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Abstract

Background: In Panama, arboviroses such as dengue fever, and more recently chikungunya fever and Zika disease,
are transmitted by Aedes aegypti and Aedes albopictus. Their control is based on the elimination of breeding sites
and fogging with pyrethroid insecticides. However, one of the significant issues derived from the prolonged use of
pyrethroid insecticide is the development of resistance mechanisms, such as knockdown resistance or kdr. The
objective of this study was to evaluate the presence of kdr mutations in a partial region of the VGSC gene in
samples of wild-caught Aedes mosquitoes from different locations of the Metropolitan Region of Panama.

Results: Based on the analysis of 194 sequences of the VGSC gene, two kdr mutations (Ile1011Met and Val1016Gly)
were detected in a specimen of Ae. aegypti. The frequency of kdr mutations in the evaluated samples of Ae. aegypti
was 0.01.

Conclusions: This study provides evidence for a low frequency of kdr mutations in Ae. aegypti populations in
Panama. It is possible that these changes have no impact on vector control interventions. To our knowledge, we
report, for the first time in America the Val1016Gly mutation documented in Asia. In general terms, this result is
highly relevant to the Aedes Control Programme in Panama since it constitutes a feasible approach for the timely
detection of resistance as well as for the development of strategies.
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Background
Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse)
are the two most important mosquito species in terms
of the transmission of infectious diseases [1, 2]. They are
vectors of different arboviruses (viruses transmitted by
arthropods) of worldwide relevance that include dengue
virus (DENV), yellow fever virus (YFV), chikungunya
virus (CHIKV) and Zika virus (ZIKV) [3]. Both of these
species of the order Diptera are considered invasive

since they have shown success in colonizing many re-
gions outside their endemic areas [2].
Currently, control activities are based on surveillance,

chemical application and the elimination of mosquito
breeding sites. The pyrethroid insecticides such as delta-
methrin and cyfluthrin have been, until now, the most
commonly used class of insecticide for vector control
against the annual epidemics of diseases transmitted by
Aedes in Panama [4, 5]. The rotation in the application of
insecticides has also been carried out; deltamethrin has
been applied to health regions that have the highest infest-
ation rates and cyfluthrin in the remaining regions. How-
ever, even if outbreaks are controlled, concerns about the
effect of the continuous use of these insecticides on the
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populations of Ae. aegypti and Ae. albopictus persist,
specifically in relation to the development of resistance
mechanisms, which is one of the main problems faced by
chemical control programmes [5–7].
In Panama, populations of mosquito vectors have been

subjected to a continuous selective pressure of organo-
chlorine, carbamate, organophosphate and pyrethroid in-
secticides. The application of these chemical compounds
began in 1957 through the creation of the National
Service for the Eradication of Malaria (Servicio Nacional
de Erradicación de la Malaria, SNEM) [8, 9]. However, ac-
tivities for the control of Aedes populations officially
began in the year 1969, through the Campaign of Eradica-
tion of Ae. aegypti developed by the Ministry of Health.
During the 1980s, this was renamed Campaign for the
Control of Ae. aegypti and, subsequently, MINSA inte-
grated the SNEM with the Programme of Ae. aegypti and
created the Department of Vector Control. Since 1969,
temephos (Abate) has been used for the control of larvae
(focal treatment) of Aedes. From the 1970s until 1985,
malathion spraying was used as a perifocal treatment for
the control of adult mosquito populations. From 1985 to
the present, spraying with the pyrethroid deltamethrin has
been applied [10]. From 1992 to 2016, spraying with cyflu-
thrin was applied in the regions with the lowest risk of
transmission; however, its use was suspended due to
supply problems.
Resistance is due to two main mechanisms: a greater

metabolic detoxification of chemical agents and insensiti-
vity at the site of action [11]. The mechanisms involving
overexpression or qualitative changes in catalytic enzyme
sites include non-specific esterases (NSE), glutathione
S-transferases (GSTs) and mixed function oxidases (MFOs)
[12]. However, knockdown resistance, or kdr, is one of the
main types of resistance against pyrethroid insecticides
[13]. It is caused by point mutations at the level of
the nucleotide sequence of the para gene and leads
to changes in some amino acids of the voltage-gated
sodium channel (VGSC) protein, which causes a re-
duction of the binding with the insecticide and, con-
sequently, the loss of its effect [14–17].
This study aimed to evaluate the resistance in Aedes

vectors through molecular tools, given that previous
studies with populations of Ae. aegypti have shown
metabolic resistance, and its mechanisms have been
characterized for different types of insecticides [18, 19].
Furthermore, there is no previous information about the
presence of kdr alleles in the studied Aedes populations
in Panama.
The study is part of a more comprehensive investigation

that includes the performance of susceptibility bioassays
standardized by the WHO, and the use of synergistic agents
and biochemical tests for the detection of enzymatic me-
chanisms associated with resistance to insecticides. Each of

these approaches satisfies the need of the Aedes Control
Programme of MINSA to understand the behavior of re-
sistance and its mechanisms in populations of these
vectors.

