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Abstract: The Escherichia coli chromosome is organized
into four macrodomains, the function and organisation of
which are poorly understood. In this review we focus on
the MatP, SeqA, and SlmA proteins that have recently
been identified as the first examples of factors with
macrodomain-specific DNA-binding properties. In partic-
ular, we review the evidence that these factors contribute
towards the control of chromosome replication and
segregation by specifically targeting subregions of the
genome and contributing towards their unique proper-
ties. Genome sequence analysis of multiple related
bacteria, including pathogenic species, reveals that
macrodomain-specific distribution of SeqA, SlmA, and
MatP is conserved, suggesting common principles of
chromosome organisation in these organisms. This
discovery of proteins with macrodomain-specific binding
properties hints that there are other proteins with similar
specificity yet to be unveiled. We discuss the roles of the
proteins identified to date as well as strategies that may
be employed to discover new factors.

Introduction

All organisms are faced with the challenge of organising their

genetic content within the confines of the cell or its compart-

ments. In eukaryotes, DNA is packed inside the nucleus and

histone proteins are known to wrap DNA into nucleosomes.

Nucleosomal arrays are folded into chromatin fibers, which are

themselves folded into higher order structures. Whilst our

understanding of this process at the nucleosomal level is well

developed, higher levels of organization are poorly understood

[1,2]. Similarly, mechanisms of chromosome organisation in

bacteria are poorly defined. The folded bacterial genome, or

nucleoid, is known to be organized by ‘‘nucleoid-associated’’

DNA-binding proteins (NAPs), DNA supercoiling, and transcrip-

tion [3]. Nucleoid-associated proteins are abundant, often bind

DNA with a low degree of sequence specificity, and impose

constraints on DNA topology that are best understood at the nm

scale (Figure 1A). For example histone like nucleoid structuring

protein (H-NS) can stimulate DNA-bridging events, the integra-

tion host factor (IHF) can introduce hair-pin bends into the

double helix and curved DNA binding protein A (CbpA) forms

aggregates with DNA [4–6]. It is likely that some of these

nucleoid-associated proteins contribute to the formation of

structures at larger scales, such as topologically isolated

supercoiled domains and transcription foci (Figure 1B), but fine

molecular details remain to be elucidated [7,8]. In this review, we

focus on recent observations concerning organisation of bacterial

chromosomes into even larger organisational units at the mm

scale: macrodomains (Figure 1C) [9–12]. In particular we focus

on the implications of recent findings regarding three proteins—

SeqA, SlmA, and macrodomain Ter protein (MatP)—with

macrodomain-specific DNA-binding properties.

Identification of the Chromosomal Macrodomains
Evidence for the existence of chromosomal ‘‘macrodomains’’ in

E. coli has been established during the last 5 years by Boccard and

coworkers [9,13–15], building on the ideas of Niki et al. [10]. The

existence and positioning of the four macrodomains was first

determined in assays aimed at resolving spatial proximity of

genomic regions by measuring the frequency of recombination

between phage l att sites scattered throughout the E. coli

chromosome [13]. This analysis revealed a clear bias in the

positioning of pairs of att sites that supported efficient recombi-

nation and thus were spatially close. On the basis of these

observations, it was concluded that the E. coli chromosome is

organized into four discrete structured subdomains and that att

sites in each domain interact primarily with the att sites in the same

domain. Each of these domains (Ori, Right, Left, and Ter)

contains approximately 1 Mbp of DNA. The localization of the

macrodomains is subject to changes during the cell cycle, but is

fairly well defined (Figure 1C). The degree of linear DNA

compaction as measured in vivo using genomic markers varies

among domains. The 800-kb domain around Ter is on average

five times less compact than the rest of the genome and extends

between two opposing ends of the nucleoid [16]. The highly

abundant nucleoid-associated proteins are obvious candidates for
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bestowing unique properties on the individual macrodomains.

However, available evidence suggests that this is unlikely; well-

characterised nucleoid-associated proteins such as H-NS and IHF

are found to bind with all of the macrodomains in chromatin

immunoprecipitation (ChIP) experiments (Figure 2A). Indeed,

amongst the known drivers of chromosome structure, only RNA

polymerase displays any domain-specific binding behaviour; its

primary targets, the seven rRNA operons, are all in the oriC half of

the chromosome (Figure 2A).

