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Background
Transcriptional regulation is vital for all living organisms to orchestrate biological pro-
cesses and the quantitative analysis of transcriptional changes in space and time has pro-
vided fundamental insights into organismal functions. For example, gene expression and 
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mation and conducting meta-analyses remains challenging.

Results:  We introduce Comparative RNA-Seq Metadata Analysis Pipeline (CoRMAP), 
a meta-analysis tool to retrieve comparative gene expression data from any RNA-Seq 
dataset using de novo assembly, standardized gene expression tools and the imple-
mentation of OrthoMCL, a gene orthology search algorithm. It employs the use of 
orthogroup assignments to ensure the accurate comparison of gene expression levels 
between experiments and species. Here we demonstrate the use of CoRMAP on two 
mouse brain transcriptomes with similar scope, that were collected several years from 
each other using different sequencing technologies and analysis methods. We also 
compare the performance of CoRMAP with a functional mapping tool, previously 
published.

Conclusion:  CoRMAP provides a framework for the meta-analysis of RNA-Seq data 
from divergent taxonomic groups. This method facilitates the retrieval and comparison 
of gene expression levels from published data sets using standardized assembly and 
analysis. CoRMAP does not rely on reference genomes and consequently facilitates 
direct comparison between diverse studies on a range of organisms.
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its regulation have long been implicated as major players in the formation of long-term 
memory [1, 2]. Numerous studies have not only supported this hypothesis but have also 
provided evidence for the conservation of specific genes and pathways in this process. 
However, most information on the involvement of transcriptional changes in learning 
and memory originates from a small number of model organisms. The identification 
of lineage specific genes requires a robust comparative framework as well as sufficient 
information on gene expression levels across multiple species [3].

High throughput RNA sequencing technologies (RNA-Seq) are a precise, highly effi-
cient, and cost-effective tool to conduct and analyze whole genome transcriptomes, 
allowing for the detection of the transcriptomic response of organisms under various 
environmental or disease conditions [4–8]. Furthermore, a diverse array of tools has 
been developed for quality control, quality improvement, sequence assembly, quantifica-
tion of gene expression, differential expression analysis, gene annotation, as well as the 
analysis of pathways, gene regulation mechanisms and functional groups [9–12]. Still, 
various factors limit the meta-analysis of RNA-seq studies. Among these are variations 
in experimental design, sequencing technology, and statistical method, to name a few.

With the reduction in sequencing costs, comparative transcriptomics has significantly 
broadened the potential for inter-species comparisons. The comparison of gene expres-
sion patterns between species can provide critical insights into the mechanisms driving 
phenotypic change [13–15]. For example, similarities in transcription patterns may indi-
cate conservation or constraints in regulatory mechanisms [16–18]. On the other hand, 
divergence in transcription patterns can provide insights into the impacts genetic varia-
tion may have on expression levels within species [19]. Unfortunately, the comparison of 
transcriptional responses between species can be complicated by annotation limitations 
and the availability of fully sequenced genomes.

Firstly, there may be multiple gene predictions for a given organism based on multi-
ple annotations of reference genomes. Inconsistencies between reference genomes can 
lead to differences and biases in gene annotations and mismatches in functional path-
way identification. Secondly, observed differences between gene expression patterns 
from independent studies (i.e., experiments that were not conducted as part of the same 
study) may simply reflect differences in technical factors such as data processing, anno-
tation, assembly parameters and others.

Ideally, comparisons between independent datasets require consistent pre-processing, 
analysis, and generation of outputs based on specific tools so that biological explana-
tions of observed differences and similarities in gene expression patterns are teased out 
from technical artifacts. This methodological consistency applies to comparisons of not 
only species from different phylogenetic lineages but also experiments on tissues and 
cell types from the same organism. However, from a researchers’ perspective, it can be 
complicated and time-consuming to learn the commands of running each tool and that 
of the intermediate processes within a complete, consistent, and coherent data process-
ing and analysis workflow.