Methods
Sampling
The sampling locations were selected based on the cri-
teria of a high incidence of dengue and levels of infest-
ation with Aedes mosquitoes from high to moderate
[20]. Five locations of the Metropolitan Region of
Panama were selected: Nuevo Chorrillo (8°57'36.09"N,
79°41'54.48"W), Princess Mía (8°58'1.29"N, 79°
42'8.92"W), Lluvia de Oro (8°57'36.57"N, 79°41'56.28"W),
Bethania (9°0'34.04"N, 79°31'45.95"W) and Las Garzas
(9°7'6.00"N, 79°15'47.32"W). In each locality, 25–30
houses were selected at random.
The capture of Aedes mosquitoes and eggs was carried

out during the months of August to November 2015.
For this purpose, two trap types were used: a Mosquito
Science Trap-N-Kill™ ovitrap (SpringStar Inc., Woodin-
ville, WA, USA) and a a BG-Sentinel® Trap (Biogents
AG, Regensburg, Germany), which were placed in the
peridomicile of the homes. Within each BG-Sentinel
Trap, BG-Lure™ (Biogents AG, Regensburg, Germany)
was used as an attractant to favor the capture of adult
mosquitoes. These traps were monitored daily to change
the battery and the catch bag, the latter of which was
transported to the laboratory in a portable ice cooler in
order to preserve specimens for taxonomic identification
and subsequent molecular analyses. In the case of the
Trap-N-Kill™ ovitrap, paddles were picked up at the end
of the week and transported to the laboratory in Ziploc®
bags (SC Johnson, Racine, WI, USA), to evaluate the
presence of eggs. The paddles with eggs were immersed
in trays of water and were reared to adult stage.
Identification of sex and species was carried out

with taxonomic keys [21]. Subsequently, the mosqui-
toes were placed in 1.5 ml conical tubes with 500 μl
of DNA/RNA Shield™ (Zymo Research, Irvine, CA,
USA) and stored at -80 °C.

DNA isolation
The genomic DNA of the mosquitoes was isolated with
a ZR Viral DNA/RNA Kit™ (Zymo Research) according
to the manufacturer’s instructions. The quality and con-
centration of the isolated DNA were evaluated with a
NanoDrop™ 2000c spectrophotometer (Thermo Scien-
tific, Wilmington, DE, USA). Finally, samples were la-
beled and stored at -80 °C.

PCR amplification
To identify the presence of kdr mutations in Ae. aegypti and
Ae. albopictus, the previously proposed oligonucleotides
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AaSCF1, AaSCR4, AaSCF7 and AaSCR7 were used [22, 23].
These oligonucleotides allow the identification of five kdr
sites within the VGSC sequence (Table 1).
The mixture for the PCR was prepared with PCR Mas-

ter Mix 2× (Promega, Madison, WI, USA) following the
manufacturer’s specifications. The amplification process
was carried out in a Mastercycler® gradient thermocycler
(Eppendorf, Hamburg, Germany) based on a previously
described protocol [22]. The quality and integrity of the
PCR products were evaluated by agarose gel electro-
phoresis (AMRESCO, Solon, OH, USA), prepared at
1.5% and stained with Gel red® (Biotium, Fremont, CA,
USA). Fragments of approximately 800 bp were obtained
with the oligonucleotides AaSCF1 and AaSCR4. Frag-
ments of approximately 700 bp were obtained with the
oligonucleotides AaSCF7 and AaSCR7. The samples
amplified by PCR were subsequently stored at -20 °C.

Sequencing
The sequencing reactions were performed from the PCR
products using the oligonucleotides AaSCF3, AaSCR6
and AaSCR8 [22, 23]. Sequencing was undertaken by
Macrogen (Seoul, Korea), and the direct sequencing of
the samples was performed on an ABI 3730XL genetic
analyzer (Applied Biosystems, Foster City, CA, USA).

Analysis of results
The chromatograms were visualized with BioEdit v.7.2.5
software [24]; the sequences obtained in ABI format was
transformed to FASTA format for editing. The authenti-
city of the sequences was corroborated through the
BLAST program (https://blast.ncbi.nlm.nih.gov/Blas-
t.cgi), considering an identity percentage greater than
95%. The sequences were aligned and edited with
MEGA 7.0 software [25]. To calculate the frequency of
the kdr mutations, we considered the number of samples
that showed point changes in the kdr sites of interest as
a function of the total sequences analyzed.

