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ABSTRACT: Ionic liquids (ILs) are charged fluids composed of
anions and cations of different size and shape. The ordering of
charge and density in ILs confined between charged interfaces
underlies numerous applications of IL electrolytes. Here, we
analyze the screening behavior and the resulting structural forces of
a representative IL confined between two charge-varied plates.
Using both molecular dynamics simulations and a continuum
theory, we contrast the screening features of a more-realistic
asymmetric system and a less-realistic symmetric one. The ionic
size asymmetry plays a nontrivial role in charge screening, affecting
both the ionic density profiles and the disjoining pressure distance
dependence. Ionic systems with size asymmetry are stronger
coupled systems, and this manifests itself both in their response to
the electrode polarization and spontaneous structure formation at
the interface. Analytical expressions for decay lengths of the
disjoining pressure are obtained in agreement with the pressure
profiles computed from molecular dynamics simulations.

1. INTRODUCTION

Room-temperature ionic liquids (ILs) are molten salts
composed of majorly asymmetrically sized anions and
cations.1,2 ILs have wide electrochemical stability windows,
low vapor pressure, and are thermally stable.3,4 Because of their
exceptional properties, they are used in energy storage
applications including supercapacitors and batteries3 and as
solvents for reactions and for catalysis.2 They can also be
employed as electrotunable lubricants.5,6 In these applications,
the ILs can be confined in charged nanopores down to the
nanometer scale, in which the extent of the nanopore
confinement and its polarity determine the interfacial IL
structure and charge layering.7−10

To optimize the interfacial behavior of ILs for their many
applications, researchers need to accurately model ILs. This is
done either through computationally expensive atomistic
simulations or via sophisticated theoretical approaches, which
go beyond standard mean-field theories of dilute electrolyte
solutions. In such highly concentrated electrolytes as ILs, the
dilute solution theory is predestined to fail since ILs form
structures determined by dense packing of ions in the
crowding11−16 (layering of ions of the same charge at highly
charged electrodes) and overscreening17,18 (alternating layers of
opposite charge at weakly charged electrodes) regimes. Most
egregiously, the dilute solution theoretical description does not
take into account the ionic size.11,19,20 To capture these
screening features, multiple continuum theories have been
developed to include the finite size of ions in their steric and

electrostatic interactions, especially for concentrated systems at
high voltages.21−26 The simplest theoretical models of these
systems have been developed for the case of ions of the same
size. This was natural to do as a start, although most ILs exhibit
strong size asymmetry. In theories, ion asymmetry has typically
been studied within the mean field approach that accounted
for crowding, particularly in the explanation of the asymmetry
of the double-layer differential capacitance curves in such
systems.3,12,27−31 In molecular dynamics (MD) simulations,
ion asymmetry has been either specially introduced18 or
naturally included with fully atomistic or coarse grained models
of ions.3 Certain classical Density Functional Theories (DFT)
have also been applied to asymmetric ILs, predicting interfacial
layering in line with MD simulations.24,32 These studies of ILs
draw from the wide body of theoretical research on primitive
model electrolytes either through classical DFT33−37 or
integral equation theories.38−43 In fact, earlier work from
Greberg and Kjellander revealed the role of asymmetry in the
contact behavior and decay of bulk correlations in primitive
model electrolytes.44
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Surface force apparatus (SFA) and atomic force microscopy
(AFM) measurements have emerged as the main experimental
tools to investigate the nanoscale structure of interfacial
liquids,45 including ILs.7,8,46,47 While in SFA experiments the
mica surfaces are spontaneously negatively charged, the AFM
setup can incorporate conductive electrodes, allowing for the
independent control of charges on the surfaces. Both SFA and
AFM measurements have been performed in a variety of ILs,
and in all cases decaying oscillatory forces were observed, with
an oscillation period of the order of an ion pair diameter
(usually dominated by the largest ion diameter), indicative of
the underlying alternating charge layering structure.8,9,47,48 At
even longer ranges than the oscillatory forces, SFA measure-
ments found an additional monotonically decaying “tail” of the
force, both in concentrated electrolytes and ILs.48−51

Despite these findings, however, simulations and theoretical
descriptions of primitive model electrolytes have not
succeeded to recover the existence of such a tail.34 Long-
range electrostatic forces in the dilute limit can be described by
analytical formulas derived from Debye−Huckel linearization,
but such simple analytical equations are not readily available
for the oscillatory structural forces. While the above-mentioned
theories presented sophisticated analyses of the role of
asymmetry on interfacial ionic behavior, they still did not
present simplified, explicit formulas for the oscillatory IL
structure and structural forces, nor did they directly validate
the role of asymmetry on the structural forces and screening
structure by MD simulations of the concentrated IL limit in
varying extents of confinement. Instead of directly applying
theoretically derived formulas, the experimental oscillatory
forces are typically empirically fitted to an oscillatory decaying
function. Therefore, the physical and quantitative interpreta-
tion of oscillatory structural forces in experiments could greatly
benefit from analytical formulas derived within theories of
concentrated, and generally asymmetric ILs.
In the present work, we go further into investigating the