Proteins with Macrodomain-Specific DNA-Binding
Properties

High-throughput analysis of DNA-binding events across

bacterial genomes using ChIP has revealed that some major

regulators of the cell cycle have macrodomain-specific DNA-

binding profiles [17–21]. MatP binds exclusively to the Ter

macrodomain [20], whilst both SeqA and SlmA are excluded

from this region of the chromosome [17–19,21]. The fact that

SeqA, SlmA, and MatP bind to nondegenerate DNA target sites

with a high degree of specificity, sets them apart from the classical

nucleoid-associated proteins [16,19–21]. However, since the term

‘‘nucleoid-associated protein’’ is clearly ambiguous (discussed in

[3]), we argue that it can be applied to any protein that plays a

role in organising the chromosome. Thus, below we discuss the

known properties of SeqA, SlmA, and MatP in light of their

recently discovered macrodomain-specific chromosome-binding

properties.

SeqA
The SeqA protein was originally discovered as the factor

responsible for sequestration of chromosome replication origins in

bacteria [22]. It has subsequently been shown that SeqA plays a key

role in preventing the over-initiation of chromosome replication

[23] and delays the separation of new chromosomes [24]. SeqA

recognises pairs of hemi-methylated GATC motifs that are found in

newly replicated DNA. Whilst these motifs are most densely

concentrated near oriC, many other potential SeqA targets are

distributed across the chromosome. It has long been assumed that

SeqA might bind hundreds of sites distal to oriC, and two ChIP

studies recently confirmed these suspicions [17,18]. Surprisingly,

these studies also demonstrated that SeqA is excluded from the Ter

macrodomain except under artificial conditions where chromosome

replication is blocked (Figure 2B) [17]. This exclusion is most likely

due to a lack of high affinity SeqA binding sites in the Ter

macrodomain [17]. SeqA is known to associate with the cell

membrane and, given the skewed binding of SeqA across the

genome, SeqA may play a role to properly orientate the

chromosome during cell division. Due to changes in the methylation

state of the DNA as the chromosome is replicated, the SeqA

distribution across the genome is dynamic. These changes may

influence the structure and/or cellular position of the Ori, Right,

and Left macrodomains as the chromosome is copied. It is unknown

if the process of DNA replication affects SlmA or MatP binding but,

as outlined below, all three proteins are known to play key roles in

controlling chromosome replication and separation.

Figure 1. Hierarchical levels of organization in bacterial chromosomes. Different levels of organization exist within bacterial chromosomes.
(A) At the nm scale nucleoid proteins such as HU, H-NS, CbpA, Dps, and Fis organize the genome by driving events such as DNA bending, bridging,
and aggregation. (B) Structures such as seen in (A) likely exist within, and may contribute towards the formation of looped topological domains (on
average each ,10 kbp in size) and transcription foci, where multiple transcribing RNA polymerase molecules are clustered potentially also yielding
loops along the genome. (C) All of the above could add to the complexity of the organization within individual macrodomains. The individual
macrodomains have a defined localization within the cell throughout the cell cycle. In newborn cells ori and ter are located at mid-cell positions.
These sites are located centrally within the Ori and Ter macrodomains. The Left and Right macrodomains occupy positions close to the cell poles.
Upon replication, the Ori domains move towards the cell poles. Right before cell division the replicated Ter domains segregate. The chromosome in
the daughter cells has again the same Left-Right orientation. MatP preferentially occupies sites in the Ter domain, whereas SlmA and SeqA are absent
from this domain.
doi:10.1371/journal.pgen.1002123.g001
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SlmA
The SlmA protein was identified in genetic screens as a

‘‘nucleoid occlusion’’ factor, i.e., as a protein involved in

coordinating positioning and proper assembly of the so-called Z-

ring at mid-cell prior to cell division [25]. The assembly of the Z-

ring relies on the multimerization of the tubulin-like FtsZ protein,

to which subsequently other septal ring components are recruited.