We present here a novel pipeline, called CoRMAP (Comparative RNA-Seq Metadata 
Analysis Pipeline), which was developed for cross-species comparisons of transcrip-
tomes. It implements a standardized workflow for the de novo meta-analysis of exist-
ing and novel raw RNA-Seq datasets. Since CoRMAP ensures that all raw datasets are 
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processed in the same way, it circumvents several technical problems that emerge in 
cross-study or cross-species analyses. Notably, since all species undergo the same de 
novo assembly protocols, all datasets are subjected to the same technical biases. Further, 
no biases or mismatches are introduced simply because one species has more complete 
annotation relative to the other species.

In order to ensure that expression levels of evolutionarily related genes are used in 
the expression analysis we implemented OrthoMCL in our pipeline [20]. This orthology 
search creates orthologous gene groups and allows comparison of expression levels of 
these groups between species and experimental groups. Our approach is different from 
traditional comparative transcriptomics analyses, where genes are either directly com-
pared based on gene identifiers and names, or indirectly compared at a higher-level via 
pathways and focus on the putative function of genes [21]. Still, CoRMAP can be linked 
to existing functional annotation tools (GO, KEGG, etc.) for gene groups [22].

To demonstrate the functionality and performance of our pipeline, we processed two 
mouse brain transcriptome datasets from memory formation studies using CoRMAP 
[23, 24]. These two studies not only used two different versions of the mouse genome but 
also used different study designs, processing protocols and statistical analyses. Nonethe-
less, we show that CoRMAP is capable of consolidating some of the findings from these 
studies and identifying gene expression patterns correlated with learning and memory. 
In order to compare the performance of our pipeline to other comparative transcrip-
tomics pipelines, we also analyzed the two mouse datasets using a published functional 
mapping approach [25] and compared DEGs between the two pipelines.

Implementation
Workflow

CoRMAP is implemented using several analysis tools for transcriptional data, and cus-
tomized shell scripts and R scripts. This protocol provides a framework for conducting 
reference-independent comparative transcriptomic analysis across multiple species. 
CoRMAP obtains the assembled transcriptome for each species from raw transcrip-
tome data, finds the orthologous relationships of coding genes across species or across 
a higher taxonomy group level, and plots expression patterns of orthologous gene 
groups across species. As such, there are three main data processing steps in CoRMAP: 
(1) de novo assembly, (2) ortholog searching, and (3) analysis of OGG expression pat-
terns across species (or a higher taxonomy level). The complete workflow is illustrated 
in Fig. 1. Note that these analyses can be run together or separately, depending on the 
user’s needs. Because individual modules are combined within our pipeline, checkpoints 
for preliminary data analysis exist between each module. Below we provide a detailed 
summary of the individual steps within CoRMAP and instructions on how to implement 
the pipeline.

Input

Installation of CoRMAP

For the installation of CoRMAP, execute the following command in a Linux terminal 
by downloading the repository from GitHub (git clone—https://​github.​com/​rubys​heng/​
CoRMAP.​git). CoRMAP requires dependencies including ascp (https://​www.​ibm.​com/​

https://github.com/rubysheng/CoRMAP.git
https://github.com/rubysheng/CoRMAP.git
https://www.ibm.com/docs/en/aci/3.9.2?topic=macos-ascp-transferring-from-command-line-ascp
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docs/​en/​aci/3.​9.2?​topic=​macos-​ascp-​trans​ferri​ng-​from-​comma​nd-​line-​ascp), FastQC 
(http://​www.​bioin​forma​tics.​babra​ham.​ac.​uk/​proje​cts/​fastqc [26, 27]), MultiQC [26], 
Trim Galore! (v 0.6.4), Trinity (v2.8.6), TransDecoder (v 5.5.0) [27], Trinotate (v 3.2.1) 
(http://​trino​tate.​github.​io [28]), and OrthoMCL [28].

Preparation of datasets

CoRMAP includes a utility to download datasets of RNA-Seq raw data containing mul-
tiple runs from the Sequence Read Archive (SRA) [29, 30] database in batch by the 
software ascp. The RNA-Seq dataset of each project in the SRA database has a unique 
accession number that is recommended to be used as the directory name for each data-
set when setting up the folder structure. Using the SRA accession numbers, FTP links 
are retrieved from the European Nucleotide Archive [29] and used as input to download 
the FASTQ files. As such, each FTP link refers to a compressed FASTQ file for a run. 

