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Abstract
Background: Liver ischemia/reperfusion (I/R) injury is a complex and
multifactorial pathophysiological process. It is well recognized that the
membrane permeability transition pore (mPTP) opening of mitochondria
plays a crucial role in cell death after I/R injury. Cyclophilin D (CypD) is a
critical positive regulator of mPTP. However, the effect of CypD on the
pathogenesis of liver I/R injury and whether CypD is a potential therapeutic
target are still unclear.
Methods: We constructed liver‐specific CypD knockout and AAV8‐peptidyl
prolyl isomerase F (PPIF) overexpression mice. Then, a 70% liver I/R injury
model was established in mice, with 90min of ischemia and 6 h of reperfusion.
The liver function was detected by the level of serum glutamic pyruvic
transaminase (alanine transaminase) and glutamic oxaloacetic transaminase
(aspartate aminotransferase), the liver damage score and degree of necrosis
were measured by hematoxylin and eosin (H&E) staining of liver tissues.
Reactive oxygen species (ROS) staining, apoptosis, and autophagy‐related
molecules were used to detect apoptosis and autophagy during liver I/R.
Results: The liver‐specific knockout of CypD alleviated necrosis and
dysfunction in liver I/R injury, by reducing the excessive production of
ROS, and inhibiting cell apoptosis and autophagy. On the contrary,
overexpression of CypD exacerbated I/R‐induced liver damage.
Conclusion: We found that the downregulation of CypD expression
alleviated liver I/R injury by reducing apoptosis and autophagy through
caspase‐3/Beclin1 crosstalk; in contrast, the upregulation of CypD expression
aggravated liver I/R injury. Therefore, interfering with the expression of CypD
seems to be a promising treatment for liver I/R injury.
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Key points
• A liver‐specific cyclophilin D (CypD) knockout mouse model was
established, and we first reported the effect of liver‐specific CypD knockout
on liver ischemia/reperfusion in mice.

• This study adds AAV8‐peptidyl prolyl isomerase F overexpression models.
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1 | INTRODUCTION

During liver transplants, hepatectomy, and hemorrhagic
shock, liver ischemia/reperfusion (I/R) injury is one of the
leading causes of liver dysfunction and even mortality.1,2

Generally, I/R can be divided into two types: warm I/R or
cold I/R. Warm I/R injury can occur in cases of
hepatectomy, hemorrhagic shock, cardiac arrest, or
hepatic sinus obstruction syndrome.3 This study only
discusses warm I/R. Ischemia‐induced hypoxia, ATP
consumption, and oxygen depletion lead to hepatocyte
death, while reperfusion induces immune cell infiltration
and excessive reactive oxygen species (ROS) production,
exacerbating hepatocellular injury.4,5 The vicious cycle of
I/R, which promotes the development of liver injury, is
generally considered to be the result of excessive produc-
tion of ROS, calcium overload, endoplasmic reticulum
stress, and mitochondrial damage.6 Therefore, the identi-
fication of promising therapeutic strategies is necessary for
alleviating liver I/R injury.

Mitochondria are the key target or origin of tissue
damage, especially in I/R injury.7 Mitochondrial damage is
a common result of liver I/R, accompanied by mitochon-
drial cristae breakage and disappearance, mitochondrial
membrane potential decrease, and mitochondrial perme-
ability transition pore (mPTP) activation.8–10

mPTP opening plays a crucial role in the mechanism
of cell death after I/R injury.11,12 In the mitochondrial
matrix, cyclophilin D (CypD) is an isomer of peptidyl
prolyl isomerase F (PPIF) and maintains mitochondrial
function by regulating mitochondrial permeability to
various stimuli together with Pi.13 CypD inhibition has
been shown to have potential benefits in neurological
diseases such as Alzheimer's disease, Parkinson's disease,
and cerebral ischemia.14,15 CypD knockout also attenuated
mitochondrial perturbation and inhibited the progression
of early nonalcoholic steatohepatitis (NASH) by ameliorat-
ing steatosis and inflammatory symptoms in our previous
study.16 However, the effects of CypD on the pathogenesis
of liver I/R injury and the potential therapeutic value of
CypD remain to be explored.

