
developed a strategy to decrease the FDR of detecting miRNA
eQTLs by restricting the mapping loci for each miRNAs to
regions of the genome that are a priori postulated to be weakly
linked to miRNAs. In theory, the set of genes enriched for
potential miRNA targets could share common QTL with the
corresponding miRNAs (Figure 2A and B). Moreover, while
miRNAs are known to bind imperfectly to the 30 UTR of target
mRNAs, a perfect Watson–Crick pairing of B6–8 nucleotides
at the 50 region of the miRNA has been shown to be important
in miRNA target recognition (Bartel, 2009). This region,
known as the seed region, is typically conserved across
species and spans nucleotides 1–8 of the mature miRNA
transcript. Experimental perturbation studies using increased
levels of miRNAs or knockdown of ectopic miRNA levels have
resulted in decreased or increased levels of mRNAs that are
enriched for the miRNA seed (Lim et al, 2005; Linsley et al,
2007). Hence, for each miRNA, we identified a set of mRNA
expression traits that contained at least one hexamer region
within the 30 UTR of the mRNA transcript that could potentially
bind the seed of the given miRNA. These gene sets were then
filtered to contain only genes that were significantly negatively
correlated with the corresponding miRNA. Each set repre-
sented a set of mRNA expression traits that were highly
enriched for potential direct target mRNAs of a given miRNA.
We then searched for the corresponding miRNA eQTLs within
regions that are significantly associated with one or more
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mRNA transcript in the associated set of highly enriched
potential direct targets (i.e. within 15 cM of the peak each
potential target mRNA eQTL) (Figure 2).

To begin, we computed all pairwise correlation between all
39 557 mRNA transcripts and 183 miRNA transcripts. Next, we
selected all pairs of significantly correlated miRNA and mRNA
transcripts using a P-value threshold of o3.98�10�4, which
corresponds to an FDR o1%. At this threshold, 465 646
significant Pearson correlations or B6% of the correlation
matrix were selected. For each of the 183 miRNAs, we selected
all mRNA transcripts that were significantly negatively
correlated with the given miRNA and contained at least one
hexamer region matching the reverse complement of the
miRNA seed in the 30 UTR of the mRNA transcript, resulting in
183 distinct sets of mRNA transcripts. On average, each set
contained 261 mRNA transcripts. For each set, we then
identified all eQTLs (LOD threshold44.4, FDR o10%)
associated with each mRNA transcript in the set. miRNA
eQTL peaks that fell within 15 cM of the associated set of
mRNA QTL peaks were considered to map to the same region
as their potential direct targets.

By focusing only on the miRNAs eQTLs that overlapped
with the eQTLs of their potential direct targets, we were able to
decrease the FDR of detecting miRNA eQTLs (Figure 2C).
Using this strategy, a LOD score threshold of43.1 corresponds
to an FDR o10%. At this threshold, we identified 72 miRNA
eQTLs corresponding to 56 miRNAs and of these, only 11
(or 15%) were cis eQTLs with a large proportion of cis eQTLs
ranking among the top 10 eQTLs with the strongest LOD scores
(Supplementary Table 1A). Here, 6 out of the top 10 strongest
eQTL signals were cis eQTLs. On average, each eQTL explained
13.5% of the variation observed in miRNA transcript
abundance levels. We note that 8 out of the 10 miRNA eQTLs
that were previously detected during the genome-wide search
overlapped with the miRNA eQTLs that were identified in
the more restricted analysis. Also, consistent with eQTLs
detected for mRNA expression traits, the strongest LOD
scores were realized at markers that were proximal to the
physical location of the structural miRNA (i.e. were cis eQTL
(Doss et al, 2005)).

The increased number of miRNA eQTL detected using the
mRNA eQTL as a filter suggest that many miRNA may have a
significant genetic variance component and that we simply
were not well powered to detect them in this study. Mmu-
miR-34a is particularly noteworthy given the size of its eQTL
signature—that is, it maps to five eQTLs on different chromo-
somes demonstrating a strong genetic component driving
variation of mmu-miR-34a expression levels in the BXD cross.

We next sought to determine if there were key loci involved
in regulating many miRNAs. In analyzing the distribution of
miRNA eQTLs across the genome (when restricted to those
overlapping with target mRNA eQTLs), we identified a strong
eQTL hotspot on chromosome 13 and a weaker hotspot on
chromosome 17 (Supplementary Figure S1). Of the 72 eQTLs
identified, 42% mapped to chromosome 13, suggesting the
presence of a key regulator influencing the expression levels of
many miRNAs. If we consider individual chromosomes as
distinct bins, the P-value for the null hypothesis (assuming a
Poisson distribution with 72 eQTLs spread across 20 bins) that
this distribution occurred by chance would be o5.03�10�18.
Similar analysis with mRNA eQTLs reveals the presence of
many hotspots for the mRNA expression traits. Because many
more mRNA expression traits were analyzed in this study, a
bin size of 2 cM evenly spaced across the genome was used to
detect mRNA eQTL hotspots. Overall, we detected seven
mRNA eQTL hotspots where each hotspot is defined to
comprised 41% of the total number of eQTLs (computed
using a Poisson distribution with mean¼9.52). These hotspots
localize to chromosomes 2, 4, 7, 9, 12, 13, and 17. The
probability of detecting41% of eQTLs in one of the 768 bins is
B6.5�10�40.