Fig. 1  Flowcharts for CoRMAP (Comparative RNA-Seq Metadata Analysis Pipeline) and a mapping approach 
conducted in this study for comparison. The key software used in each step of CoRMAP is listed in italics in 
parenthesis after the description of steps

https://www.ibm.com/docs/en/aci/3.9.2?topic=macos-ascp-transferring-from-command-line-ascp
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://trinotate.github.io
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Every sample of the single-read sequencing method contains one run, while the sample 
of the paired-end sequencing method has two runs. As is standard practice, users are 
required to conduct quality checks on files used in this pipeline. This includes but is not 
limited to experimental design, replication and biological processing of samples.

Computational requirements and alternative options

The computing resources requirement for this pipeline is a large-memory server. Espe-
cially for the de novo assembly, this step requires about 1 Gb of RAM per 1 M reads to 
be assembled. Another option is to run some steps of this pipeline on Galaxy (http://​
usega​laxy.​org), an open source and web-based bioinformatics platform.

For the orthologous searching, the normal hardware requirements include at least 
4 Gb memory and about 100 Gb free space. There is an option to separate the calculation 
into multiple steps, depending on the number of datasets and the workstation hardware 
requirement. All parameters used in this pipeline can be found in the Additional file 1.

Trimming or quality control

RNA-Seq data quality control, including low-quality base calls trimming, adaptor auto-
detecting and trimming, and short reads filtering, is performed by Trim Galore! using 
the default parameter settings. After this filtering, the minimum length of reads is 20 bp.

Data processing

De novo assembly

The general processing of RNA-Seq raw data without reference genome consists of three 
steps: (i) normalization, (ii) gene assembly, and (iii) quantification and generation of 
the associated expression matrix. To reduce the number of input files, computational 
complexity and processing time, data normalization and de novo assembly by Trinity 
are separated into two steps. The targeted maximum coverage for reads is 50, while the 
k-mer size and the maximum percent of the mean for the standard deviation of k-mer 
coverage across reads are set at the default values of 25 and 200, respectively. Assemblies 
are assessed by basic contig N50 statistics, which specifies the length of the shortest con-
tig that can cover 50% of the total genome length. The pipeline also has the options for 
users to compare assemblies with reference genomes and to assess the de novo assembly 
with QUAST [31].

Quantification

Transcript mapping and quantification back to the assembly are performed in Trinity 
using the plugin package RNA-seq by Expectation–Maximization (RSEM) [32, 33]. This 
plugin is used to estimate the abundance of contigs in an alignment-based algorithm 
with corrections for transcript lengths. In brief, RSEM assumes that each sequence read 
and read length are observed (one end for single reads and both ends for paired reads) 
and are generated according to a directed acyclic graph that includes parent sequence, 
length, start position and orientation. A Bayesian version of the expectation–maximiza-
tion algorithm is used to obtain maximum likelihood estimates of the model parameters, 
transcript fractions and posterior mean estimates of abundances. The resulting gene 
expression matrices are then normalized to Transcripts Per Kilobase Million (TPM) 

http://usegalaxy.org
http://usegalaxy.org
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to make them comparable across samples. The original TPM matrix generated from a 
Trinity plugin includes all gene names in each dataset. For each dataset, the expression 
matrix would be transformed into a long format with gene names, sample names and 
TPM values.

We also include the option to calculate TMM (Trimmed Mean of the M-values) values 
if desired. It is recommended to conduct standard descriptive statistics on TMM and/or 
TPM values, including but not limited to, outlier detection via PCA plots with replicates, 
expression levels analysis for extreme expression levels within replicates and the analysis 
of internal controls, if available. Subgroup structure of the data can also be revealed by 
the multidimensional scaling (MDS) plot using R package DESeq2 (v1.28.1) [34].

Orthologous gene searching

Genes that have an orthologous relationship are grouped using an automated pipeline 
for OrthoMCL [28, 35–37], called Orthomcl-pipeline (https://​github.​com/​apetk​au/​
ortho​mcl-​pipel​ine), which requires the input of the amino acid sequences. Before run-
ning OrthoMCL for OGG identification, TransDecoder (Home TransDecoder/TransDe-
coder Wiki (github.com) is used to predict coding regions from assembled transcripts, 
thereby providing the amino acid sequences. For generating an efficient indexing system 
for the transcripts, we modified headers of transcripts by incorporating their original 
project accession numbers and their species codes. If users intend to compare expres-
sion data not only at the species level but also at a higher taxonomy level (e.g., fami-
lies, genera, phyla, etc.) it is necessary to add the taxon code to the header of transcripts 
together with the species code.