Overall, we focused on the critical role of CypD in liver
I/R injury. The purpose of this research is to clarify the
mechanism by which CypD is involved in complex forms
of cell death, including necrosis, apoptosis, and autophagy.
We hypothesized that targeting CypD may be a potential
therapeutic strategy for liver protection in I/R injury.

2 | MATERIALS AND METHODS

2.1 | Animal details

The Jackson Laboratory provided mice (C57BL/6J) carry-
ing a conditionally expressed CypD allele (CypDfl/fl). Using
CypDfl/fl mice mated with albumin‐Cre mice, liver‐specific
CypD knockout (CypD LKO) mice were generated. For the

CypD LKO mice, CypDfl/fl littermates were used as
controls. Supporting Information: Table 1 shows the
primers for genotypic identification of CypD mice.

Mouse models of CypD overexpression were estab-
lished using AAV8‐PPIF (43955; Shanghai GeneTech
Company Limited). Briefly, male C57BL/6 mice were
obtained from Beijing Vital River Laboratory Animal
Technology Co. Ltd. In addition, AAV8‐PPIF (CypD
overexpression adeno‐associated virus) and AAV8‐Con
(con adeno‐associated virus) were dissolved in sterile
phosphate buffered saline (PBS) at a concentration of
1 × 1011 vector genomes and were injected through the
caudal vein of mice at 8 weeks. After 1 month, the mice
were killed for subsequent experiments.

All mice were housed in a specific pathogen‐free (SPF)
room in a constant temperature‐controlled environment
with a 12‐h light/dark cycle. Before surgery, mice were
fasted for 8 h and allowed to drink freely. The Research
Ethics Committee of Shandong Provincial Hospital
approved all procedures (No. 2022‐047).

2.2 | Establishment of the hepatic I/R
model

The standard protocol for establishing 70% liver warm I/R
injury models in mice has already been described.17 A
midline incision was created to open the abdominal cavity
among the left lateral and median lobes of the liver, and
an atraumatic vascular clip (Shanghai Medical Equipment
(Group) Co., Ltd. Surgical Equipment Factory) was placed
across the bile duct, portal vein, and hepatic artery to
interrupt 70% of the blood supplied to the liver. Atraumatic
vascular clamping was removed after 90min of ischemia.
After the atraumatic vascular clip was removed,
reperfusion was resumed for 6 h. In the sham operation
group, the same surgery was performed, but no atraumatic
vascular clips were used. During ischemia, all mice were
placed on a 37°C thermostatic pad to maintain body
temperature. Finally, the mice were anesthetized with
pentobarbital sodium (100 μL/10 g, i.p.) and killed to
obtain liver tissue and serum samples.

Group design was as follows: CypDfl/fl mice and CypD
LKO mice were divided into two groups (seven mice per
group) according to whether they had undergone ische-
mia/reperfusion surgery. The grouping of AAV8‐PPIF mice
and AAV8‐Con mice was the same as described above.

2.3 | Serum biochemistry analysis

At 4°C, blood samples from each group of mice were
centrifuged for 15min at 3000 rpm/min, and automatic
biochemical analyzers (Mindray) were used to analyze the
glutamic pyruvic transaminase (alanine transaminase
[ALT]) and glutamic oxaloacetic transaminase (aspartate
aminotransferase [AST]) levels in the upper serum.
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2.4 | RNA sequencing (RNA‐seq)

Novogene Technology conducted all transcriptome analy-
ses. The RNA Nano 6000 analysis kit of the Bioanalyzer 2100
system (Agilent Technologies) was used to evaluate the
quality of RNA and identify the integrity of RNA. RNA
samples were prepared with total RNA as input material. In
brief, the mRNA was purified from the total RNA by using
magnetic beads connected with polyT oligonucleotides.
The AMPure XP system was used to screen 370–420 bp
template DNA from purified fragments. For polymerase
chain reaction (PCR) amplification, Phusion high‐fidelity
DNA polymerase, PCR primers, and target primers were
used. Finally, the PCR products were purified.