In order to better compare the location of miRNA eQTL
hotspots to mRNA eQTL hotspots, we recomputed the
probabilities of an miRNA eQTL hotspot using 2 cM bins.
Our analysis indicates that the eQTL hotspots for miRNAs and
mRNAs on chromosome 13 are o4 cM apart. Interestingly,
Dicer and Drosha, two key enzymes involved in miRNA
biogenesis, are respectively located on chromosome 12 and 15,
and hence do not overlap with the detected miRNA eQTL
hotspots.
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Correlation analysis between miRNA and mRNA
expression levels in mice

Using the same correlation matrix computed above (i.e. all
pairwise correlation between the 39 557 mRNA and 183
miRNA transcripts), we identified 465 646 miRNA–mRNA
trait pairs that were significantly correlated at an FDR o1%
(P-value o3.98�10�4). By tabulating the number of signifi-
cantly correlated mRNA transcripts per miRNAs, we found
that a number of miRNAs were very broadly connected to tens
of thousands of mRNAs, supporting the idea that some
miRNAs behave as hub-nodes in the liver gene regulatory
network. On average, each miRNAwas significantly correlated
with 2545 mRNA transcripts, with all 183 assayed miRNAs
showing significant correlation to at least one mRNA
transcript. In fact, eight miRNAs (mmu-miR-128b, mmu-miR-
142-5p, mmu-miR-142-3p, mmu-miR-181a, mmu-miR-181c,
mmu-miR-186, mmu-miR-212, and mmu-miR-342) were sig-
nificantly correlated with 410 000 mRNA transcripts, effec-
tively tracking with the state of the liver gene regulatory
network. Conversely, each mRNA transcript showed signifi-
cant correlation to a mean of 19 miRNA transcripts. In fact,
24 869 out of 39 557 transcripts (63%) were significantly
correlated with at least one miRNA. This large correlation
signature between miRNAs and mRNAs suggests that the large
majority of miRNAs affect the expression levels of many genes
and that their own expression levels may themselves be
subject to complex regulation. This explanation would be
consistent with the weak genetic signature that we identified
for the miRNAs. In this case, assuming that miRNAs are
regulated by many factors, the expectation would be that many
trans-acting eQTLs would influence the level of miRNA
transcript abundances, each with a small effect, necessitating
a larger sample sizes for miRNA eQTL detection.

As perfect reverse complementarity at the seed region has
been shown to improve prediction of miRNA targets over
background levels (Bartel, 2009), we tested each set of
correlated mRNA transcripts for seed enrichment of their
respective miRNA. Only seeds within the 30 UTR of the mRNA
transcript were included in this analysis. Briefly, we started
with the full set of correlated mRNA transcripts for each
miRNA (referred to as the miRNA signature set) and computed
the seed enrichment levels for each set using a hypergeometric
distribution. Because there is a continuum in efficiency of
various seed matches (e.g. longer seed matches are better
predictors of miRNA targets), we calculated the seed enrich-
ment of the various seeds (Figure 2) and then selected for
the strongest seed region (assuming the following hierarchy
in site efficacy: 7mer-m847mer-A146mer4offset 6mer) that
yielded significant enrichment among the transcripts in the
miRNA signature set at an initial Bonferroni-corrected P-value
threshold ofo0.05. As expected, 73% of miRNA signature sets
were enriched for at least one seed region (Figure 3A).
Surprisingly, given that miRNAs have largely been shown to
downregulate levels of their target transcripts (Lim et al, 2005;
Linsley et al, 2007), our expectation was that the observed seed
enrichment would be driven by mRNA transcripts that were
negatively correlated with the given miRNA. However, when
we partitioned the transcripts into those that were positively
and negatively correlated with the miRNAs, mRNA transcripts

that were positively correlated constituted the bulk of
transcripts within the miRNA signature set that were driving
the strong observed enrichment of miRNA seed regions
(Figure 3B and C). In fact, only 18% (33/183) of negatively
correlated miRNA signature sets were significantly enriched
for the corresponding miRNA seed region compared with 73%
(134/183) for positively correlated miRNA signature sets. This
result suggests that a large proportion of miRNAs–mRNA
interactions involve feedback loops as have been demonstrated
in a number of studies (Martinez et al, 2008; Yu et al, 2008).

For each miRNA signature set, we performed an enrichment
analysis using the Gene Ontology (GO) Biological Process
categories and KEGG pathways. Here, we used the Fisher’s
exact test to compute the significance of the overlap between
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each miRNA signature set and known sets of genes with
functional and pathway information. A Bonferroni-corrected
P-value of 0.05 (nominal P-value multiplied by the number of
sets in each of the corresponding databases) was used as the
threshold in determining significant overlap. In all cases, the
total number of transcripts on the Agilent array was used as the
background set. In addition, for GO Biological Process and
KEGG Pathway enrichment analysis, sets with 4500 genes
were not considered, given that sets of this size are too general
to be of practical benefit. The top 10 results for each category
ranked by fold-change enrichment are shown in Supplemen-
tary Table 2.

From the annotation results, we found that in liver tissue,
a large fraction of the surveyed miRNAs (33% of miRNAs
with successful biological process annotations) are putatively
involved in DNA replication and cell-cycle regulation (Supple-
mentary Figure S3A). Of the sets tested, the top categories in
terms of number of overlapping miRNA signature sets were
DNA replication, cell division, and M phase of the mitotic
cell cycle, mitosis, and mitotic cell cycle (Supplementary
Figure S3B). These categories include miRNAs known to have
a role in DNA replication and cell cycle, such as mmu-miR-34a
and mmu-miR-15b, respectively.

When we analyzed the miRNA signature sets using KEGG
pathways, we found similar results in the sense that the
majority of miRNA signature sets are enriched for genes
involved in cell cycle and DNA replication pathways (Supple-
mentary Figure S3C). In addition, 18 miRNAs were linked
to genes that have a role in the complement and coagula-
tion cascade pathways. A further analysis of the miRNAs
predicted to be involved in cell-cycle regulation revealed that
10 of the 19 miRNA signature sets were additionally enriched
for the corresponding seed region of their respective miRNAs,
providing putative regulatory links between the correlated set
of mRNA transcripts and the corresponding miRNA transcript.
These sets of significantly correlated mRNA transcripts that
contain at least one 6mer sequence in the 30 UTR were also
similarly enriched for genes involved in cell cycle (Table I).