An all-versus-all BLAST search with open reading frames is used to derive scores for 
pairwise sequence similarities. The E-value cut-off needs to be modified by the user and 
depends on the taxonomic distance between species or groups. To identify the ortholog 
or in-paralog pairs, each pair of matched sequences is filtered with 50% “percent match 
length” score. The percent match length score is obtained by counting the number of 
amino acids in the shorter sequence that participate in any High-scoring Segment Pair 
(HSP), dividing that by the length of the shorter sequence, and multiplying by 100. The 
filtered pairs are linked across or within the objects (species or class). To group ortholo-
gous genes, we implemented the Markov Clustering (MCL) algorithm which is included 
in the Orthomcl-pipeline. The output of the Orthomcl-pipeline includes a list of groups, 
including the orthologous protein sequence headers used to extract corresponding pro-
tein sequences, transcript sequences, quantification numbers and gene mapping infor-
mation, for further analysis.

When searching for orthologs among several distantly related species, datasets can 
be split into groups based on their taxonomic relationships to reduce computational 
requirements. Then, orthologous gene searching (clustering) should be performed at 
two levels, intraclass- and interclass-. The general process is: (1) in-parallel orthologs 
searching within each class; (2) filtering clustered genes from those OGGs that contain 
orthologous genes from all species in one class; (3) integrating filtered genes from all 
classes for interclass orthologs searching; and (4) filtering clustered genes from those 
OGGs that contain orthologous genes from all classes.

https://github.com/apetkau/orthomcl-pipeline
https://github.com/apetkau/orthomcl-pipeline
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If the input datasets require interclass orthologs searching followed by filtering, the 
output provides a cross-class OGG (cOGG). Due to the high annotation quality of the 
human and some other mammalian genomes, only clusters from these genomes are 
extracted for the annotation. Annotation of these Mammalia proteins (using BlastP) 
and transcripts (using BlastX) are obtained using Trinotate and the UniProt database as 
default. BlastP only returns the best match, while BlastX returns the top 5 hits. E-value 
cut-offs can be modified by the user depending on the evolutionary distance between 
organisms compared in the study. Other parameters in Trinotate and UniProt were set 
to defaults except for the parallel threads, which were set to use the maximum number 
of cores. Protein sequences are also searched against a protein profile HMM database 
and Trinotate is used to generate the final report.

Analyze expression patterns of orthologous gene groups

Based on the header name, CoRMAP extracts the expression values of orthologous 
genes from total transcripts in each dataset. Transcript variants refer to different ver-
sions of a transcript from the same gene in our pipeline. These, along with isoforms, are 
averaged within the same OGG group to represent the OGG expression value. For the 
final report, CoRMAP provides a meta-table with OGG number, gene name, annotation, 
and source information including species name, and a set of additional meta data such 
as tissue type (example e.g., brain region), study focus (example e.g., memory type) and 
study design. Once we obtain the meta-table, users can analyze and compare expression 
levels from different perspectives such as taxonomic groups, project design and tissue 
type, along with a variety of other experimental conditions. As mentioned above, the 
pipeline offers several checkpoints before calculating expression levels and before con-
ducting comparisons between species.

Results
CoRMAP processes RNA-Seq raw data to characterize gene expression patterns across 
species and higher taxonomic groups. Genes are clustered into orthologous gene groups 
and taxonomic groups are compared at the OGG level. CoRMAP also provides the 
option to incorporate other factors such as study design, taxonomic group, tissue type, 
etc., into the orthology search to facilitate taxonomic comparisons.

We compared two studies that were designed to analyze brain gene expression pat-
terns during long-term learning and memory formation, specifically in the context of 
fear memories. Bero et al. [23] (PRJNA252803) studied the rapid response of the medial 
prefrontal cortex (mPFC) to memory encoding triggers, while Rao-Ruiz et  al. [24] 
(PRJNA529794) studied the late-stage response of the dentate gyrus (DG) of the hip-
pocampus genes to memory consolidation. Herein we refer to these studies as MT (for 
memory trigger) and MC (for memory consolidation) respectively. The analysis was 
performed using all default parameter settings, and with E-value cut-off of 10–3

. Some 
immediate files were kept in the CoRMAP package as the template files.