2.5 | Histological hematoxylin and eosin
(H&E) staining, immunohistochemistry
(IHC), and immunofluorescence

A 4% paraformaldehyde fixation for over 24 h was followed
by paraffin embedding of liver tissue samples. Liver
histopathological changes were observed under an optical
microscope (TissueFAXS Spectra, TissueGnostics) after
sectioning (5mm thick) and staining with H&E.

IHC staining was performed on paraffin‐embedded
liver tissue slides after dewaxing, rehydrating, antigen
retrieval, and incubation with primary antibodies
against Beclin1 (ab217179; Abcam PLC) and translocase
of outer mitochondrial membrane 20 (TOMM20)
(ab186735; Abcam PLC) overnight at 4°C. Then, the
cells were incubated with the secondary antibody for 1 h
at 37°C, and the nuclei were counterstained with
hematoxylin. An optical microscope was used to observe
and capture images of the sections.

For immunofluorescence, frozen mouse liver sections
were fixed with 4% paraformaldehyde, permeabilized with
0.5% Triton X‐100 in PBS, and blocked with 5% goat serum
before incubation with mouse anticleaved caspase‐3 (9664;
Cell Signaling Technology, Inc.) overnight at 4°C. Then,
the cells were incubated with the secondary antibody for
1 h at 37°C, and nuclei were counterstained with 4′,6‐
diamidino‐2‐phenylindole (DAPI) (A11034; Invitrogen).
Finally, images were captured under a fluorescence
microscope (TissueFAXS Spectra; TissueGnostics).

2.6 | Detection of ROS production in liver
tissues

We used the BBoxiProbe® O13 kit (BB‐470513; BestBio)
to determine ROS levels in liver tissues. BBoxiProbe®
O13 is a fluorescent probe for cell membrane perme-
ability. It is specifically oxidized by ROS to generate red
fluorescent substances. The red fluorescence intensity is
proportional to the level of ROS. In brief, frozen sections
of liver tissues (10 μm thick) were prepared and

incubated with BBoxiProbe® O13 for 1 h in the dark at
37°C. Fluorescence microscopy was used to observe the
sections at 610 nm wavelength after staining with DAPI.

2.7 | Transmission electron
microscopy (TEM)

TEM was used to confirm and monitor autophagy,
mitochondria, and the quantification of autophagic
vacuoles. Liver tissue samples (1mm3) were immedi-
ately fixed in 2.5% glutaraldehyde overnight at 4°C. The
liver tissues were washed with PBS three times and fixed
in 1% osmium tetroxide for 2 h at room temperature. A
graded alcohol series was used to dehydrate fixed
tissues, and then Epon resin was used to embed them.
Sections (70 nm) were prepared and stained with uranyl
acetate and lead citrate after the blocks were cured at
60°C for 48 h. Finally, the sections were analyzed and
imaged under a TEM (JEOL‐1200; Weiya Bio Co., Ltd.).

2.8 | TUNEL

In the liver sections, apoptosis was detected by terminal
deoxynucleotidyl transferase dUTP nick‐end labeling
(TUNEL) assay as directed by the manufacturer
(KGA7073; Jiangsu KeyGEN BioTECH Co. Ltd.). The
apoptotic cells showed green fluorescence.

2.9 | Western blot analysis

Equal amounts of protein extracts were separated by 20%
sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS‐PAGE) and transferred to 0.22 μm or 0.45 μm
polyvinylidene difluoride (PVDF) membranes. The mem-
branes were blocked with 5% nonfat milk for 1 h at room
temperature before being incubated with primary anti-
bodies overnight at 4°C, which included antibodies against
cyclophilin F (ab110324; Abcam PLC), Beclin1 (ab217179;
Abcam PLC), TOMM20 (ab186735; Abcam PLC), caspase‐
3 (19677‐1‐AP; ProteinteCh Group, Inc.) and cleaved
caspase‐3 (9664; Cell Signaling Technology, Inc.). The
next day, the secondary antibody was incubated for an
hour with the corresponding horseradish peroxidase‐
conjugated mouse or rabbit antibody (1:5000). Immuno-
reactive proteins were then measured through an en-
hanced chemiluminescence detection system (GE AI680;
General Electric Company).