Using a Fisher’s exact test, we computed the significance of
association between all pairwise comparison of the 19 miRNA
signature sets. Here, we found that despite being correlated to
miRNAs with different seed regions, most of the miRNA
signature sets that are predicted to be involved in cell-cycle

regulation were also significantly associated with one another.
Hence, our results suggest that distinct miRNAs collectively
function to modulate levels of the same set of mRNA
transcripts that are all involved in the same cellular process.
We further examined the other KEGG pathways that showed
significant association with more than five miRNA signature
sets and in each pathway, found that many, if not all of the
miRNA signature sets that are associated with a given pathway
to be highly significantly associated with one another. There
were only a few examples where pairs of miRNA signature sets
that were associated with the same KEGG pathway were not
significantly associated with one another. For example, out of
the 19 miRNA signature sets that show strong association with
cell-cycle regulation, the miRNA signature sets that are
significantly correlated with mmu-miR-25 and mmu-miR-296
share relatively few transcripts and no more than would be
expected by chance alone (Fisher’s exact test P-value B0.99).
Another example is the collection of transcripts within the
miRNA signature set that is significantly correlated with mmu-
miR-193, which differs from the collection of transcripts within
the miRNA signature set mmu-miR-128 and mmu-miR-183
families despite all miRNA signature sets being enriched for
the KEGG ribosome pathway.

Because a large majority of miRNA signature sets are
enriched for genes containing the seed region of the given
miRNA, we opted to annotate the sets of miRNA signature sets
using only genes that contained at least one 6mer seed region
in the 30 UTR region of the gene. That is, we wanted to identify
those pairwise relationships that not only exhibited a signi-
ficant correlation, but that also involved mRNA with a 30 UTR
region that contained at least one 6mer seed region of the
corresponding correlated miRNA. As expected, we were able
to provide functional annotations for many of the miRNAs
using this filter. The top 10 results for each database are shown
in Supplemental Table 3. The most significant result was
obtained for mmu-miR-20a using the KEGG pathway database.
Previous studies have shown that this miRNA has a role in cell
cycle; our analysis showed a three-fold enrichment in the
number of overlapping genes involved in cell cycle, compared
with what we would have expected by chance. Overall, using a
simple correlation analysis, we identified functional categories
for 73 different miRNAs and implicated 57 miRNAs in various
pathways. Using both the correlation data and the presence of

Table I MicroRNA signature sets with at least one corresponding hexamer per gene that are enriched for KEGG pathways cell-cycle genes

MicroRNA Seed (6mer) miRNA signature set size Overlap (enrichment)a Nominal P-valueb Corrected P-valueb

mmu-mir-20a CACTTT 377 33 (3.27) 2.50E–10 4.94E–08
mmu-mir-449 CACTGC 342 26 (2.84) 5.81E–07 1.15E–04
mmu-mir-19a TTGCAC 306 21 (2.56) 4.27E–05 8.45E–03
mmu-mir-181b GAATGT 622 38 (2.28) 2.29E–07 4.54E–05
mmu-mir-181c GAATGT 693 40 (2.16) 4.51E–07 8.93E–05
mmu-mir-181a GAATGT 698 40 (2.14) 5.49E–07 1.09E–04
mmu-mir-142-5p CTTTAT 742 42 (2.11) 3.41E–07 6.75E–05
mmu-mir-18 CACCTT 495 28 (2.11) 6.60E–05 1.31E–02
mmu-mir-128b CACTGT 811 43 (1.98) 1.49E–06 2.96E–04
mmu-mir-128a CACTGT 782 41 (1.96) 4.14E–06 8.21E–04

aThe number in parentheses is the fold-change enrichment. The fold-change enrichment is defined to be the observed overlap divided by the observed overlap.
bThe nominal P-value represents the Fisher’s exact test statistics under the null hypothesis that the number of overlapping genes between the two sets is the same as that
from a background set of 4033 genes and the set of KEGG pathways cell-cycle genes consisting of 108 genes. The corrected P-value represents the Bonferroni-corrected
P-value (nominal P-value multiplied by the number of sets searched).
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a seed region, we have provided putative functions for 54
miRNAs using GO Biological Process categories, and 26
miRNAs using KEGG Pathways.

Causal associations between miRNAs and mRNAs

Because miRNAs have been shown to have regulatory roles in
many important biological pathways (Mallory and Vaucheret,
2006; Bartel, 2009; Kai and Pasquinelli, 2010), we were
interested in distinguishing mRNA transcripts supported as
inducing changes in miRNA trait expression from those
serving as targets (both direct and indirect) of the miRNAs.
Using integrative genomics approaches, previous studies have
shown success in teasing apart the nature of the relationship
between pairs of correlated quantitative traits such as mRNA
and clinical phenotypes (Mehrabian et al, 2005; Schadt et al,
2005; Yang et al, 2009). Briefly, the approach leverages DNA
sequence variation as a causal anchor to identify the best
fitting model that describes the relationship between pairs of
traits that are linked to the same genetic locus. More
importantly, this approach has met with success at the
experimental validation stage. For example, Yang et al (2009)
recently validated eight out of nine predicted causal genes for
obesity-related traits using transgenic and knockout mice.

We applied a variation of a previously described statistical
procedure (Schadt et al, 2005) to identify mRNAs that respond
to changes in miRNA expression levels (miRNA targets), as
well as mRNAs that perturb expression levels of miRNAs.
First, we identified all miRNA and mRNA trait pairs linked to a
common genomic region at an LOD score threshold of 3.4
(corresponding to a 10% FDR). Next, we identified 44 370
miRNA–mRNA trait pairs with closely linked eQTLs
(o15 cM). After filtering for significant correlations between
the pairs of miRNA–mRNA trait pairs with closely linked
eQTLs (at a P-value threshold of 3.98�10�4, corresponding to
a 1% FDR was used), we applied a variation of a previously
described causal inference procedure (Schadt et al, 2005) to
classify each miRNA–mRNA trait pair into one of three
categories (with respect to the miRNA as the reference): (a)
causal, where an eQTL for miRNA expression leads to changes
in mRNA expression (miRNA targets); (b) reactive, where
eQTL for mRNA levels leads to changes in miRNA expression
(miRNA regulators); and (c) independent, eQTL indepen-
dently drive miRNA and mRNA levels (independent). As we
have shown previously, closely linked eQTLs associated with
different traits, when treated as a single eQTL to assess the
causal relationship between the corresponding traits, is
inferred as an independent relationship with high power, thus
greatly reducing the likelihood of wrongly inferring causal
relationships in such cases (Schadt et al, 2005).