Due to the different sequencing technologies used in these studies the total num-
ber of base pairs included in each assembly showed more than 20 times difference in 
coverage, ranging from 22.37 Mbp from MT to 461.68 Mbp from MC (Table 1). The 
minimum length of contig covering 50 percent of the assembled genome sequence 
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for MT is about 2 times that of MC. As an example, we present a dataset in the Addi-
tional file  2, where we compared MT with reference genome mm39 (https://​www.​
ncbi.​nlm.​nih.​gov/​assem​bly/​GCF_​00000​1635.​27), having 0.566% of aligned bases in 
the reference genome with 1.053 duplication ratio. A duplication ratio over 1 indi-
cates that the total number of aligned bases in the assembly was more than the total 
number of aligned bases in the reference genome. Both MT and MC are the short 
read only assembly, which has the feature of high sequence identity and high frag-
mentation unable to recreate the same structure of the genome.

To remove redundancy, CoRMAP decoded 38% of the total number of transcripts 
from MT to predicted protein sequences and 12% from MC. This common pool of 
sequences was used for orthologs searching based on the default E-value of 10–3. 
Although the input number of proteins from MC for orthologs searching was nearly 
10 times larger than that of MT, the output of orthologous genes from MC was only 
1.9 times larger than that of MT. From the total of 7407 OGGs we found between the 
two studies, 7047 unique OGGs were annotated by BlastX using the auto-generated 
unique protein SwissProt database, and the high quality reviewed and non-redundant 
protein sequence database in UniProt, from Trinotate (Table 1).

Downstream analysis of unique OGGs involves differential expression analysis 
between the two mouse studies. For each dataset, the expression value of each orthol-
ogous gene group was represented by averaging expression values of all genes within 
an OGG. The averaged expression values of the OGGs were then used to generate a 
new expression matrix at the OGG level. As both studies considered here had mul-
tiple treatments, the sample comparison pairs were classified either as Control (no 
learning) or Treatment (learned fear memory conditions). In order to gain insight 
into how many differentially expressed genes (DEGs) were retrieved from the original 
study, we manually matched the names of DEGs from original papers to our anno-
tated OGGs.

The differential expression analysis of each dataset was performed using the same 
p-value threshold and adjustment method to their original study design and the 
results are summarized in Table 2. For MT and MC, we matched 51 and 455 OGGs, 
respectively. In MT, two OGGs (FABP7 and LMO7) were identified as differentially 
expressed in our OGG expression matrix with the non-adjusted p-value < 0.05 cut-
off. Using log fold-change with base 2, FABP7 was down-regulated (Log2FC < − 1.00) 

Table 1  Summary results of CoRMAP applied to mouse brain datasets MT and MC

Statistic MT MC

Total base pairs (Mbp) 22.37 461.68

Contig N50 length (nt) 988 531

Average of transcripts per samples (K) 4.14 25.44

Total of transcripts (K) 33.08 966.56

Total number of predicted proteins (K) 12.57 120.77

Number orthologous protein sequences 9,556 18,225

Number unique orthologous genes 9,552 17,904

Number BlastX-annotated orthologous transcripts 9,024 17,354

https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.27
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.27
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while LMO7 was up-regulated (Log2FC > 1). Two additional OGGs, RPP29 and 
CRIM1, were identified at a 5% level of significance.

In MC, there were 11 differentially expressed OGGs (DEOGGs) from our OGG 
expression matrix identified by the differential expression analysis (FDR-adjusted 
p-value cut-off as 0.05), which were annotated with ARC​, SYNE1, GPR19, MPC2, 
PDCD6, CIR1, HSF2, MFGM, ICLN, HAP1, and IBP2.

Finally, we performed the same differential expression analysis (no-adjusted 
p-value < 0.05 cut-off) in MT’s and MC’s OGG matrices and found 24 common differ-
entially expressed OGGs using a 5% p-value cut-off (Table 3). In the Additional file 3, 
we provide the results calculated by the expression values from TMM (Trimmed Mean 
of M-values). The TMM expression values were calculated using a between-sample nor-
malization method while TPM expression values were calculated using within-sample 
normalization. Thus, MT and MC’s common DEOGGs detected by the TMM normali-
zation method were distinct from those detected by the TPM normalization method.