2.10 | RNA isolation and
quantitative real‐time PCR (RT‐PCR)

Total RNA was extracted from liver tissues using TRIzol
reagent (R401‐01; Nanjing Vazyme Biotech Co. Ltd.).
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The concentration and purity of the RNA were determined
using a Nanodrop spectrophotometer (ND‐DIVEC; Gene
Company Limited). Quantitative RT‐PCR analyses were
performed with the SYBR Green PCR Master Mix reagent
kit (Q311‐02, Nanjing Vazyme Biotech Co. Ltd.). A Roche
480 detection system was used to perform the quantitative
PCR analysis, and the relative level of mRNA was analyzed
using the ‐2 CΔΔ t method. Supporting Information: Table 2
lists the primer sequences.

2.11 | Statistical analysis

All results are presented as the means ± SEMs. We used
GraphPad Prism version 8.3.0 (GraphPad Software) and
evaluate the comparison between groups using one‐way
analysis of variance (ANOVA). Statistical significance
was determined based on the p value, and a p < 0.05 was
considered to indicate statistical significance.

3 | RESULTS

3.1 | The effect of CypD on hepatocyte
damage caused by liver I/R

To explore the potential effect of CypD on hepatic I/R
injury, liver‐specific CypD knockout mice and AAV8‐PPIF
overexpression mice were generated. CypD knockout in
mouse livers was confirmed by PCR/Western blot analysis
(Figure 1A,B). Compared with the CypDfl/fl I/R group, the
impairment of liver function was alleviated in the CypD
LKO I/R group. As shown in Figure 1C, CypDfl/fl mice
showed impaired liver function and obvious hepatocyte
injury after liver I/R, such as hepatic lobular disorder and
cell necrosis. Hepatic cellular injury and necrosis were
significantly alleviated in the CypD LKO I/R group. In
addition, serum AST and ALT levels were lower in the
CypD LKO I/R group than in the CypDfl/fl I/R group
(Figure 1D,E). AAV8‐PPIF overexpression was confirmed
by PCR/Western blot analysis (Figure 1F,G). In contrast,
AAV8‐PPIF‐treated mice exhibited severe liver injury,
along with increased necrotic areas compared with
AAV8‐Con‐treated mice (Figure 1H).

3.2 | CypD triggers ROS overproduction
in liver I/R injury

Liver ischemia/reperfusion is characterized by excessive
ROS production, which triggers mPTP activation, subse-
quent mitochondrial damage, and cell death. BBoxiProbe®
O13 was used to test ROS production. As shown in
Figure 2A, the red fluorescence in the CypD LKO I/R
group was obviously diminished compared with that in
the CypDfl/fl I/R group. Similarly, we also observed that the
AAV8‐PPIF I/R group had significantly augmented red

fluorescence compared with the AAV8‐Con I/R group
(Figure 2B). These results indicated that CypD knockout
could attenuate liver I/R‐induced hepatocyte injury,
necrosis, and ROS production in mice. However, CypD
overexpression showed the opposite effects.

3.3 | CypD initiates hepatocyte apoptosis
in liver I/R injury

Apoptosis is an essential physiological process to
maintain tissue homeostasis, and apoptotic cells were
detected by TUNEL staining. As shown in Figure 2C,
there were a large number of positively stained cells in
the CypDfl/fl I/R group, while the number of positive
cells was sharply reduced in the CypD LKO I/R group. In
contrast, after ischemia/reperfusion surgery, immuno-
fluorescence staining with cleaved caspase‐3 increased
in the AAV8‐PPIF group compared with the AAV8‐Con
group (Figure 3C). We also observed that the number of
positive cells in the AAV8‐PPIF I/R group was en-
ormously increased compared with that in the AAV8‐
Con I/R group with TUNEL staining (Figure 2D). These
results showed that CypD knockout could alleviate
apoptosis in the liver I/R injury model.

The induction and execution of apoptosis are
regulated in an orderly way by a series of proteolytic
caspase cascades under certain circumstances. Caspase‐
3 has been recognized as a predominant mediator of
apoptosis. As shown in Figure 3B, compared with the
CypDfl/fl I/R group, cleaved caspase‐3 decreased signifi-
cantly in the CypD LKO I/R group. Similarly, immuno-
fluorescence staining with cleaved caspase‐3 also
proved the above point of view (Figure 3A).