Results
A total of 3432 specimens of Ae. aegypti and 593 speci-
mens of Ae. albopictus were collected. Of these, 149

specimens were sequenced, of which 74 individuals were
Ae. aegypti and 75 were Ae. albopictus. From these, 447
sequences were obtained, of which only 194 were of suffi-
cient quality to include in the analysis for detecting muta-
tions at the level of Domain II of the VGSC protein. The
kdr sites analyzed were Ser989, Ile1011, Leu1014, Val1016
and Phe1534, resulting in two point mutations (Ile1011-
Met and Val1016Gly) identified in a single specimen of
Ae. aegypti from the locality of Nuevo Chorrillo. Table 2
shows the number of samples evaluated and positive sam-
ples in Aedes spp.
The multiple alignments of the partial nucleotide se-

quence of the para gene in Ae. aegypti are presented,
specifically from exons 20 and 21 in Figs. 1 and 2,
respectively. These present the contrast of some of the
sequences analyzed in the study with reference
sequences obtained from the GenBank database.
In sample Ae079, the change in the amino acid isoleu-

cine (Ile) by the amino acid methionine (Met) was ob-
served, which is the product of a transition in the third
base of the codon 1011; the non-mutated codon is ATA
and the mutated codon is ATG (Additional files 1 and 2).
At position 1016 of sample Ae079, the change of the

amino acid valine (Val) to the amino acid glycine (Gly)
was observed, a product of a transversion occurring in the
second nucleotide of the codon; the non-mutated codon
is GTA and the mutated codon is GGT (Additional files 1
and 2). It is important to note that at the level of the third
nucleotide there is also a point mutation (A → T), but it
is synonymous.
The frequency of kdr mutations in the samples of Ae.

aegypti evaluated in this study was 0.01, which corre-
sponds to 1% of the total samples, and 0.06, which cor-
responds to 6% of the samples from Nuevo Chorrillo
(Table 3).

Discussion
Recent reports suggest that the populations of Ae.
aegypti in Panama are, in general terms, susceptible to
commercial pesticides. Larval resistance bioassays have
shown the existence of vector populations that have
moderate levels of resistance to the pyrethroid

Table 1 Oligonucleotides used for the identification of kdr mutations in DNA samples of Ae. aegypti and Ae. albopictus [22, 23]

Code Sequence (5'-3') Identified sites

AaSCF1 AGA CAA TGT GGA TCG CTT CC Domain II, Segment 6

AaSCR4 GGA CGC AAT CTG GCT TGT TA Ser989, Ile1011, Leu1014, Val1016

AaSCF7 GAG AAC TCG CCG ATG AAC TT Domain III, Segment 6

AaSCR7 GAC GAC GAA ATC GAA CAG GT Phe1534

AaSCF3 GTG GAA CTT CAC CGA CTT CA Ser989, Ile1011, Leu1014,

AaSCF6 CGA CTT GAT CCA GTT GGA GA Val1016

AaSCR8 TAG CTT TCA GCG GCT TCT TC Phe1534
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deltamethrin [8]. These results are significant given that,
in the absence of adequate management by the vector
control programme, the potential for the dissemination
of this phenotypic trait may be increased in the future.
However, the detection of point mutations Ile1011Met
and Val1016Gly in a single specimen of Ae. aegypti using
molecular tools demonstrates the importance and feasi-
bility of incorporating molecular techniques for the
detection and monitoring of resistance to insecticides in
mosquitoes. This approach also complements the results
of the bioassays and improves control strategies.
It is important to point out that the detection of muta-

tion Val1016Gly raises new questions about its distribu-
tion and introduction at the regional level since, to our
knowledge, it is the first time that is reported in Amer-
ica. In fact, the Val1016Ile and Val1016Gly mutations
have distinct geographical distributions, with Val1016Gly
found in Asia [26–30] and Val1016Ile in the Americas
and recently detected in Africa [14, 26, 27, 31–34].
Based on these results, we hypothesize that the
Val1016Gly mutation could have been introduced to
Panama via the transit of containers or tires with eggs
because the country is a site of commercial and
international transit, which is difficult to monitor and
control. At first, we hypothesized that the mutation was
introduced in America but there is also the possibility
that it is a new mutation. If it is a new mutation, an
exhaustive phylogeographical analysis will establish the
origin of the mutation present in our region.