Surprisingly, instead of identifying large numbers of
predicted causal miRNA targets, we identified many protein-
coding genes supported as regulators of miRNA expression
(Figure 4). A total of 2218 miRNA target relationships
(miRNA-mRNA) were identified while 11114 (B5-fold
increase) were identified as causal for the inverse relationship
(mRNA-miRNA). For the set of miRNAs with predicted
targets, a mean of 50 target mRNAs were identified. However,
for the set of miRNAs with predicted regulators, we detected a
mean of 198 protein-coding genes per miRNA. As shown in

Figure 4C, a substantial fraction of miRNAs are predicted to
respond to many more mRNA targets as opposed to driving
expression level changes in their downstream targets. Of the 43
miRNAs with both predicted regulators and targets, only 11
(26%) are predicted to induce downstream changes in more
mRNA transcripts than to respond to changes in mRNA
transcript abundances. On average, these 11 miRNAs regulate
2.2 mRNA transcripts per miRNA. However, for the remaining
miRNAs where the mRNA regulators outnumber the target
mRNAs, a mean of 55 regulating genes per miRNA was
observed. Hence, within the mRNA–miRNA interaction net-
work of the BXD liver tissue network, many miRNAs are
predicted to be more strongly perturbed by changes in the
mRNA expression network than to drive downstream changes
in the network, suggesting that miRNAs serve as sensors of
transcriptional network states; and then in response to
network state changes, drive changes in more focused sets of
transcripts underlying key biological processes.

As miRNAs have largely been demonstrated to down-
regulate a large number of mRNA targets and there is
comparatively less in the literature regarding protein-coding
genes regulating miRNAs, we were motivated to investigate
possible causes of bias in the methodology. Because differ-
ences in the error distribution of the two data sets (miRNA and
mRNA data sets) are known to subtly affect the false positive
and negative rates, we ran a simulation study to estimate the
difference in measurement error between these two sets. We
considered a range of measurement error differences, from no
differences (0%) on up to a two-fold increase (100%). Of
particular relevance to this study, differences in noise levels
intrinsic to the type of assay being performed would result in a
difference in statistical power to infer the correct relationship.
For example, qPCR platforms are widely believed to be the gold
standard for gene expression profiling providing greater
sensitivity and a wider dynamic range. Using T1 and T2 as
the quantitative traits of interest (for miRNA and mRNA,
respectively), we performed 10 000 simulations for each of the
three models: miRNA target (causal), miRNA regulator
(reactive), and independent models. Here, we set e(T1)oe(T2)
and plotted the results obtained. As seen in Figure 5, the power
of the causality procedure that we applied to identify the causal
model (L-T1-T2) increases slightly for small increases in
error in T2. Beyond that slight increase, the power to identify
the causal model is independent of increases in the error in T2.
However, when we simulate the reactive model (L-T2-T1),
an increase in measurement error in T2 leads to a dramatic
decrease in power to detect reactive models. In fact, when the
measurement error for T2 is twice that of T1, the power of the
procedure to detect the true simulated relationship drops by
20%. Hence, in relation to the miRNA and mRNA data sets
presented here, assuming that microarray data carries a higher
noise level than qPCR, the distribution of measurement error is
likely larger in the mRNA data set than in the miRNA data set.
Therefore, there should be little to no loss in power to detect
the causal miRNA-mRNA relationships (miRNA targets)
while the number of predicted causal regulators of miRNA is
likely to be an underestimation of the actual number.

Of greater concern, however, is the increase in the number of
causal models falsely identified when e(T1)oe(T2). As shown
in Figure 5, in the case of the independent model, a two-fold
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increase in measurement error would drive the procedure to
falsely select the causal model as the best-fitting model. Hence,
the false-positive rate of identifying the causal model increases
with increasing difference in measurement error between
the two data sets. Assuming an equal proportion of causal,
reactive, and independent models, increasing error in T2

would lead to more causal calls and less reactive and
independent calls. This increase in false causal calls and loss
of power to detect true reactive and independent cases would
lead to an artificial inflation of the number of causal cases
identified relative to the number of reactive cases. However,
we have instead observed in our data set the opposite trend;

that is, the number of reactive calls (mRNA-miRNA) greatly
out number the number of causal calls (miRNA-mRNA).
Hence, depending on the percent differences in measurement
error between the two data sets, the earlier observation of a
five-fold increase in the number of genes that lead to down-
stream changes in miRNA expression relative to the number of
predicted miRNA targets is, at the worst, a conservative estimate.

Discussion

The regulatory mechanisms of miRNA-mediated regulation
present a complex picture. Initially discovered to inhibit
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Figure 4 Histograms of number of predicted targets and regulators. For the top two charts, only the top 25 miRNAs ranked in descending order are shown.
(A) predicted regulators; (B) predicted targets; (C) log ratio of the number of predicted regulators over the number of predicted targets.
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protein translation, miRNAs were later discovered to down-
regulate mRNA transcript levels of their target mRNA. Further
studies showed that in the right context, they could function to
activate protein translation. Because miRNAs regulate their
targets via an imperfect binding of the 22 nucleotide molecule
to their target mRNAs, each miRNA has the potential to
directly regulate hundreds of mRNA transcripts. Conversely,
the length of most mRNA transcripts provide potentially many
binding sites for the small non-coding regulatory molecule and
miRNAs have in fact been shown to act cooperatively to
regulate a given transcript (Saetrom et al, 2007; Hobert, 2008).
miRNAs have also been theorized to act as buffers in
regulating mRNA transcripts (Hornstein and Shomron, 2006;
Herranz and Cohen, 2010).