3.4 | CypD participates in autophagic cell
death in hepatic I/R injury

Due to the complexity of liver ischemia/reperfusion‐
induced cell death and dysfunction, RNA‐Seq was used
to identify novel genes and transcription factors
involved in CypD LKO I/R mice. Through Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrich-
ment analysis, a significant difference in autophagy
between the CypDfl/fl I/R group and CypD LKO I/R
group revealed an autophagy‐related cell death pathway
(Figure 4A,B). The formation of autophagosomes is a
crucial process of autophagy. As shown in Figure 4C,
mitochondrial swelling, mitochondrial cristae breakage
and disappearance and an increase in lysosomes and
autophagosomes were observed in the CypDfl/fl I/R
group. In comparison, the liver structure of the CypD
LKO I/R group was still intact, and the number of
lysosomes and autophagosomes was lower. These
results indicated that CypD mediated autophagic cell
death in liver I/R injury.
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F IGURE 1 (See caption on next page)
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It is well known that TOMM20 and Beclin1 play
important roles in autophagy. TOMM20 is widely used
to monitor mitochondrial mass during autophagy, and a
decrease in its expression is considered a reduction in
mitochondrial mass and upregulation of mitochondrial
autophagy. As shown in Figure 5A,C, the expression of
TOMM20 increased in the CypD LKO I/R group
compared with the CypDfl/fl I/R group. CypD over-
expression decreased TOMM20 expression in the AAV8‐
PPIF I/R group compared with the AAV8‐Con I/R group
(Figure 5E). The autophagy‐related protein Beclin1 is a
mammalian gene that is positively related to autophagy
and is important for the formation of autophagosomes.
Consequently, the change in Beclin1 was examined.
Compared with that in the CypDfl/fl I/R group, the
expression of Beclin1 in the CypD LKO I/R group
decreased (Figure 5B,D). Additionally, IHC revealed
upregulation of Beclin1 in the AAV8‐PPIF I/R group
compared with the AAV8‐Con I/R group (Figure 5F).

4 | DISCUSSION

Necrosis, apoptosis, and autophagy are the three main
types of programmed cell death in patients with I/R
injury.3 At present, a few effective therapeutic strategies
can be used to prevent or treat I/R‐induced injury.18 The
purpose of this research is to study the role of CypD in
liver I/R injury from these aspects of cell death. In this
study, liver‐specific CypD knockout and overexpression
were explored in vivo. We found that in liver I/R injury,
the knockout of CypD can alleviate liver injury by
reducing hepatocyte necrosis, apoptosis, and autop-
hagy, and vice versa.

There are many mechanisms involved in I/R‐
induced injury. Oxygen loss and nutrient depletion
during ischemia lead to ATP deficiency in parenchymal
and nonparenchymal liver cells, which disrupts intra-
cellular energy‐dependent metabolic and transporting
processes, leading to the accumulation of ROS.19 It has
been reported that the opening of mPTP is the main
cause of cell death caused by reperfusion injury, so it is
an important target of cytoprotection.20 During I/R
injury, the opening of mPTP leads to the loss of
membrane potential, ATP depletion, matrix swelling,
uncoupling of oxidative phosphate, and overproduction
of ROS, which ultimately leads to cell death.12,21,22 CypD
is the major modulator of mPTP, which plays a crucial

role in maintaining the mitochondrial function of
hepatocytes.23 The upregulation of CypD can provoke
the excessive opening of mPTP, which leads to the
accumulation of damaged mitochondria.24 As a result,
abnormal CypD‐mPTP axis activation has been impli-
cated in the development of various diseases, such as
ischemia/reperfusion injuries, aging, and neuro-
degenerative conditions.19,25,26 However, the specific
knockout or overexpression of CypD in mouse liver I/R
injury is still unclear. In our study, CypD overexpression
resulted in more severe liver injury, mitochondrial
destruction, and ROS production in I/R mice, but CypD
deletion attenuated liver I/R injury in CypD LKO mice.
These results demonstrated that hepatic CypD mediates
mitochondria‐dependent cell death in liver I/R injury.