double layer structure of an asymmetric IL under confinement
between equally charged surfaces using both MD simulations
and an advanced continuum theory. The ion density profiles
and disjoining pressure curves that we calculate based on the
original theory22 show qualitative and quantitative agreement
with the results of simulations for a range of surface charge
densities and surface separations. By a comparison of a
representative IL with asymmetric ions to an IL composed of
size-symmetric ions, we demonstrate that the size asymmetry
strongly determines the ionic layering structure between two
flat charged interfaces. Even at zero charge of the electrode there
is an entropy-driven “preferential adsorption” of smaller ions,
which results in spontaneous layering of positive and negative
charges near the electrode. The order of layering may, in fact, be
changed by specific adsorption of any of these ions, which is
not included in our simple model, but which could easily be
modeled by adding a specific term in the interaction potential
between the ions and the surface. In whatever direction that
effect could have shifted the result, it would act at the
background of the noted effect.
Furthermore, the size asymmetry leads to a strong coupling

of charge density and number density oscillations even far from
the interface that is absent for the symmetric case. Analytical
approximations are shown to reproduce the simulated modes
of decaying oscillations in the disjoining pressure at the
nanometer scale. However, neither the simulations nor the
theory contain any evidence of an abnormally long decay

length or long-range exponential tails. Nevertheless, the main
value of the theory lies in the analytical description of the
decaying modes of the structural forces and their dependence
on surface charging in terms of the IL physical properties. The
numerical predictions of the full nonlinear theory can be
generated with much smaller computational cost compared to
atomistic simulations.
All in all, the presented theory, backed up by the MD

simulations, demonstrates that the ion asymmetry in electro-
static and steric interactions are essential in describing the
double layer structure for ultraconcentrated, asymmetric ILs.
These findings therefore signify an important step in the
advancement of our understanding of the screening behavior
and the resulting structural forces of ultraconcentrated,
asymmetric ILs as well as of solvent-in-salt systems, under
nanoconfinements.

2. SIMULATIONS AND THEORY
In this paper, an IL is approximated in both MD simulations
and a continuum theory, first with asymmetric anion and
cation sizes, and then with an equal anion and cation size, as
charged Lennard-Jones (LJ) spheres. Such level of simplifica-
tion has been chosen first of all to investigate the effects not
obscured by any chemical complexity of the ions, and secondly
because this would allow the most straightforward comparison
between the simulations and the theory that we use here. We
highlight the properties and parameters of the MD simulations
and the continuum theory before applying them to model the
IL and the resulting disjoining pressures. For convenience, the
symbols which appear in the theory are summarized and listed
in the Glossary of Symbols at the end of the article.

2.1. Simulation Details. Within this minimal model, the
ions are represented as a 1:1 mixture of oppositely and singly
charged LJ spheres,18,52,53 as shown in Figure 1. The

Figure 1. MD simulations. (a) Snapshot of the asymmetric IL
immersing two charged surfaces in a fully periodic simulations box.
The surfaces are pushed together along the z-direction with a normal
force FL to ultimately calculate the pressure as a function of the
separation distance, L. (b) The ionic sizes, characterized by the LJ
diameter, σi, for the (left) asymmetric and (right) symmetric systems.
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concentration of both anions and cations in the simulation box
is c0 = 4.586 M and the absolute temperature is T = 600 K
(usually elevated temperature is taken when “experimenting”
with charged LJ-spheres, because at room temperature the
dense plasma of such spheres freezes out). In our model, we
account for the electronic polarizability of the ions in an
effective manner. For this, we have set the background
permittivity to be ϵ = 2ϵ0,

52,53 where ϵ0 is the permittivity of
free space, with each ion possessing one elementary charge.
The ions interact through LJ and Coulombic potentials, where
the size asymmetry of the ions is controlled by adjusting their
diameters through the LJ parameter σij for species i interacting
with species j, or σi when i = j. The ion sizes that we consider
here for the asymmetric system are σ− = 0.7 nm and σ+ = 0.35
nm, and the ion size for the symmetric system is σ− = σ+ = 0.58
nm, such that the filling fraction is approximately equal in both
systems, making ∑iσi

3c0 unchanged. We also include attractive
dispersion interactions. This is done in order to capture a more
realistic representation of the IL, as these attractive dispersion
interactions are active in real ILs. In our simulations, the cutoff
distance of the LJ potential is set to be as long as 1.8 nm. Even
so, as reaffirmed in the theoretical predictions which do not
incorporate dispersion interactions, the main balance guiding
the structural forces is the interplay between the ionic charge
and ionic finite size.
Two parallel plates in the x−y plane are immersed in a bulk

of IL. We consider flat surfaces comprising LJ spheres in
contact with the confined liquid, and a lattice parameter of
mica.52 Performing constant charge simulations, the surface
charge on each plate is varied between qs = −0.12 C/m2 and qs
= +0.12 C/m2. In the simulations, the image charge
interactions are not taken into account. Simulations of IL
nanofilms (1−10 nm thick) showed that the effect of electrode
polarizability (image charges) on the vertical and lateral
structure of the confined liquids is insignificant at practically
feasible applied voltages.54−56 Image charge interactions can
lead, in principle, to the depletion of ions in the nanogap for a
single layer of ions confined between two uncharged or slightly
charged dielectric walls, as the ions, instead of “seeing” their
counterions nearby, see their own weak images in the side
walls (the situation may be different for metallic surfaces57).
However, for larger separation distances between the surfaces,
there is a weak dependence of the IL’s structuring on the
electrode polarizability which is explained by the screening of
image charge interactions by the first layer of ions.58 Therefore,
in our work, we choose not to include image charge
interactions, as we are particularly interested in isolating the
structural layering of the liquid, which occurs even without the
complexity that is added with the introduction of image charge
interactions.
In the simulations, for each fixed surface charge the ionic