In the present study, both the Ile1011Met and
Val1016Gly mutations were detected in a sample of Ae.
aegypti from the same locality (NC). The co-occurrence
of kdr mutations in Ae. aegypti has been reported previ-
ously, specifically of the Val1016 and Ser989 mutations
in Asian populations of this vector [26, 27]. However,
the implications of the combination of kdr mutations are
debated; some studies report that their co-occurrence
improves resistance [35], but others conclude that there
is no additive or synergistic effect [36].
In this study it was not possible to detect kdr muta-

tions in Ae. albopictus sequences, a fact that may be re-
lated to technical factors (due to the quality of some
sequences obtained) which we consider part of the limi-
tations of this study. It is important to note that of the
194 evaluated sequences, only 20 were found to have
sufficient quality to identify point changes at the DIIIS6
level of the VGSC, a region where it has been possible to
characterize the Phe1534Cys mutation. Notably, a study
conducted in Costa Rica [22] did not detect mutant

Table 2 kdr mutations detected in the samples of Aedes spp.

Domain kdr sites Evaluated sequences Positive sequences

II Ser989 78 1

Ile1011

Leu1014

Val1016 96 1

III Phe1534 20 0

Total 194 2

Fig. 1 Partial section of the nucleotide sequence of DIIS6 of the VGSC protein (para gene) in Ae. aegypti (exon 20). Samples Ae079, Ae060 and
Ae051 are contrasted with reference sequences Ref. 1 (GenBank: AB914690.1) and Ref. 2 (GenBank: FJ479612.1)

Fig. 2 Partial section of the nucleotide sequence of DIIS6 of the
VGSC protein (para gene) in Ae. aegypti (exon 21). Samples Ae079,
Ae090 and Ae371 are contrasted with reference sequences Ref. 1
(GenBank: AB914690.1) and Ref. 2 (GenBank: AB914689.1)
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alleles associated with kdr resistance in a natural popula-
tion of Ae. albopictus, a characteristic attributed to the
recent invasion of this species in that country. The
colonization of Ae. albopictus populations in Panama is
relatively recent [37] compared to Ae. aegypti [38];
therefore, the failure to detect kdr mutations in Ae. albo-
pictus may be because chemical control with insecticides
has not yet put pressure on the populations of this vec-
tor. However, in Ae. albopictus populations from other
latitudes, it has been possible to detect the Phe1534Cys
mutation. For example, in Singapore, Kasai et al. [39]
found that 92.3% of mosquitoes exhibited the
Phe1534Cys mutation as detected by sequencing, thus
estimating a frequency of 73.1% for the Cys1534 allele.
Recently, the evaluation of Ae. albopictus populations
from Asia, Africa, America and Europe [40] detected
two new kdr mutations at the level of domain III of the
VGSC, namely mutations Ile1532Thr and Phe1534Ser,
the latter presenting a significant association with resist-
ance to deltamethrin.
The frequency of kdr mutations in the analyzed sam-

ples was low (1%) compared to that reported in studies
conducted in the region. For example, in populations of
Ae. aegypti from Grand Cayman and Cuba, frequencies
of 79% and 51%, respectively, for the kdr allele Ile1016
were detected through sequencing [41, 42]. Similar re-
sults are reported for populations of Ae. aegypti from
Venezuela evaluated through the allele-specific PCR
technique (PCR-AS) [43] and from Brazil [44]. Another
study carried out in Brazil [31] revealed patterns of re-
gional distribution of kdr mutations attributed to posi-
tions Val1016 and Phe1534 in Ae. aegypti collected over
ten years. According to the authors, the regionalization
of the kdr alleles reflects differences in the populations
of Ae. aegypti that colonized the continent.
Lastly, we consider that the low frequency detected in

our study does not yet have an impact on mosquito con-
trol interventions. Determining the distribution of the
Ile1011Met and Val1016Gly mutations, as well as other
kdr mutations in populations of Ae. aegypti or in other
species of mosquito vectors present in Panama, requires
a greater sampling effort and an adaptation of the meth-
odology used in this research. The information gener-
ated will be of great value in determining the frequency
of the mutant alleles.

Conclusions
This study provides evidence for a low frequency of kdr
mutations (Ile1011Met and Val1016Gly) in Ae. aegypti
populations in Panama. The low frequency recorded is
perhaps not enough to have an impact on the interven-
tions of mosquito control. To our knowledge, we report,
for the first time in America the Val1016Gly mutation
documented in Asia. The finding of the kdr mutations in
specimens not previously exposed to resistance bioassays
is indicative that the natural populations of this vector
could be developing resistance to the insecticides that
are being applied in Panama. In general terms, the infor-
mation on the presence of this kdr mutation in Panama
can help monitor the spread of the mutation in America
in the case that it becomes a significant problem for vec-
tor control. This result is highly relevant to the Aedes
Control Programme in Panama since it constitutes a
feasible approach for the timely detection of resistance
as well as for the development of strategies.
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