The molecular basis underlying the action of SlmA was recently

investigated in two parallel studies [19,21]. These studies showed

that SlmA can bind DNA and simultaneously interact with FtsZ,

interfering with Z-ring assembly [19,21]. Genome-wide ChIP

showed that SlmA binds to a 12-bp palindromic consensus

sequence (GTGAGTACTCAC), which is found 50 times along

the E. coli K-12 genome. Strikingly, none of these sites are found in

the Ter macrodomain and they are underrepresented in the Left

and Right macrodomains (Figure 2B). Sequence analysis reveals

that putative SlmA binding sites are also excluded from the Ter

macrodomain of pathogenic E. coli strains, Salmonella Typhimurium,

and Klebsiella pneumoniae [19]. The unique presence of SlmA

binding sites in non-Ter domains suggests a model in which SlmA

bound in these genomic regions prevents undesired Z-ring

formation, whilst permitting Z-ring formation at Ter-sites that

prior to cell division are located at mid-cell (Figure 3) [26]. One

might speculate that the FtsZ-SlmA structures that are nonpro-

ductive for Z-ring formation act in contributing to a structural

framework to which the nucleoid is tethered. SlmA works together

with the MinCDE system in ensuring that the cytokinetic ring is

properly positioned. MinCDE prevents cells from dividing near

the poles and promotes the positioning of the cytokinetic ring near

midcell, while SlmA prevents the premature assembly of the

cytokinetic ring over unsegregated chromosomes [21,27]. Al-

though this review is focused on the E. coli system, it is pertinent to

note that proteins similar in function to SlmA have been identified

in other bacteria. Thus, the nucleoid occlusion protein Noc of

Bacillus subtilis also acts as a spatial regulator of cell division by

binding to sites outside the terC region of the chromosome [28].

The MipZ protein appears to play a similar role in Caulobacter.

Owing to its interaction with ParB, which binds specifically to the

origin region, upon origin segregation MipZ localizes to the poles

where it destabilizes the polar FtsZ complex and directs FtsZ

polymerization towards midcell [29].

MatP
MatP is a small DNA-binding protein that—unlike SeqA and

SlmA—is associated exclusively with the Ter domain of the E. coli

genome (Figure 3) [20]. It binds specifically to a signature motif of

13 bps (GTGACA/GNT/CGTCAC) repeated 23 times within

the Ter region. It is intriguing to note that the flanking four bps of

the binding site of MatP and that of SlmA are identical. The MatP

binding motif (matS), was discovered in silico by searching for

scattered domain-specific targets of nucleoid-associated proteins.

The factor specifically binding to this site (MatP) was identified in

DNA-binding assays using crude E. coli extracts [20] as the

product of the ycbG gene. The high affinity binding of MatP within

the Ter domain was visualized in vivo using fluorescent

microscopy. These experiments showed that MatP prevents

Figure 2. Distribution of nucleoid-associated proteins across the E. coli chromosome. (A) A genome atlas where ChIP-chip datasets [41] for
IHF (orange), H-NS (purple), and RNA polymerase (black) are plotted against the features of the E. coli chromosome. (B) A genome atlas where ChIP-
chip or ChIP-Seq datasets for SeqA (red) [17], SlmA [purple] (19) and MatP [orange] (20) are plotted against the features of the E. coli chromosome.
The locations of ORFs are shown as pink and green lines. The positions of the four macrodomains (MDs) are shown as blue bars and are labelled.
doi:10.1371/journal.pgen.1002123.g002
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premature chromosome segregation early during the cell cycle by

keeping the Ter regions of two chromosomes together. In MatP

knock-out cells this prolonged colocalization of the Ter domains is

not observed. Fast growing cells deficient in MatP display a

filament-like or anucleate phenotype. A delay in segregation of the

daughter chromosomes due to the binding of MatP to the Ter

region thus appears essential in coordinating chromosome

segregation and cell division. Also, without MatP, the Ter domain

displays higher mobility and a lower degree of compaction.

Surprisingly the effects of MatP-DNA binding stretch over long

distances. The deletion of a matS site increases the mobility of

regions even several tens of kb away. While the role of this protein

in the cell cycle and the organization of the Ter domain is

apparent, the mechanism of MatP action is still unknown. Two

models have been proposed for how MatP organizes the Ter

domain. According to the first model MatP dimers bridge two matS

sites located on either separate chromosomes or within one

chromosome. It is possible, that bridging nucleates at matS sites

and that flanking regions are zipped up by additional nonspecific

binding (and bridging) of MatP. The second model invokes an as

yet unknown cofactor. After the binding of MatP, this factor would

be recruited to regions surrounding matS sites and spread over

distances up to several kb. An obvious candidate for such binding

would be the H-NS protein [4] or any other NAP exhibiting

cooperative binding (and bridging), but ChIP data on known

NAPs do not show any evident overlap in binding patterns.