density profiles between the surfaces are computed at a fixed
separation distance, and the separation distance is varied to
generate a pressure curve. Expansion on the simulation details
and the used methods can be found further in the Supporting
Information (SI).
2.2. Theoretical Derivation. The theory is based on an

approximation of the Helmholtz free energy of a system of an
asymmetric, hard-sphere 1:1 electrolyte with a constant
background permittivity, ϵ, the primitive model.34,59−61 The
phenomenological basis for the theory is that the electrostatic
and hard sphere components of the free energy of the system
can be expressed in terms of locally homogenized quantities of

the ion densities, the weighted-density approximation (WDA).
The distinguishing feature of this model, as opposed to other
similar classical DFT approaches,62 is that the electrostatic
contribution to the free energy is directly expressed in terms of
weighted ionic densities.22,63,64 The model is a generalization
of the density functional for ILs presented in ref 22.
The core ingredients of the theory that allow us to capture

the discrete layering in ILs are (i) representing the ions as
delocalized shells of charge in their electrostatics and (ii)
encoding the hard sphere packing of ions in their excess
chemical potential. While these effects introduce some
mathematical complexity, they have straightforward physical
interpretations and do allow for some analytical progress,
especially in the linear response limit.
To start, the free energy of the system can be broken down

into three contributions, an ideal part id, an excess part ex ,
and an electrostatic part el:

id ex el= + + (1)

The ideal contribution is related to the entropy of an ideal gas:

c k T c vcr r r r( ) d ( ) ln( ( )) 1i
i

i i i
id

B ∫∑[{ }] = [ − ]
(2)

where kBT is the thermal energy, vi is the volume of ion i, and ci
is the number density of ion i. For the hard sphere
contribution to the free energy, we incorporate a phenomeno-
logical, simplified version of the Fundamental Measure Theory
(FMT).65 The advantage of our approach is that more
compact expressions can be derived for the ionic excess
chemical potential in terms of fewer weighting functions,
aiding in the process of deriving simplified analytical
approximations to the theory.
The phenomenological excess free energy we define is given

by
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where p̅ is the weighted volumetric filling fraction,
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where Ri is the effective hard-sphere radius of the ion, vi =
4πRi

3/3 is the volume of the ion, the asterisk (∗) denotes a
convolution, wv,i is the volumetric weighting function, Θ
represents the Heaviside step function, and the filling-fraction-
weighted volume v̂ is given by
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(5)

Here, ci,0 is the bulk concentration of species i and η is the bulk
filling fraction, η = ∑i vici,0. By construction, the key criteria
that the simplified form of the hard sphere excess free energy
satisfies are: (i) it retains the Carnahan−Starling equation of
state66 for the limit of symmetric ions or where one ionic
species becomes vanishingly small while the other is of finite
size, and (ii) it maintains the same singularities as the FMT
functional.
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The electrostatic part of the free energy in a medium with
dielectric constant ϵ is expressed in terms of the electrostatic
potential, ϕ, and the homogenized charge density, ρ̅e:

22

r, d
2

( )e e
el 2{ }∫ρ ϕ ϕ ρ ϕ[ ̅ ] = − ϵ ∇ + ̅ (6)

This corresponds to the modified form of the Poisson
equation, via minimization of the functional with respect to
the electrostatic potential, / 0δ δϕ = :
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where zi is the valency of ion i, e is the elementary charge, and
δ() denotes the delta function of 1D argument, such that each
ionic weighting function ws,i corresponds to homogenizing over
the surface of the ionic spheres. The weighted ionic
concentrations signify that the ions act as shells of charge
that interact with the local electrostatic potential.
Minimizing the free energy functional with respect to

concentration, the ion densities at equilibrium satisfy:

c c z ew wexp( )i i i s i v i i i b,0 , ,
ex

,
exβ ϕ β μ βμ= − ∗ − ∗ + (8)

where β is the inverse thermal energy and the excess chemical
potential, μi

ex, is defined as
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We again note that vi = v̂ for the case where (i) the two ions
have the same size or (ii) when one ion is vanishingly small
while the other has finite size. These limits give the standard
expression for the Carnahan−Starling equation of state. For
asymmetric ILs in which the ions both have significant packing
effects, the formula effectively interpolates between these two
limits.
We solve the above coupled integro-differential eqs 7 and 8

for the ionic densities and electrostatic potential between two
flat electrodes, with equal surface charge density, qs. In this
case, the standard boundary condition for the potential is
applied n̂·ϵ∇ϕ|s = −qs. In the theory, the surface is assumed to
be perfectly flat and hard with smeared charge density. In the
theory, the representative surfaces are defined at z = ± L/2 ∓
Rs, where L is the distance between surface atom centers in the
simulation and Rs is the surface atom radius. Therefore, the
theoretical ionic densities are zero for z < −L/2 + Rs + Ri and z
> L/2 − Rs − Ri. We solve for the area averaged density, and
we therefore reduce all equations to be dependent on one
coordinate, z.22 Numerically, we discretize the equations by a
finite difference scheme.
For consistency between the simulations and theory, we