In addition to the complexity of miRNA–mRNA relation-
ships, there are numerous mechanisms regulating both overall
content of miRNAs (e.g. factors involved in miRNA biogen-
esis) and specific miRNAs themselves. For example, uridyla-
tion of mature miR-26a has been shown to reduce miR-26a
activity without significantly affecting its expression levels,
while uridylation of the precursor form of let-7a targets the
miRNA precursor for degradation (Kai and Pasquinelli, 2010).
Another study demonstrated the buffering effect of mRNA
from psudeogenes against miRNA activity (Poliseno et al,
2010). Here, the pseudogene PTENP1 was shown to act as a
decoy for miRNAs targeting PTEN with decreasing levels of
PTENP1 leading to increase activity of PTEN-targeting
miRNAs on the PTEN transcript (Poliseno et al, 2010). These
studies suggest not only complex regulation of biological
pathways via miRNAs, but also intricate regulation of miRNAs
transcript abundances themselves and similarly complex
regulation of miRNA activity.

Our findings in this paper provide further support and
characterization of the complexity of miRNA-mediated regula-
tion in gene regulatory networks. Using an integrative
genomics approach, we have explored the genetic basis of
miRNA expression variation for a substantial fraction of
known miRNAs (B30% of those registered in mirBase
(version 15)). Despite surveying approximately a third of
known mouse miRNAs today, many of the surveyed miRNAs
were expressed in liver. We showed that variation in transcript
abundances of many miRNA are linked to DNA sequence
variation and that, in a number of ways, the genetics of miRNA
gene expression is similar to mRNA expression traits. Most
notably, the strongest LOD scores for miRNA expression traits
are associated with cis-acting miRNA eQTLs, which is a
frequent observation with mRNA expression traits. In addi-
tion, we were similarly able to detect the presence of miRNA
eQTL hotspots, that is, regions that account for the trait
variation of a disproportionally larger number of expression
traits than would be expected by chance.

Because only a handful of miRNA eQTLs were detected
using a genome-wide scan, we postulate that the effects of
DNA variation on miRNAs are more subtle than the effects
of sequence variation on mRNA transcripts. In this case,
each miRNA may be regulated by multiple eQTLs, each with
an effect size that is typically smaller than that detected for
mRNA eQTLs. Alternatively, it is also possible that the most
miRNAs are simply not affected by polymorphisms presence
in the mouse genome or that the proportions observed in
this study are simply a chance occurrence unintentionally
resulting from surveying only a third of miRNAs that have
been discovered. The former explanation would be concordant
with miRNAs being regulated by an intricate network of
multiple genes.

To address this ambiguity, we restricted the potential loci to
those that only encompassed eQTLs for the set of potential
target mRNAs of each miRNAs and noted an increase in
statistical power to detect miRNA eQTLs. Overall, we were
able to detect more than a seven-fold increase in miRNA eQTLs
strongly suggesting that the variation in miRNA expression
trait that is accounted for by DNA sequence variation is indeed
smaller than that of mRNA expression trait. From the
standpoint of gene regulatory networks, this observation
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supports the notion of complex interplay between miRNAs
and the genes located in those regions.

Of the set of miRNA eQTLs detected, 85% were trans eQTLs,
suggesting that many miRNAs are subject to controlled
extending beyond local sequence variants. In the simplest
model, this could be viewed as a perturbation to an element or
gene contained within the trans locus that indirectly then
influences miRNA expression trait levels. Recent studies on
trans-splicing events and the prevalence of chimeric RNA
suggests alternative implications for trans eQTLs, where such
events may directly lead to increase or decrease in miRNA
transcript levels (Gingeras, 2009).

In examining the correlation structure between miRNA and
mRNA, we noticed that counter to the widespread acceptance
that miRNAs downregulate gene expression, a surprisingly
large proportion of miRNAs signature sets (i.e. sets of mRNA
transcripts that are significantly correlated with a given
miRNA) that were negatively correlated with their respective
miRNA showed poor enrichment for the corresponding
miRNA seed in the 30 UTR of the mRNA transcripts within
the set. Instead, many miRNAs signature sets that displayed a
positive correlation with the individual miRNAs were ob-
served to be enriched for the seed region of each respective
miRNA in the 30 UTR of the mRNA. While unexpected, strong
positive correlations between miRNAs and mRNAs have been
previously reported in a number of studies (Liu et al, 2007;
Tsang et al, 2007; Nunez-Iglesias et al, 2010). Additionally,
using the expression of host genes with embedded miRNAs as
a proxy for expression of the embedded miRNA, Tsang et al
(2007) found significant positive and negative correlation
between the embedded miRNAs and targets of the embedded
miRNAs as predicted by TargetScanS algorithm, an miRNA
prediction algorithm that utilizes the conserved Watson–Crick
pairing (i.e. miRNA seed) between the miRNA and its target
mRNA (Tsang et al, 2007).

One possible explanation for the occurrence of positive
correlation between a given miRNA and their respective target
that has been previously been postulated is the presence of
feedback motifs. Feedback motifs are known to be common
within gene regulatory networks and studies specific to
miRNA–mRNA networks have shown an enrichment of
feedback loops (Martinez et al, 2008). Others have elucidated
and classified specific feedforward and feedback circuit
motifs that could explain the both positive and negative
miRNA target mRNA correlations (Tsang et al, 2007). While
examples of miRNA activating transcription are not yet
widespread, this represents another plausible explanation for
our observation.

Further analysis of the causal relationship between miRNAs
and mRNAs suggests that for many miRNAs, the set of protein-
coding genes predicted to regulate levels of a given miRNA
exceeds that of its downstream target mRNAs. Simulation
studies that take into account the difference in noise levels
between the two data sets indicate that the number of
predicted miRNA targets is likely to be an overestimation
while the number of predicted miRNA regulators is likely to be
an underestimation. Overall, these results add to the increas-
ing complexity of miRNA-mediated regulation.