In order to compare our method to alternative, mapping based approaches, we ran the 
two datasets through a functional mapping approach [25]. From this mapping approach, 
179 common DEGs (Additional file 4) were found in MT and MC when data were nor-
malized by TMM and filtered by no-adjusted p-value < 0.05 cut-off. We compared the 
list of common DEGs by the mapping approach to the 24 DEOGGs identified by CoR-
MAP and found one common gene – LMO7. 146 of the 178 remaining DEGs had non-
matched annotation from all OGGs’ annotation, while 15 DEGs matched to the OGGs 
that contained more than one gene for at least one mouse dataset and 17 DEGs matched 
to the OGGs that contained only one gene per dataset.

Discussion
We introduced CoRMAP, a Linux-terminal-based pipeline designed for meta-analysis of 
comparative transcriptomics. CoRMAP consolidates the processing and analysis steps 
of RNA-Seq raw datasets from the SRA database into a pre-defined workflow. CoRMAP 
includes downloading raw data, structuring folders, improving the sequencing data qual-
ity, generating quality control reports, normalizing the transcripts to reduce duplicates 

Table 2  DEOGGs identified by CoRMAP and found in the list of DEGs in the original MC paper. FC 
means the fold-change relative to Control using TPM (Transcripts per million) expression value as 
default. The reported p-value (at a 5% level) is FDR adjusted

Gene names Log2FC p-value

MFGM − 3.36 0.03

IBP2 − 3.06 0.05

CIR1 − 2.43 0.02

HAP1 − 2.24 0.04

ICLN − 2.06 0.04

MPC2 − 1.70 0.01

PDCD6 2.64 0.02

SYNE1 2.75  < 0.01

GPR19 3.27 0.01

HSF2 4.12 0.03

ARC​ 4.86  < 0.01
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(the same transcript sequence), de novo assembly, aligning and quantifying the gene 
expression, searching for orthologous gene groups, annotating, reporting a master table, 
and, finally, conducting differential expression analysis. In this paper, the downstream 
analysis produced the tables and charts to help interpret comparative transcriptomic 
analysis.

We applied the main procedure of this pipeline to two mouse studies that focused on 
fear induced memory formation to discover the shared orthologous gene expression pat-
terns between the early stage of memory encoding and the late stage of memory con-
solidation. Based on previous work in this field, we assumed that the learning paradigm 
likely has the strongest impact on gene expression levels across studies [38, 39]. Thus, 
we re-analyzed two datasets using CoRMAP that were designed to identify differential 
gene expression in mouse brains in response to fear induced learning and compared the 
results of our analysis with the original published results.

The workflow of processing RNA-Seq raw data in this study is consistent with the 
widely used non-model organisms transcriptome profiling processes so that refer-
ence genomes would not be needed for either model or non-model animals [39–42]. 
Standardization and normalization were consistently applied to make datasets from 
different studies and different species comparable. Unlike traditional meta-analysis of 

Table 3  DEOGGs identified by CoRMAP in both MC and MT by the TPM and TMM (Trimmed Mean 
of M-values) expression value. FC means the fold-change relative to Control. The reported p-value (at 
a 5% level) is non-adjusted. OGGs that were not differential expressed filtered by p-value from TMM 
were represented with a dash

Gene Group MT MC

Name Number Log2FC(TPM) p− value 
(TPM)

Log2FC 
(TMM)

p− value 
(TMM)

Log2FC(TPM) p− value 
(TPM)

Log2FC 
(TMM)

p− value 
(TMM)