It has been shown that the opening of mPTP
increases mitochondrial membrane permeability and
cell apoptosis.18 Therefore, blocking mPTP opening
during the reperfusion phase of the liver can signifi-
cantly reduce apoptosis after I/R‐induced injury. Previ-
ous studies have shown that cyclosporin A, an inhibitor
of CypD, can improve the apoptosis induced by warm
ischemia‐reperfusion injury in rats.27 TUNEL staining
showed that liver CypD knockout exhibited an obvious
effect in reducing hepatocyte apoptosis; conversely,
CypD overexpression increased hepatocyte apoptosis.
The activation and function of caspases, which are
involved in the delicate caspase–cascade system, is vital
in the process of apoptotic signal conduction. It has
been demonstrated that mPTP induction activates
caspase‐3 activity in myofiber atrophy.28 Caspase‐3
activity was blocked in liver‐specific CypD knockout
mice in the I/R model, as indicated by cleaved caspase‐3
expression. Therefore, CypD may contribute to hepato-
cyte apoptosis in a caspase‐3‐dependent manner in liver
I/R injury.

Autophagy is a conservative cell protection process
that can maintain cell homeostasis.17 Autophagy
involves the formation of the double membrane
structure of autophagosomes. Cargoes enveloped by
autophagosomes are transported directly to autolyso-
somes, where they are degraded by lysosomal en-
zymes.29,30 Autophagy is usually considered a cell
protection mechanism; however, excessive autophagy
can lead to cell death. In addition, many previous
studies have shown that the upregulation31 or down-
regulation32 of autophagy has a protective effect on the
attenuation of liver I/R injury according to specific

F IGURE 1 The effect of CypD on liver damage caused by liver I/R injury. (A) The mRNA levels of CypD in liver‐specific CypD knockout live
tissue (n = 3 per group). (B) Protein expression of CypD in liver‐specific CypD knockout live tissue. (C) H&E staining of CypDfl/fl group and CypD
LKO group mice. Scale bar = 100 μm (n = 3 per group). (D) Serum AST concentration (n = 7 per group). (E) Serum ALT concentration (n = 7 per
group). (F) The mRNA levels of CypD in the livers of AAV8‐PPIF‐overexpressing mice (n = 3 per group). (G) Protein expression of CypD in the livers
of AAV8‐PPIF‐overexpressing mice. (H) H&E staining of AAV8‐Con group and AAV8‐PPIF group mice (n = 3 per group). *p < 0.05; **p < 0.01;
***p < 0.001. ALT, alanine transaminase; AST, aspartate aminotransferase; CypD, cyclophilin D; CypD LKO, liver‐specific CypD knockout;
H&E, hematoxylin and eosin; I/R, ischemia/reperfusion; PPIF, peptidyl prolyl isomerase F.
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F IGURE 2 (See caption on next page)
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F IGURE 2 After I/R surgery, ROS production and TUNEL in mouse liver. (A) Generation and distribution of ROS in the CypDfl/fl group and
CypD LKO group mice. Scale bar = 100 μm (n = 3 per group). (B) Generation and distribution of ROS in AAV8‐Con group and AAV8‐PPIF group
mice. Scale bar = 100 μm (n = 3 per group). (C) TUNEL staining in liver tissues of CypDfl/fl group and CypD LKO group mice. Scale bar = 50 μm
(n = 3 per group). (D) TUNEL staining in liver tissues of AAV8‐Con group and AAV8‐PPIF group mice. Scale bar = 50 μm (n = 3 per group). CypD,
cyclophilin D; CypD LKO, liver‐specific CypD knockout; I/R, ischemia/reperfusion; PPIF, peptidyl prolyl isomerase F; ROS, eactive oxygen species;
TUNEL, transferase dUTP nick‐end labeling.