SeqA, SlmA, MatP, and the Control of Gene Expression
As mentioned above, SeqA, SlmA, and MatP are distinct from

the classical nucleoid-associated proteins in that they recognise

DNA with a high degree of sequence specificity. In this respect the

DNA-binding properties of SeqA, SlmA, and MatP are more akin

to those of transcription factors. Intriguingly, many SeqA binding

sites are located at promoters and within coding regions of genes

involved in DNA replication and repair [17], and it is tempting to

speculate that SeqA might regulate expression of these genes.

Indeed, at some such targets (for example mioC, dnaA, ftsZ, and

mukB), SeqA binding is thought to exert cell cycle–dependent

control on gene expression [17,30–32]. However, in other

instances, SeqA binding was found to have no effect [17].

Moreover, there is little correlation between SeqA binding and

changes in gene expression observed in a seqA mutant [17,33].

SlmA binding sites were found mainly in coding regions of the

chromosome, consistent with observations that SlmA does not

appear to function as a regulator of gene expression [19,21]. This

is despite the fact that SlmA is structurally related to the TetR

family of transcription factors. Similarly, whilst some MatP targets

were located in intergenic regions, MatP was found to have no

effect on the expression of genes in the Ter macrodomain [20].

Thus, the available data suggest that a significant proportion of

binding sites for SeqA, SlmA, and MatP are not directly involved

in the regulation of gene expression. Since evolution has clearly

dictated that these proteins bind to specific subregions of the

chromosome, we postulate that the relative positioning of SeqA,

SlmA, and MatP binding sites across the genome, rather than

genes targeted, is crucial. SeqA, SlmA. and MatP may act as

‘‘markers’’ that permit the cell to orientate chromosomes correctly,

for instance, to ensure that cell division occurs where genome

replication has just finished. Ultimately, detailed studies of

individual SeqA, SlmA, and MatP binding loci will be required

to determine the precise role of these proteins.

Perspectives for the Future
The pattern of SeqA, SlmA, and MatP binding is probably

similar among Gram negative bacteria, including the many

pathogenic organisms, related to E. coli [17,19,20]. We anticipate

that other proteins with macrodomain-specific DNA-binding

profiles will be unearthed in the coming years. The discovery of

such factors will provide new mechanistic insights into chromo-

some organisation, replication, and separation inside cells. The

rapid detection of such proteins will require an integrated

experimental approach utilizing a combination of bioinformatic,

genomic, and imaging technologies. Mercier and colleagues

demonstrated that careful analysis of DNA sequence can quickly

pinpoint potential binding sites for proteins with macrodomain-

specific DNA-binding properties [20]. Once identified such DNA

sequences can be used to isolate the cognate binding factor. In this

respect, recently developed ‘‘DNA-sampling’’ technologies, which

allow the proteins bound to a specific portion of the genome to be

defined, may be of particular use [34]. Currently, this approach is

limited to DNA fragments a few thousand base pairs in length.

However, we speculate that it may be possible to isolate individual

macrodomains and apply biophysical approaches to probe their

structure and protein content. Indeed, the intact nucleoid has

already been purified and crudely analyzed in this way [35]. Once

detected, it is essential to probe the specific role of macrodomain-

associated proteins using state-of-the-art techniques, common

ground already in the field of eukaryotic chromatin organisation.

Specifically, detailed knowledge can be obtained using 3C-based

techniques [36] that map at high resolution the spatial interaction

frequencies between genomic sites. Super-resolution imaging

techniques [37,38] can provide single-cell information on the

position and function of these proteins within the nucleoidal

framework, as well as on spatial distance of genomic sites of

interest. Finally, it is not known if macrodomains are maintained

under different physiological conditions. For instance, in starved

Figure 3. Localization of MatP and SlmA on the E. coli
chromosome. E. coli cells expressing fluorescent derivatives of matP
(matP-Cherry) (top panel) and SlmA (GFP-SlmA) (bottom panel). An
overlay of phase contrast and fluorescence images is shown for matP,
whereas separate fluorescence and DIC images are shown for SlmA.
Scale bar, 4 mm. MatP predominantly localizes to the Ter macrodomain,
whereas SlmA is absent from this domain.
doi:10.1371/journal.pgen.1002123.g003
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cells, the chromosome undergoes a process of super-compaction

attributed to stationary phase-specific proteins Dps and CbpA

[6,39]. Drug treatment can also trigger changes in chromosome

morphology [40] and this process may be particularly important

for understanding the response of pathogenic bacteria to

antibiotics.
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