T4S1 10,016 − 1.10 0.02 − 1.10 0.02 − 2.01 0.04 − 7.55 0.00

ESS2 10,246 1.01 0.03 1.01 0.03 2.09  < 0.01 1.98 0.01

WDR92 12,036 − 1.59 0.01 − 1.59 0.01 3.59  < 0.01 1.77 0.02

G137C 12,213 0.82 0.02 0.82 0.02 2.11 0.03 − 3.67 0.02

CAH2 14,602 − 0.62 0.04 – – − 3.13  < 0.01 – –

ECHB 2726 − 0.54 0.03 – – − 2.55  < 0.01 – –

RBM28 3334 − 0.90 0.03 − 0.90 0.03 2.24  < 0.01 2.40 0.01

STRN 34,631 0.77 0.04 0.77 0.04 − 1.81 0.02 − 1.76 0.05

FAS 34,817 0.96 0.04 –  – 2.63 0.01 – –

LMO7 34,823 1.11 0.04 1.11 0.04 1.87 0.01 7.05 0.00

BD1L1 34,841 1.38 0.01 1.40 0.01 − 2.96  < 0.01 − 5.47 0.00

PCDH1 34,903 0.86 0.04 0.86 0.04 2.62 0.01 − 3.61 0.02

GCSP 34,931 − 1.01 0.05 − 1.01 0.05 − 2.24 0.03 − 6.81 0.00

MYCB2 35,154 1.83 0.00 1.82 0.00 1.10 0.04 5.54 0.00

DCNL4 4130 0.55 0.04 – – − 1.68 0.01 – –

ST2B1 4606 − 0.88 0.05 – – 3.70  < 0.01 – –

CRIM1 4717 0.69 0.02 0.69 0.02 2.92  < 0.01 − 2.90 0.01

UNC80 5200 0.98 0.01 0.98 0.01 2.58  < 0.01 1.49 0.03

SLIRP 5326 − 0.44 0.05 – – − 1.11 0.02 – –

FCRL2 6903 1.01  < 0.01 – – 3.19 0.00 – –

GPC5B 6970 − 0.47 0.04 − 0.47 0.04 1.87 0.02 − 1.57 0.04

MLC1 8131 − 0.48 0.04 − 0.48 0.04 − 3.05  < 0.01 − 4.11 0.00

ASTRB(ASTRA) 8230 0.92 0.01 – – 1.68 0.03 – –

TAU​ 8242 0.49 0.04 0.49 0.04 − 1.36 0.01 1.84 0.03
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transcriptome data, we reanalyzed the public transcriptome profiles related to learn-
ing and memory to enforce a standardized processing workflow starting from the RNA-
Seq raw data. In addition, we tested the expression pattern of genes that were defined as 
DEGs from the original papers by CoRMAP with the same p-value cut-off and adjust-
ment methods.

CoRMAP uses a novel annotation method whereby OGGs would be annotated only 
by rats or mice. This annotation standardization method is beneficial for some down-
stream analysis, such as GO annotation and enrichment, but requires at least one rat 
or mice dataset as the annotation representative. The consistency of annotated species 
could avoid missed or mistaken matches between input queries and mapping subjects. 
The occurrence of mismatch errors might be due to the inconsistent matching between 
function and gene identifier across species.

This clustering of OGGs is also helpful for simplifying the problem of variants and 
paralogs as we used the predicted protein sequences from transcripts to search the 
orthologous relationships. Although the clustering of OGGs is based on sequence simi-
larity, the translated protein sequences representing the function of genes are used to 
inform the alignment. The initial goal of clustering OGGs was to cluster functionally 
equivalent genes. It is beneficial to group unknown genes with known genes from other 
species, resulting in genes from non-model organisms that can then be compared to 
well-annotated model species.

Compared to the alternative mapping approach in [21], our de novo approach recov-
ered significantly fewer differentially expressed genes. This discrepancy can primarily be 
explained by the fact that the functional mapping pipeline used the latest mouse refer-
ence genome (mm39). Using a reference genome, if available, can increase the alignment 
completeness and accuracy, providing more mapped genes than de novo assembly used 
in our approach. However, until May 02, 2022, there have been only 119,373 species 
with a complete reference genome. Furthermore, functional mapping approaches that 
are applied to transcriptomes from non-model species without reference genomes can 
result in incorrect comparisons of genes (i.e. gene that are not orthologous), a problem 
our pipeline avoids by conducting orthogroup assignments [43]. Therefore, our pipeline 
provides an integrated tool that is compatible with functional mapping approaches and 
allows broad comparison of species while not requiring the presence of high-quality ref-
erence genomes.