F IGURE 3 The effect of CypD on hepatocyte apoptosis in liver I/R injury. (A) The immunofluorescence of cleaved caspase‐3 (fluorescent
green) to measure the level of apoptosis in CypDfl/fl group and CypD LKO group mice. Scale bar = 20 μm (n = 3 per group). (B) Protein expression
levels of apoptosis indices in liver tissue. (C) The immunofluorescence of cleaved caspase‐3 (fluorescent green) to measure the level of apoptosis in
AAV8‐Con group and AAV8‐PPIF group mice. Scale bar = 20 μm (n = 3 per group). CypD, cyclophilin D; CypD LKO, liver‐specific CypD knockout;
I/R, ischemia/reperfusion; PPIF, peptidyl prolyl isomerase F.
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circumstances. However, beyond this range, autophagy
eventually leads to apoptotic cell death. From the
enrichment analysis of KEGG pathways in RNA‐seq, it
can be observed that there is a significant difference in
autophagy between the CypDfl/fl I/R group and the
CypD LKO I/R group. Furthermore, TEM results also
revealed reduced autophagosomes and lysosomes in the
CypD LKO group with less mitochondrial damage than
in the control group with liver I/R injury. Damaged and

dysfunctional mitochondria can be selectively removed
through autophagy, termed mitochondrial autophagy
(mitophagy), which is an important process to maintain
the mass of mitochondria.33 The expression of the
mitophagy‐related protein TOMM20 was augmented in
the CypD LKO group with I/R injury compared with the
CypDfl/fl control group. Our findings provide evidence
that CypD is a pivotal regulator in the autophagic cell
death pathway of liver I/R injury. Beclin1 is a novel

F IGURE 4 CypD participated in autophagic cell death in hepatic I/R injury. (A, B) Histogram and scatter plots of KEGG enrichment analysis of
the 20 most significantly differential pathways between the CypDfl/fl I/R group and the CypD LKO I/R group (n = 3 per group). (C) TEM was used to
observe the quality of mitochondria and determine the number of autophagic vacuoles. Scale bar = 2 μm. CypD, cyclophilin D; CypD LKO, liver‐
specific CypD knockout; I/R, ischemia/reperfusion; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPIF, peptidyl prolyl isomerase F; TEM,
transmission electron microscopy.
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F IGURE 5 Effects of upregulation and downregulation of CypD on autophagy in mice with liver I/R injury. (A) Immunohistochemical staining
of TOMM20 in liver‐specific CypD knockout live tissue. Scale bar = 100 μm (n = 3 per group). (B) Immunohistochemical staining of Beclin1 in liver‐
specific CypD knockout live tissue. Scale bar = 100 μm (n = 3 per group). (C) Protein expression of TOMM20 in liver‐specific CypD knockout live
tissue. (D) Protein expression of Beclin1 in liver‐specific CypD knockout live tissue. (E) Immunohistochemical staining of TOMM20 in the livers of
AAV8‐PPIF‐overexpressing mice. Scale bar = 100 μm (n = 3 per group). (F) Immunohistochemical staining of Beclin1 in the livers of AAV8‐PPIF‐
overexpressing mice. Scale bar = 100 μm (n = 3 per group). CypD, cyclophilin D; I/R, ischemia/reperfusion; PPIF, peptidyl prolyl isomerase F.
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substrate that regulates autophagosome formation.
Recently, accumulated evidence has suggested that
Beclin1 interacts with autophagic cell death and apoptotic
cell death pathways.34,35 Correspondingly, Beclin1 was
significantly downregulated in the CypD LKO I/R group
but increased in CypD‐overexpressing mice.

Taken together, these data indicate that liver‐specific
knockout of CypD can reduce liver tissue injury and
hepatocyte necrosis in I/R of the liver by alleviating
apoptosis and autophagy. In addition, we discussed the
essential role of caspase‐3 and Beclin1 in the crosstalk
between apoptotic and autophagic cell death in CypD
knockout and overexpression mice of I/R. However,
there are still some deficiencies in this study. First,
AAV8‐PPIF was injected into the tail vein as the
overexpression model, and the knockout model was
the CypD LKO gene model, which could not exclude the
influence of the overall factors. In addition, how CypD
regulates the opening of mPTP still needs further
exploration. Furthermore, the accurate distinction of
different cell death forms regulated by CypD should be
studied in vitro. Nevertheless, the therapeutic strategy to
target CypD could become an effective method for
mitochondrial quality control and liver protection
during I/R injury.
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