need to define the ion diameter in the theory, di, as compared
to the σij values of the simulation. Since the LJ interaction is
not exactly the same as the hard sphere interaction assumed in
the theory, the ions in the simulation can overlap slightly with
the surface and with each other below a center-to-center
separation of σi. We assume that the effective ionic diameter in
the theory is set by a cutoff criterion, where the LJ potential is
ULJ = 0.3kBT, corresponding to di ≈ 0.9σi. The sensitivity of
the results with respect to this criterion is discussed in the SI.
The pressure between the two equally charged surfaces as a

function of separation distance is calculated as67−70

P
A

L
( / )δ

δ
= − Ω

(11)

Figure 2. Charge and ion density profiles in asymmetric ILs between the charged plates. Rows correspond to the fixed surface charge densities of
(a,b) qs = 0.12 C/m2, (c,d) qs = 0 C/m2, and (e,f) qs = −0.12 C/m2. Columns correspond to the squeeze out of a central electroneutral layer
between two stable states where (a,c,e) L ≈ 2.2 nm and (b,d,f) L ≈ 1.5 nm. Cumulative charge functions are plotted to the left or right of the
corresponding concentration profile plot. Markers (○) simulations; lines () theory. Color coding: blue, anions; red, cations.
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at constant temperature and reference chemical potential
(constant bulk ionic concentrations), where A is the area of the
surfaces, and Ω is the grand potential

crd
i

i b i,∫∑ μΩ = − { }
(12)

and μi,b is the bulk chemical potential. By definition, the
pressure corresponds to the change in the grand potential per
differential change in the system volume, assuming fixed area
of the confining surfaces. The values of Ω/A for a range of
separation distances are numerically computed, and we then
numerically differentiate this function to calculate the
disjoining pressure. The zero value for the disjoining pressures
corresponds to the bulk reference value as L → ∞, P∞ = 0.

3. RESULTS AND DISCUSSION
3.1. Ionic Charge and Density Profiles. We start by

comparing in Figure 2 the ionic densities calculated from the
simulations (circles, ○) and theory (lines, ) as the ionic
layers are squeezed out (columns, panels a−f) at varying
surface charge/polarities (rows). Beyond simply plotting the
density of ionic centers, ci, layering is demonstrated by plotting
the cumulative charge (accompanying plots to the left and
right of panels a−f), with the cumulative charge function,
Qcu(z), defined as

Q z z ec z z( ) ( ) d
L

z

i
i icu /2

∫ ∑= ′ ′
− (13)

Figure 2 shows that the theory captures the main features of
the charge ordering found in the simulations, particularly when
plotted in terms of Qcu(z). However, the theory does not
accurately predict the magnitude of the overscreening as the
separation distance increases, and underpredicts the decay into
the bulk for the widest separations. Interestingly, the theory is
more in line with simulations when describing the charge

ordering at small separations between the plates, where the
bulk correlations of the ions are the least influential.
The main discrepancies between the theory and simulations

are the sharpness and magnitude of the ionic density peaks,
arising because the theory assumes hard-sphere interactions
while the simulations assume LJ interactions. Further, whereas
the theory obeys electroneutrality within the space between the
two charged surfaces (Qcu(z = L/2) = −2qs), the simulations
exhibit some partial charge screening from the IL outside the
gap, so that Qcu(z = L/2) ≠ −2qs.
Inspecting the density profiles in Figure 2, we can see that at

zero surface charge (panels c and d), both the theory and the
simulations show that the smaller ion, the cation in our study
(displayed in red color), can access the surface more easily. For
negatively charged surfaces (panels e and f), the small cation
concentration is enhanced drastically near the surfaces, yet the
same number of layers are maintained as in the zero charge
case. At a positive surface charge (panels a and b), the cation is
pushed out of the region closest to the surfaces, resulting in
fewer layers of ions in this limit.
We can then contrast the screening with asymmetric ions to

screening with symmetric ions. In Figure 3, the ionic density
profiles for the symmetric system are shown, for increasing
negative surface charge and two separation distances. Since a
change in the surface polarity gives identical profiles (up to the
identity of the symmetric ions) only negative surface charge
values are shown. Again, overall, the theory captures ordering
in charge and density between the charged surfaces quite well,
with close agreement for the smallest separation distances. At
zero surface charge (panels a and b), here, unlike the
asymmetric ionic system, no local ionic charge density
occupies the gap, since neither ion preferentially accesses the
surface. The ions then form overlapping layers, which turn into
alternating ones when increasing the surface charge (panels c−
f). Overall, the overscreening structure remains similar as the