Using GO Biological Process and KEGG pathways, we show
that almost a quarter of the surveyed miRNAs are correlated

with mRNA transcripts involved in DNA replication and cell-
cycle regulation within the context of a liver gene regulatory
network. These miRNAs are often correlated with the sets of
mRNA transcripts that are significantly associated with one
another, suggesting that these miRNAs cooperatively or
redundantly act to regulate a core set of mRNA transcript
within a given pathway. In a few cases, two or more miRNAs
were significantly correlated with two distinct sets of mRNA
transcripts belonging to the same pathway.

To our knowledge, our results represent one of the first
examinations of the genetic basis of variation in miRNA
expression and exemplify how integrative genomics ap-
proaches may be used to elucidate multiple insights surround-
ing the regulatory circuitry of novel classes of RNA molecules.
With advances in next-generation sequencing technologies,
this approach can be extended to characterize the full set of
transcriptional units (i.e. non-coding RNA, chimeric RNA,
mRNA etc.) to decipher the myriad of molecular regulatory
relationships that governs phenotypic behavior. From our
study, given the abundance of miRNA–mRNA interaction, it
seems that miRNAs may be sensing network states and
responding to entire network changes in mRNA levels. We
hypothesize that miRNAs then respond in a programmed
manner to drive pathway changes via modulation of specific
sets of mRNA.

Materials and methods

Animal and tissue collection

All procedures were performed with the approval of Merck & Co.
(Whitehouse Station, NJ, USA) and the Institutional Animal Care and
Use Committees at the Jackson Laboratories (JAX West, West
Sacramento, CA, USA). A cohort of mice was derived from a standard
F2 intercross constructed by breeding two standard inbred strains,
C57BL/6J (B6) and DBA/2J (referred to as the BXD cross). All F2
breeding was performed at JAX West. Approximately 250 F2 mice were
bred from F1 mice (N¼12 for each gender) constructed from breeding
the B6 and DBA parental strains. Mice were weaned into cages of three
same-sex pups per litter at 3 weeks of age. These three litermate mice
remained together for the duration of the study. For our study, we
selected 127 male animals that had been raised on a standard rodent
chow diet (Purina Chow from Ralston-Purina Co., St Louis, MO) for 5
weeks and then switched to a high-fat diet for 12 additional weeks. For
both diets, the mice were fed ad libitum. At 20 weeks of age, the mice
were euthanized and liver tissues were collected and flash frozen in
liquid nitrogen and stored at �801C before RNA isolation. Mice were
fasted overnight before being euthanized.

RNA sample preparation and microarray
hybridization

RNA preparation and array hybridizations were performed at Rosetta
Inpharmatics. A custom array consisting of 39 557 oligonuceotides
was designed for this study using the mouse Unigene clusters and
combined with RefSeq sequences and RIKEN full-length cDNA
clones. The custom ink-jet microarrays were manufactured by Agilent
Technologies (Palo Alto, CA). RNA sample preparation and microarray
hybridization was performed as previously described (Chen et al,
2008). Briefly, 3 mg of total RNA was reverse transcribed and labeled
using Cy3 or Cy5 flurochrome. Labeled complementary RNA from
each F2 animal was hybridized against a control RNA pool. Here, the
control RNA pool represents a cross-specific pool consisting of labeled
cRNAs constructed from equal aliquots of RNA from all samples.
Analysis of expression data was conducted as previously described
(Chen et al, 2008). In summary, arrays were quantified on the basis of
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spot intensity relative to background and adjusted for experimental
variation between arrays using the average intensity over multiple
channels and fitted to a previously described error model to determine
significance (Chen et al, 2008). Gene expression measures are reported
as the ratio of the mean log10 intensity. All microarray data have been
deposited in the NCBI GEO database under accession number
GSE16886.

miRNA profiling

We also assayed 187 miRNAs representing a wide dynamic range (o10
copies per cell to 300 000 copies per cell) using a previously published
PE–qPCR technique (Raymond et al, 2005). These miRNAs represent
the complete repository of miRNAs in miRBase (Griffiths-Jones, 2004;
Griffiths-Jones et al, 2006, 2008) when the high-throughput miRNA
profiling platform was designed. For each sample, we performed four
technical replicates using an estimated total of 10mg of total RNA per
sample. Each miRNA assay is then processed into a single reported
value. miRNA assays with missing values in 467 individuals (i.e.
present in p60 individuals) were discarded. Intensity values were
normalized to reflect the number of miRNA copies per cell (assuming
that the total mass of RNA per cell is 10 pg). Values were then
transformed using log10 transformation. The full miRNA expression
data set can be found in Supplementary Table 4.

Genotyping and statistical analysis

Genomic DNA was isolated from tail sections by Bioserve (Beltsville,
MD) using standard methods and genotyping was performed by
Affymetrix (Santa Clara, CA) using the Affymetric GeneChip Mouse
Mapping 5K panel. From the panel of 5000 SNP markers, 2804 markers
informative for the BXD cross and evenly spaced across all chromo-
somes, excluding the Y chromosome, were selected for use in all
analyses. The complete data set can be found in Supplementary Table 5.
For mRNA expression traits, we used the mean log10 expression ratio;
and for miRNA expression levels, we applied a log10 transformation
to the normalized intensity values. QTL analysis for both mRNA and
miRNA expression traits were conducted as described previously
(Schadt et al, 2003). Briefly, we generated a complete linkage map
using MapMaker QTL (Lincoln et al, 1993). Using QTL cartographer
(Basten et al, 1999), we then performed interval mapping to detect
eQTLs for mRNA and miRNA expression traits. For the miRNA–mRNA
correlation analysis, we computed all pairwise comparison the
Pearson’s correlation between the full set of 183 miRNA and 39 557
mRNA expression traits.

Estimating FDRs

For both QTL analysis and correlation analysis, standard permutation
testing was applied to determine significance thresholds. In the case of
mRNA eQTL detection and miRNA–mRNA correlation analysis, five
independent permutations were performed. Each permutation was
performed in a way that preserves the gene correlation structure. For
miRNA eQTL detection, we estimated the associated FDR values using
10 independent permutation runs.