By comparing TMM and TPM values, we found some substantial differences in the 
results. The TMM method is using a weighted trimmed mean of the log expression 
ratios across samples, effectively normalizing expression levels between conditions. In 
contrast, TPM values are primarily affected by sequencing depth and gene length show-
ing the exact expression values.

Our analysis revealed three major findings: (1) there are substantial discrepancies 
between studies designed to analyze the same process using different designs and 
approaches. In fact, in the two datasets we used, no similarities in DEGs would be 
identified if the same statistical cut-offs were used. (2) CoRMAP analysis retrieves 
DEGs that can be compared to the DEGs of the original studies, so CoRMAP can 
be useful for the re-analysis and validation of existing datasets. (3) CoRMAP analy-
sis was able to identify DEGs matching OGGs, indicating that our approach could 



Page 12 of 15Sheng et al. BMC Bioinformatics          (2022) 23:415 

be useful for the meta-analysis of transcriptional studies to identify candidate genes 
involved in biological processes. These target genes can then be used for functional 
validation in future studies.

In the DEG analyses, a p-value < 0.05 threshold was used for the MT data, while 
an FDR-adjusted p-value < 0.05 threshold was used for the MC data, to facilitate 
comparison of the CoRMAP identified DEGs with those identified in the original 
study analyses. However, the choice of p-value or FDR-adjusted p-value is somewhat 
controversial (Colquhoun, 2017). First, the false positive rate associated with a test 
can be much higher than the observed p-value; hence false positive rates should be 
reported along with p-values, or tests should be based on false positive rates. Sec-
ond, the frequently used Benjamini–Hochberg FDR (1995) is flawed, as it is based 
on the number of rejected tests that would give rise to a p-value less than or equal 
to the observed p-value, the FDR only provides a minimum for the false positive 
rate. Instead, one could use Monte Carlo sampling to estimate the false positive rate 
as the proportion of rejected tests out of the set of tests with p-values equalling the 
observed p-value. While simulating average expression levels across OGGs to com-
pute the Monte Carlo false positive rate is beyond the scope of this paper, caution 
should be exercised in the choice of p-value cut-off for DEG analysis of OGGs.

Hsieh et  al. (2019) showed that algorithms developed for de novo transcriptome 
assembly, such as Trinity, rnaSPAdes [42, 43] and Trans-ABySS [44], have differ-
ent implications for quantification depending on the assembly completeness and 
sequence ambiguity. In short, incomplete and over-extended contigs could lead to 
unreliable estimation of transcript abundance. The estimated abundance of a family-
collapse contig often reflected the total expression of the collapsed transcripts and 
was close to the transcript generating the most amount of RNA reads. In contrast, 
for duplicated contigs, quantification error depended on how the algorithm allo-
cated the RNA reads across the contigs. They recommended to use the total abun-
dance of the contigs in a connected component in order to get accurate estimation. 
Analyses performed in CoRMAP downstream from assembly may inherit the biases 
introduced by the assembly algorithm. However, since all inputted RNA-Seq data-
sets are subjected to the same normalization, de novo assembly and quantification, 
any detected differences between control and treatment groups cannot be attributed 
to differences in method of normalization, assembly or quantification.

CoRMAP is an initial step towards creating a flexible pipeline for comparative 
transcriptome analysis. All components used are freely available and can be custom-
ized as needed. For example, popular assemblers such as SPAdes [44, 45] and Trans-
ABySS [46] can be incorporated into the pipeline. With the integrated master table 
feature, users have the flexibility to perform any number of downstream analyses 
because CoRMAP appends the expression values with a diverse array of meta data 
from the studies used. Future analyses could take advantage of this framework for 
retrieving and comparing gene expression levels from diverse studies on a range of 
organisms and implement a principal component or clustering approach for the iso-
lation of specific factors that contribute to discrepancies between studies.
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Conclusions
We developed and validated a versatile and powerful RNAseq processing pipeline for the 
comparative analysis of transcriptomes. This pipeline allows users to conduct de novo 
assemblies of published and novel datasets in order to mine for similarities and differ-
ences in expression patterns between species and higher taxonomic groups. The explicit 
comparative scope of the pipeline provides critical insights into similarities and diver-
gences in gene expression patterns and can therefore help elucidate the evolutionary 
changes in gene expression and regulation across distantly related species.
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