Figure 3. Charge and ion density profiles in symmetric IL. Rows correspond to the fixed surface charge of (a,b) qs = 0 C/m2, (c,d) qs = −0.06 C/
m2, and (e,f) qs = −0.12 C/m2. Columns correspond to the squeeze out of a central electroneutral layer between two stable states where (a,c,e) L ≈
2 nm and (b,d,f) L ≈ 1.4 nm. Cumulative charge functions are plotted to the left or right of the corresponding concentration profile plot. Markers
(○) simulations; lines () theory. Color coding: blue, anions; red, cations.
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surface charge magnitude increases, since the surface charges
tested are not large enough to enter the crowding regime.
Thus, after comparing the density profiles between confined

asymmetric and symmetric ionic systems we find that the most
pronounced effect for the asymmetric ionic system is an
entropy-driven preferential adsorption of smaller ions which
emerges even at zero surface charge of the electrodes. This
spontaneous layering of charges near the zero charged
electrodes is completely nontrivial and it essentially emphasizes
the strong effect that the ionic size asymmetry has on the
layering structure of positive and negative charges near flat
charged interfaces. Additional charge and density profiles with
varying surface charges and separation distances for both the
asymmetric and symmetric systems are presented in the SI.
3.2. Disjoining Pressure Profiles. 3.2.1. Simulations and

Integro-differential Theoretical Results. Finally, the role of
ionic asymmetry on structural forces is demonstrated in Figure
4. Pressure profiles are plotted as a function of the surface
separation distance for the asymmetric (panels a−c) and
symmetric (panels d−f) systems, where they are confined
between negatively (panels a and d), uncharged (panels b and
e), and positively charged surfaces (panels c and f). Additional
results with varying surface charge magnitudes are presented in
the SI. Comparing the theory to the simulations, overall, there
is an agreement between the MD simulation pressure profiles
(black markers ○ in Figure 4) and the full integro-differential
results from the theory (solid orange lines in the top and
bottom rows, the asymmetric and symmetric systems,
respectively). This agreement is most pronounced at the
smallest separation distances, where the pressure magnitudes
are the most significant. The main discrepancy, as similarly
noted already for the ionic density profiles, is that the
oscillations decay more quickly for the theory than those that
are observed in the simulations.

While the pressure profiles in Figure 4 appear to be similar
for both systems, there are still significant differences with
respect to surface charge magnitude and sign. Referring
specifically to the simulated pressure profiles (black markers
○ in Figure 4), as expected, the amplitude of the pressure
oscillations increases as the surface charge magnitude increases
for both the asymmetric and the symmetric systems. However,
for the asymmetric system, the pressure oscillation amplitudes
are larger for the positive surface charge polarity, due to the
larger anions accumulating between the positively charged
surfaces. Meanwhile, as expected, the pressure profiles for the
symmetric system do not depend on the sign of the surface
charge density. In the asymmetric system, the period of
oscillation is not affected by the electrode polarity or
magnitude. This is because at small potential drops across
the double layer, overscreening is always present, and the
overscreening period and decay are determined by the
diameter of the larger ion. For the symmetric system, the
period of the pressure oscillations increases slightly at qs =
±0.12 C/m2, yet it still remains on the scale of an individual
ionic diameter.
The theory in general also captures these features,

particularly the asymmetric pressure response of the
asymmetric IL with changing surface polarity, as well as the
oscillation period, being on the order of the largest ionic
diameter (orange lines in Figure 4a−c).

3.2.2. Linear Response Analysis. To gain further insight
into the differences between the pressure profiles of the
symmetric and asymmetric systems, we seek an approximate
theoretical description in which the pressure profiles are
represented by an exponentially decaying oscillating form,

P P z ze cos( ( ))z z
0

( )
2 0

1 0 κ= −κ− −
(14)

where κ1 encodes the decay length of oscillations while κ2
encodes the period of oscillations. Approximating the theory at

Figure 4. Disjoining pressure profiles. (a−c) Asymmetric system and (d−f) symmetric system for (a,d) negative, (b,e) uncharged, and (c,f) positive
surfaces. The black markers (○) are the MD simulation data points. The solid orange lines are the full, nonlinear integro-differential theory. The
other dashed and dash-dot lines are applications of the approximation in eq 14, where the parameters P0 and z0 are fit only to the first minimum.
Here, the cyan dash-dot lines correspond to the analytical expressions for κ in eqs 28 and 29, while the magenta dashed lines plotted in (d−f)
correspond to the definitions in eqs 30 and 31. These equations are derived in the framework of the linear response analysis.
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a linear response, the values for κ1 and κ2 are determined from
the decay modes in the charge density, which is proportional to
c+ − c−, and the total number density c+ + c−. While the
equations presented thus far are generally nonlinear integro-
differential equations, in the limit of small, slowly varying
perturbations in linear response to the charge of the surfaces,
we can derive analytical formulas to approximate the
oscillatory decay of the charge and number density as a
function of the IL properties. Here, we present the detailed
derivation and analysis of the approximations involved in the
linear response theory.
Limit of small perturbations: Equation 8 for small

perturbations in the linear response can be approximated as

c c z e w w(1 )i i i si vi i i0
ex

,bulk
exβ ϕ β μ βμ≈ − ∗ − ∗ + (15)