Causal associations

Causal associations were performed using the statistical procedure
described previously (Schadt et al, 2005). Here, instead of using gene
expression data and a phenotypic end point, we applied the described
causal procedure to classify each miRNA–mRNA trait pair into one of
three models (with respect to the miRNA as the reference): (a) eQTL
for miRNA expression leads to changes in mRNA expression (miRNA
targets); (b) eQTL for mRNA levels leads to changes in miRNA
expression (miRNA regulators); and (c) eQTL independently drive
miRNA and mRNA levels (independent). In addition, extensive
simulations were performed in order to characterize the effect of
performing the causal association procedure on data with varying
precision and noise levels.

Hexamer/heptamer enrichment analysis

Gene sets corresponding to the specific hexamer or heptamer seed
regions were created. Each gene set represented a collection of
transcripts containing at least hexamer (or heptamer) sequence in the
30 UTR of the mRNA transcript. Set enrichment was restricted to
transcripts present on the microarray. A hypergeometric distribution
was used to compute the significance of the enrichment.

GO Biological Process and KEGG pathway
annotations

We annotated each miRNA signature gene set identified using
correlation or causal association methods using gene sets available
in GO Biological Process and KEGG pathways. Here, we looked for
significant overlap between our derived set and the annotated sets in
GO Biological Process and KEGG pathways using a Fisher’s exact test.
A Bonferroni correction using the number of sets tested in each
database was applied. After correcting for multiple hypotheses testing,
we focused on sets with greater than 12 overlapping genes and
expected counts of greater than 5.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).

Acknowledgements
We thank The Jackson Laboratory, In Vivo Services, for their expert
handling of the animals used in this study and Rosetta Gene Expression
Laboratory for the execution of the sample preparation and hybridiza-
tion experiments. We also thank Jason Eglin for developing the
computational tools that enabled this work; Xa Schildwachter for
database assistance; and Michele Cleary and John Lamb for their
insightful comments on earlier versions of this manuscript.

Funding and author contributions: WS was supported in part by a
fellowship from the Merck Research Laboratories. The funders had no
role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript. WS and EES designed the statistical
analysis, performed the experiments, analyzed the data, and wrote the
paper. RK coordinated and managed the data collection of samples and
microarray experiments. EES conceived the idea and supervised the
project. All authors read and approved the final version of the paper.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Bartel DP (2009) MicroRNAs: target recognition and regulatory
functions. Cell 136: 215–233

Basten CA, Weir BS, Zeng ZB (1999) QTL Cartographer User’s Manual.
Raleigh, NC: Department of Statistics, North Carolina State
University

Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O,
Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y,
Bentwich Z (2005) Identification of hundreds of conserved and
nonconserved human microRNAs. Nat Genet 37: 766–770

Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH,
Cuppen E (2005) Phylogenetic shadowing and computational
identification of human microRNA genes. Cell 120: 21–24

Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003)
bantam encodes a developmentally regulated microRNA that
controls cell proliferation and regulates the proapoptotic gene
hid in Drosophila. Cell 113: 25–36

Genetics of microRNA gene expression
W-L Su et al

& 2011 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2011 11

www.nature.com/msb


Carleton M, Cleary MA, Linsley PS (2007) MicroRNAs and cell cycle
regulation. Cell Cycle 6: 2127–2132

Chang S, Johnston Jr RJ, Frokjaer-Jensen C, Lockery S, Hobert O
(2004) MicroRNAs act sequentially and asymmetrically to control
chemosensory laterality in the nematode. Nature 430: 785–789

Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate
hematopoietic lineage differentiation. Science 303: 83–86

Chen Y, Zhu J, Lum PY, Yang X, Pinto S, MacNeil DJ, Zhang C, Lamb J,
Edwards S, Sieberts SK, Leonardson A, Castellini LW, Wang S,
Champy MF, Zhang B, Emilsson V, Doss S, Ghazalpour A,
Horvath S, Drake TA et al (2008) Variations in DNA elucidate
molecular networks that cause disease. Nature 452: 429–435

Doss S, Schadt EE, Drake TA, Lusis AJ (2005) Cis-acting expression
quantitative trait loci in mice. Genome Res 15: 681–691

Esquela-Kerscher A, Slack FJ (2006) Oncomirs—microRNAs with a
role in cancer. Nat Rev Cancer 6: 259–269

Gingeras TR (2009) Implications of chimaeric non-co-linear
transcripts. Nature 461: 206–211

Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:
D109–D111

Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ
(2006) miRBase: microRNA sequences, targets and gene nomen-
clature. Nucleic Acids Res 34: D140–D144

Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase:
tools for microRNA genomics. Nucleic Acids Res 36: D154–D158

Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory
networks: managing the impact of noise in biological systems.
Genes Dev 24: 1339–1344

Hobert O (2008) Gene regulation by transcription factors and
microRNAs. Science 319: 1785–1786

Hornstein E, Shomron N (2006) Canalization of development by
microRNAs. Nat Genet 38(Suppl): S20–S24

Johnston RJ, Hobert O (2003) A microRNA controlling left/right
neuronal asymmetry in Caenorhabditis elegans. Nature 426: 845–849

Kai ZS, Pasquinelli AE (2010) MicroRNA assassins: factors that
regulate the disappearance of miRNAs. Nat Struct Mol Biol 17: 5–10

Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to
lin-14. Cell 75: 843–854

Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often
flanked by adenosines, indicates that thousands of human genes
are microRNA targets. Cell 120: 15–20

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J,
Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis
shows that some microRNAs downregulate large numbers of target
mRNAs. Nature 433: 769–773

Lincoln SE, Daly MJ, Lander ES (1993) MAPMAKER/QTL User’s
Manual. Cambridge, MA: Whitehead Institute of Biomedical Research

Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR,
Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M,
Jackson AL, Carleton M, Lim L (2007) Transcripts targeted by the
microRNA-16 family cooperatively regulate cell cycle progression.
Mol Cell Biol 27: 2240–2252

Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K,
Lee Y, Nelson SF, Kornblum HI, Doyle F, Petzold L, Shraiman B,
Kosik KS (2007) Detection of a microRNA signal in an in vivo
expression set of mRNAs. PLoS One 2: e804

Mallory AC, Vaucheret H (2006) Functions of microRNAs and related
small RNAs in plants. Nat Genet 38(Suppl): S31–S36

Martin G, Schouest K, Kovvuru P, Spillane C (2007) Prediction and
validation of microRNA targets in animal genomes. J Biosci 32:
1049–1052

Martinez NJ, Ow MC, Barrasa MI, Hammell M, Sequerra R, Doucette-
Stamm L, Roth FP, Ambros VR, Walhout AJ (2008) A C. elegans
genome-scale microRNA network contains composite feedback
motifs with high flux capacity. Genes Dev 22: 2535–2549

Maziere P, Enright AJ (2007) Prediction of microRNA targets. Drug
Discov Today 12: 452–458

Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, Castellani LW,
Suh M, Armour C, Edwards S, Lamb J, Lusis AJ, Schadt EE (2005)
Integrating genotypic and expression data in a segregating mouse
population to identify 5-lipoxygenase as a susceptibility gene for
obesity and bone traits. Nat Genet 37: 1224–1233

Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint
genome-wide profiling of miRNA and mRNAexpression in Alzheimer’s
disease cortex reveals altered miRNA regulation. PLoS One 5: e8898

Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC,
Weigel D (2003) Control of leaf morphogenesis by microRNAs.
Nature 425: 257–263

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP
(2010) A coding-independent function of gene and pseudogene
mRNAs regulates tumour biology. Nature 465: 1033–1038

Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005)
Simple, quantitative primer-extension PCR assay for direct
monitoring of microRNAs and short-interfering RNAs. RNA 11:
1737–1744

Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie
AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA
regulates developmental timing in Caenorhabditis elegans. Nature
403: 901–906

Saetrom P, Heale BS, Snove Jr O, Aagaard L, Alluin J, Rossi JJ (2007)
Distance constraints between microRNA target sites dictate efficacy
and cooperativity. Nucleic Acids Res 35: 2333–2342

Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D,
Sieberts SK, Monks S, Reitman M, Zhang C, Lum PY, Leonardson A,
Thieringer R, Metzger JM, Yang L, Castle J, Zhu H, Kash SF, Drake
TA, Sachs A et al (2005) An integrative genomics approach to infer
causal associations between gene expression and disease. Nat
Genet 37: 710–717

Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG,
Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB,
Friend SH (2003) Genetics of gene expression surveyed in maize,
mouse and man. Nature 422: 297–302

Sethupathy P, Megraw M, Hatzigeorgiou AG (2006) A guide through
present computational approaches for the identification of
mammalian microRNA targets. Nat Methods 3: 881–886

Taganov KD, Boldin MP, Baltimore D (2007) MicroRNAs and
immunity: tiny players in a big field. Immunity 26: 133–137

Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated
feedback and feedforward loops are recurrent network motifs in
mammals. Mol Cell 26: 753–767

Wilfred BR, Wang WX, Nelson PT (2007) Energizing miRNA research:
a review of the role of miRNAs in lipid metabolism, with a
prediction that miR-103/107 regulates human metabolic pathways.
Mol Genet Metab 91: 209–217

Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA
Mir-14 suppresses cell death and is required for normal fat
metabolism. Curr Biol 13: 790–795

Yang X, Deignan JL, Qi H, Zhu J, Qian S, Torosyan G, Zhong J, Majid S,
Falkard B, Kleinhanz RR, Karlsson J, Castellani LW, Mumick S,
Wang K, Xie T, Coon M, Zhang C, Estrada-Smith D, Farber CR,
Wang SS et al (2009) Validation of candidate causal genes for
abdominal obesity which affect shared metabolic pathways and
networks. Nat Genet 41: 415–423

Yu Z, Wang C, Wang M, Li Z, Casimiro MC, Liu M, Wu K, Whittle J,
Ju X, Hyslop T, McCue P, Pestell RG (2008) A cyclin D1/microRNA
17/20 regulatory feedback loop in control of breast cancer cell
proliferation. J Cell Biol 182: 509–517

Zhao Y, Srivastava D (2007) A developmental view of microRNA
function. Trends Biochem Sci 32: 189–197

Molecular Systems Biology is an open-access journal
published by European Molecular Biology Organiza-

tion and Nature Publishing Group. This work is licensed under a
Creative Commons Attribution-Noncommercial-Share Alike 3.0
Unported License.

Genetics of microRNA gene expression
W-L Su et al

12 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited


	Characterizing the role of miRNAs within gene regulatory networks using integrative genomics techniques
	Introduction
	Results
	mRNA and miRNA eQTL mapping in the BXD mouse study

	Figure 1 Top 15 microRNA expression quantitative trait loci (eQTL) plots.
	Figure 2 Detection thresholds of miRNA eQTLs.
	Correlation analysis between miRNA and mRNA expression levels in mice

	Figure 3 Pie charts showing the distribution of seed enrichment for all 183 miRNA signature sets.
	Table I MicroRNA signature sets with at least one corresponding hexamer per gene that are enriched for KEGG pathways cell-cycle genes
	Causal associations between miRNAs and mRNAs

	Discussion
	Figure 4 Histograms of number of predicted targets and regulators.
	Figure 5 Percent of true cases identified as a function of percent differences in measurement error between the two traits.
	Materials and methods
	Animal and tissue collection
	RNA sample preparation and microarray hybridization
	miRNA profiling
	Genotyping and statistical analysis
	Estimating FDRs
	Causal associations
	Hexamersolheptamer enrichment analysis
	GO Biological Process and KEGG pathway annotations
	Supplementary information

	Conflict of Interest
	References