The excess chemical potential can be linearized to give:
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p p p
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where we have linearized the weighted filling fraction p̅, with
reference value given by the bulk filling fraction, η. Therefore,
if we assume linear perturbations of the bulk state, where δf = f
− f b, we have the following coupled equations for the
linearized Poisson equation and the ionic concentrations:

c z c e w
vc

v
w v w c

2(4 )
(1 )i i i si

i i
vi

j
j vj j0

0
4 ∑δ β ϕ η

η
δ≈ − ∗ −

̂
−

−
∗ ∗

(17)

z ew c
i

i si i
2 ∑ϕ δϵ∇ = − ∗

(18)

In the proceeding equations, we will analyze the decaying
modes for these differential equations for the cases of (i) the
symmetric IL system and (ii) the asymmetric IL system. We
briefly comment on (iii) systems with only a small degree of
size asymmetry. In each of these analyses, we will use the
following differential approximation for the convolution
integrals, derived by truncating the Fourier transform of the
convolution operations for small perturbations,22 giving

w f f(1 )vi vi
2 2δ δ∗ ≈ + ∇ (19)

w f f(1 )si si
2 2δ δ∗ ≈ + ∇ (20)

where vi and si are determined by the ionic size:

d
40vi

i=
(21)

d
24si

i=
(22)

where the numerical values of 40 and 24 are given directly
from the mathematical form of the weighting functions.
The symmetric case: For the symmetric case, wsi = ws, wvi = wv,

and vi = v̂. The linear response for the symmetric system was
reported previously,22 but we again go through the process in
order to draw contrast with the asymmetric case. For a 1:1 IL,
we get the following:

c c e w vc w c c
2(4 )
(1 )

( )s v0 0 4
2δ β ϕ η

η
δ δ≈ − ∗ − −

−
++ + −

(23)

c c e w vc w c c
2(4 )
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( )s v0 0 4
2δ β ϕ η

η
δ δ≈ ∗ − −

−
+− + −

(24)

ew c w cs s
2ϕ δ δϵ∇ = − ∗ − ∗− + (25)

If we sum the first two expressions and multiply by v, we get:

p v c w p
2 (4 )
(1 )i

i v4
2∑δ δ η η

η
δ= ≈ − −

− (26)

where again, p = v∑i ci is the local filling fraction. Next, if we
subtract the first two expressions and substitute into the third
equation, we get

e c w2 s
2 2

0
2ϕ β ϕϵ∇ = (27)

Here, we see that the equations for the potential and filling
fraction at linear response are decoupled for the symmetric
system. For the case where all functions become a function of z
only, we can trial the solution δf = A exp(−κz) to find the
values for the decaying modes, κ. For the equation governing
the filling fraction, δp = Am exp(−κmz), (directly proportional
to the total number density) the decay has both a real and
imaginary part, where

d
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d
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(29)

The decay in number density is always oscillatory for nonzero
filling fraction, since as η → 0, κ1m ≈ κ2m ≈ d−1(η/50)−1/4. On
the other hand, as η → 1, the number density profile becomes
purely oscillatory (without decay) with a period of oscillation
close to the ion diameter.
Next, for the equation governing the electrostatic potential

in the limit of high ionic concentration, with trial solution δϕ =
Ac exp(−κcz), the decaying mode has different real and
imaginary components:

d
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12
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D
2κ κ
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= =
(30)

d
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Im( )
12
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1c c2

D
2

2

D
2κ κ

λ
λ

= = ± −
(31)

where λD is the Debye length.
Even in linear response, we see that the two decaying modes

will compete with one another in determining the overall
disjoining pressure for the symmetric system. Both have similar
nanometric decay ranges in the concentrated limit of ILs. At
high charge density, the mode governing the decay of charge
will dominate, κc. At low charge density, the decay of charge is
unimportant in the double layer structure, so the decay in the
number density (and packing fraction), κm will dominate.
The asymmetric case: For the asymmetric system, it is more

difficult to make analytical progress in solving for the decaying
modes. First and foremost, the decay in number density
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(packing fraction) is coupled explicitly to the decay in charge
density (potential). This fact arises because of the differences
in the excess chemical potential between the different ions,
which do not allow for the neat cancellations encountered with
the symmetric system.
Further, even in solving the general problem for the

decaying modes for each ionic species and the potential,
analytical progress toward simple formulas is burdensome. For
that reason, we will perform analysis for the limit of perfect
asymmetry d− ≫ (d+ ≈ 0) and high packing fraction. Then the
governing linear response equations can be reframed as

c c e0δ βϕ≈ −+ (32)

c c e w v c w c
2(4 )
(1 )s v0 0 4

2δ β ϕ η
η

δ≈ ∗ − −
−− − − − −

(33)

e c w e cs
2ϕ δ δϵ∇ = − + ∗+ − − (34)

By substitution for ϕ and δc+ into the equation for the
potential, we get a single characteristic equation for the anion
concentration decay:
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Now, we can simplify this linearized expression by taking limits
of κD, in relation to the characteristic length scale of the
gradients in concentration, which is the ionic diameter d− at
high concentration.
As a quick side note, the limit of d− →0 where ws− ≈ 1 gives

the Debye−Huckel linearized form:

c c2
D
2δ κ δ∇ =− − (36)

so dilute electrolytes still have the Debye length (as it should
be) as characteristic decay length, as long as the filling fraction
η in the electrolyte is near zero.
If κDd− ≪ 1 and η ≠ 0, then we get the following leading

sixth order differential equation for δc−:
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valid near the interface. The more relevant limit to
concentrated ILs is when κDd− → ∞, which at the leading
order of eq 35 gives
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For the purpose of simplicity, we can assume roughly that ws−
≈ wv−. Next, at the filling fraction in the given parameter space,
it is safely assumed that the term involving η dominates the
differential equation at a large filling fraction, such that the
form of the equation can be approximated as
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In the limit of large filling fraction and perfect asymmetry, the
longest decaying mode governing the decay of the ionic

concentration can be approximated by κm, again with its real
and imaginary components:
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Here, the asymmetric system has one main decaying mode,
owing to the coupling of oscillations in charge and number
density. As η → 1, the anion concentration profile becomes
purely oscillatory with period roughly equal to the anion
diameter, corresponding to a crystal of densely packed anions.
Small degrees of asymmetry: One important question is

whether there is a smooth transition between the symmetric
behavior and the asymmetric behavior depending on the extent
of asymmetry. The degree of coupling between the charge
density and total number density can be determined via the
linear response equations. As a starting point, we consider the
sum of the linear equations for the cation and anion, δc+ + δc−:
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The coupling of the charge density decay with the number
density decay is controlled by the term containing ϕ. From this
term, we observe that the system is decoupled when ws+ ≈ ws−,
or in terms of the approximate differential operators, 1 + d+

2/
24∇2 ≈ 1+d−

2 /24∇2. From these relationships, we find that
decoupling occurs when d+ ≈ d−, for symmetric ion sizes.
Approximately, the extent of asymmetry can be quantified
using the difference in differential operators, ws− − ws+,
assuming gradients on the order of the smallest length scale in
the system, the smallest ion size (d+ in this case). Therefore,
the system will reproduce perfect asymmetric behavior when

d d
d

1
2 2

2
| − |

≫− +

+ (43)

and will reproduce perfect symmetric behavior when:

d d
d

1
2 2

2
| − |

≪− +

+ (44)

Therefore, according to the linear response to small
perturbations in the theory, systems with only slight
asymmetry will behave similar to the symmetric system if
they satisfy eq 44.
Summary of linear response results: In the linear response

regime, we find that the charge density oscillations in the
symmetric system are independent of the number density
oscillations, as they are decoupled from each other. However,
in the asymmetric system, in the linear response, consistent
with our explanation for the results of the simulations and the
full integro-differential theory, we find that the period (as well
as the decay length) of oscillations in both charge and number
density is determined by the diameter of the larger ion, and so
the two are coupled to each other.
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For the asymmetric system, in the limit of large filling
fraction and perfect asymmetry, the longest decay mode in
charge and number density can be approximately described by
the definitions of κ1m and κ2m as derived above in eqs 40 and
41. Therefore, for the asymmetric system, this mode dominates
the value of the disjoining pressure at all surface charges. The
decay of oscillations in this high packing fraction limit is
independent of the background permittivity and ionic charge.
This is because in the regime of high packing, the structure and
correlations in the system are determined majorly by the steric
dense packing constraints, valid if κ1m ≪ κD.
For the symmetric system, as mentioned above, the ordering

in charge and number density are decoupled. For this case, the
number density decays with modes described by κ1m and κ2m in
eqs 28 and 29, similarly to eqs 40 and 41, since these formulas
are generally applicable for the decay in number density in a
dense fluid at a hard wall. In contrast, the charge density
decays as given by the definitions for κ1c and κ2c in the highly
concentrated limit by eqs 30 and 31. For the symmetric system
at low surface charge, the oscillations in charge are less
pronounced than the oscillation in the number density, so the
decay in the number density (and filling fraction), κm, will
dominate in determining the pressure profile. Alternatively, at
high surface charge, the mode governing the decay of charge,
κc, will dominate. One could expect similar trends for ions that
are only approximately symmetric in size, with only a small
degree of asymmetry. Therefore, as v− → v+, there is a
transition between the perfectly asymmetric and the perfectly
symmetric behaviors, as analyzed in the linear response
behavior above.
We present our findings for both the symmetric and

asymmetric systems in Figure 4, where the approximations
corresponding to eq 14 with κm as given in eqs 28 and 29, and
κc as given in eqs 30 and 31 are plotted, manually fitting the
point of the first minimum of the simulation data with P0 and
z0, but keeping all other analytical formulas above. The decay
decrement, κm, governed by the filling fraction is plotted with
the dashed-dot cyan lines, while the decay decrement, κc,
governed by the decay in charge is plotted with the dashed
magenta lines.
For the asymmetric system (panels a−c), as mentioned

above, κm describes the decay at all surface charges. Therefore,
in Figure 4, one can observe that the dashed-dot cyan lines
fitted to the first minimum compare almost perfectly at all
surface charges to the pressure oscillations found in the
simulations.
For the symmetric system, however, the decaying mode

given by κm, plotted with the dashed-dot cyan lines, only
dominates at zero surface charge (panel e). In contrast, since
the decay in pressure oscillations at high electrode charges
such as qs = ± 0.12 C/m2 is dominated by the decrement, κc,
the plotted dashed magenta lines in Figure 4, panels d and f,
match better with the pressure oscillations found in the
simulations at these high surface charges (one can see how the
dashed-dot cyan line for κm is in offset and does not describe
well the simulated pressure oscillations).
Seeing as how the approximate equations of the linear

response theory describe quite accurately the decay of the
simulated pressure, we can now compare and validate
quantitatively the periodicities of the pressure oscillations
displayed in Figure 4. In the simulations, the period of the first
oscillation (distance from first to second minimum) in the
asymmetric system for the surface charges of qs = −0.12,

−0.06, 0, +0.06, and +0.12 C/m2 are 0.59, 0.62, 0.57, 0.60, and
0.61 nm, respectively. This compares well to the result from
the linearized formula for κ2m in eq 29, which predicts a period
of 0.62 nm for the asymmetric system. This value is essentially
the effective largest ionic diameter di ≈ 0.9σi, where σ− = 0.7
nm (our criterion that takes into account the overlap of ions in
the simulations), showing numerically that the periodicity of
oscillations in asymmetric systems at all surface charges is
determined by the diameter of the larger ion. For the
symmetric system, the simulated periods of the first oscillation
for qs = 0, ±0.06, and ±0.12 C/m2 are 0.53, 0.58, and 0.66 nm,
respectively. The periodicity values at low surface charges are
given by κ2m in eq 29, which predicts a period of 0.52 nm
(again, di ≈ 0.9σi, where σ± = 0.58 nm). At high surface charge
densities, the periodicity values are given by κ2c in eq 31, which
predicts a period of 0.68 nm, numerically showing the increase
in the oscillation period with surface charge magnitude in this
case.
We note that while in previous experimental measurements

of surface forces in IL, the oscillation period has been
described in terms of the ion pair diameter,8,9,47,48 the
oscillation period in the simulations and the theory presented
here, at the high concentration limit, more closely matches the
diameter of the largest ion, in all cases, multiplied by the scalar
prefactor that is close to 1.

4. CONCLUSIONS
All in all, the change in the oscillatory decay as a function of
surface charge underlies a major difference between charge
screening in concentrated asymmetric systems compared to
concentrated symmetric ones. In asymmetric systems, the
decay modes in charge and number density are coupled to
each other, and therefore give the same decay mode. For the
symmetric system, the two are decoupled. This essentially
leads to differences in the microscopic ionic concentration
profiles in nanoconfinement as a function of electrode charge
magnitude and polarity, and ultimately to an observable
difference in the disjoining pressure profile. Our unraveled
findings presented here provide some generalizable insights
into the detailed behaviors of such concentrated ionic systems.
These insights, therefore, may be taken into consideration in
terms of the analytical expressions that are derived in our work,
and can help interpret results of future experimental data of
structural forces in ionic liquids, as well as simulations.
To summarize, the main novel scientific contribution of our

work is our proposed continuum theory which describes well
the density, charge distributions, and structural forces of ILs in
nanoscale confinements and the effect of surface polarization
on these quantities. Through application of this theory, we can
relate the oscillation periodicity and decay of the molecular
structuring and charge density oscillations in nanoconfinement
to the physical properties of the IL, including the bulk ionic
density, the ionic sizes, the temperature, and the background
permittivity. While the MD simulations and theory profiles do
not match perfectly, both approaches predict layered structures
that lead to structural forces at small separation distances. Both
simulations and theory also recover the main features of
screening in asymmetric ILs, which are not present in
symmetric ILs. Those include the variation of force amplitudes
depending on the surface charge polarity, the “preferential
adsorption” of smaller ions at zero electrode charge, and the
coupling of charge and number density oscillations in systems
at such high ionic concentration. Therefore, on the basis of our
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findings, we conclude that the ionic size asymmetry is an
important ingredient in describing ILs at the nanoscale.
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σi LJ Parameter for the i,i interaction
FL normal force
L plate separation distance
c0 bulk ionic concentration
ϵ background permittivity
ϵ0 permittivity of free space
T absolute temperature
qs surface charge density

Helmholtz free energy
Id ideal contribution to free energy
ex excess contribution to free energy
el electrostatic contribution to free energy

kB Boltzmann constant
ci concentration of species i
p̅ weighted volumetric filling fraction
v̂ weighted volume
vi ionic volume of species i
Ri effective hard-sphere ionic radius of species i
wv,i volumetric weighting function
η bulk filling fraction
ci,0 bulk ionic concentration of species i
ϕ electrostatic potential
ρ̅e homogenized charge density
zi valency of ion i
e elementary charge
ws,i surface weighting function
β inverse thermal energy
μi
ex excess chemical potential

μi,b
ex bulk excess chemical potential

Rs surface atom radius
di effective hard-sphere ionic diameter of species i
ULJ LJ potential
P pressure
A area
Ω grand potential
P∞ reference pressure as L →∞
Qcu cumulative charge function
P0 pressure at first minimum
z0 separation distance at first minimum
κ1 inverse decay length of pressure
κ2 oscillation frequency of pressure
δf linear perturbation function
f local value of function
f b bulk reference value of function
vi length scale for differential approximation of wv,i

si length scale for differential approximation of ws,i

κ1m inverse decay length of total number density
κ2m oscillation frequency of total number density
κ1c inverse decay length of charge density (symmetric

system)
κ2c oscillation frequency of charge density (symmetric

system)
λD Debye length
κD inverse Debye length
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