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The maintenance of mammalian health requires the generation of appropriate immune 
responses against a broad range of environmental and microbial challenges, which 
are continually encountered at barrier tissue sites including the skin, lung, and gas-
trointestinal tract. Dysregulated barrier immune responses result in inflammation, both 
locally and systemically in peripheral organs. Group 3 innate lymphoid cells (ILC3) 
are constitutively present at barrier sites and appear to be highly specialized in their 
ability to sense a range of environmental and host-derived signals. Under homeostatic 
conditions, ILC3 respond to local cues to maintain tissue homeostasis and restrict 
inflammatory responses. In contrast, perturbations in the tissue microenvironment 
resulting from disease, infection, or tissue damage can drive dysregulated pro- 
inflammatory ILC3 responses and contribute to immunopathology. The tone of the 
ILC3 response is dictated by a balance of “exogenous” signals, such as dietary metab-
olites and commensal microbes, and “endogenous” host-derived signals from stromal 
cells, immune cells, and the nervous system. ILC3 must therefore have the capacity 
to simultaneously integrate a wide array of complex and dynamic inputs in order to 
regulate barrier function and tissue health. In this review, we discuss the concept of 
ILC3 as a “communications hub” in the intestinal tract and associated lymphoid tissues 
and address the variety of signals, derived from multiple biological systems, which 
are interpreted by ILC3 to modulate the release of downstream effector molecules 
and regulate cell–cell crosstalk. Successful integration of environmental cues by ILC3 
and downstream propagation to the broader immune system is required to maintain 
a tolerogenic and anti-inflammatory tone and reinforce barrier function, whereas dys-
regulation of ILC3 responses can contribute to the onset or progression of clinically 
relevant chronic inflammatory diseases.

Keywords: innate lymphoid cells, group 3 innate lymphoid cell, intestinal inflammation, interleukin-22, inflammatory 
bowel disease

BACKGROUND

Innate lymphoid cells (ILCs) constitute a family of tissue-resident innate lymphocytes with increas-
ingly appreciated roles in tissue homeostasis, immunity, and inflammation (1–5). A rapidly devel-
oping body of evidence derived from mouse and human studies has begun to demonstrate how 
ILCs play critical, non-redundant roles in maintaining tissue health or in driving disease pathology. 
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ILCs possess several characteristics that make them particularly 
suited to rapidly respond to perturbations in tissue homeostasis, 
infection, or tissue damage including (i) constitutive presence 
in barrier tissues and lymphoid organs, (ii) a “poised” transcrip-
tional and epigenetic landscape, and (iii) the ability to respond 
rapidly and robustly to signals in the tissue microenvironment.

As reviewed extensively elsewhere (1–5), ILCs can be subdi-
vided into groups on the basis of transcription factor expression 
and cytokine secretion profile. In this review, we will focus on 
group 3 innate lymphoid cells (ILC3), which are characterized 
by the expression of the transcription factor retinoic acid (RA)-
related orphan receptor γ isoform t (RORγt) and the capacity 
to produce the cytokines interleukin (IL)-17A, IL-17F, IL-22, 
and GM-CSF. ILC3 differ from other ILC groups in that they 
constitute at least two bona fide subsets that are transcriptionally, 
developmentally, and functionally distinct and inhabit distinct 
tissue microenvironments [reviewed in Ref. (6)]. In mice, 
these subsets are distinguished by surface expression of natural 
cytotoxity receptors (NCR), particularly NKp46 (termed NCR+ 
ILC3), and molecules and receptors historically associated with 
fetal lymphoid tissue inducer (LTi) cells, such as lymphotoxin 
and the chemokine receptor CCR6 (termed LTi-like ILC3) (5, 6). 
ILC3 are found in a range of tissues and organs, most notably the 
gastrointestinal tract and associated lymphoid tissues, although 
the relative distribution of ILC3 subsets differs dependent upon 
tissue location. Indeed, while NCR+ ILC3 are the most prevalent 
ILC3 subset in the small intestine, LTi-like ILC3 appear to domi-
nate in the colon and lymphoid tissues. Importantly, emerging 
evidence suggests that these two subsets also play distinct func-
tional roles that relate to tissue-specific biological challenges.

Tissue-resident ILC3 sense and respond to a wide range 
of environmental and host-derived signals within the local 
microenvironment and integrate these cues to modulate cell-
intrinsic transcription and to relay information to other cells, 
either through the production of cytokines or through cell–cell 
interactions. Indeed, as discussed below, ILC3 concurrently sense 
a multitude of soluble signals and environmental cues, which 
may change dynamically following infection or tissue damage, 
thus posing the question as to how ILC3 integrate and interpret 
these signals to respond appropriately. The balance of ILC3 effec-
tor functions may set the immunological tone of the tissue and 
help orchestrate the wider immune response. Although other 
ILC subsets also share the capacity to respond to a wide range 
of cues within the tissue microenvironment [reviewed in detail 
elsewhere—(4, 5, 7)], here, we will discuss the concept of ILC3 as 
tissue-resident sentinels and key “communications hubs” of the 
intestinal immune response.

COMMUNiCATiNG wiTH THe OUTSiDe 
wORLD: iLC3 AS eARLY COLONiZeRS 
AND SeNTiNeLS OF BARRieR TiSSUeS

ILC3 are derived from fetal liver progenitors during embryogenesis 
and are among the first lymphocytes to seed barrier tissues, 
in particular the intestinal tract, prior to birth (8, 9). In this 
context, ILC3 are among the first-responders to colonization by 

commensal microbes, as well as diet-derived antigens intro-
duced following weaning. Furthermore, these cells are central 
organizers of secondary lymphoid tissue organogenesis (10). 
ILC3 are therefore in prime position to shape the emerging 
mucosal immune system. Developmentally both ILC3 subsets 
derive from a common lymphoid progenitor ancestor; however, 
recent evidence has highlighted a divergent developmental rela-
tionship between ILC3 subsets and other ILC family members. 
The development of the wider ILC family is mediated through a 
series of transcriptional decisions that generate distinct progenitor 
populations with increasing commitment toward the ILC line-
age, as reviewed extensively elsewhere (3, 11, 12). A key stage 
in this development is the bifurcation of the “cytotoxic” ILC 
lineage (i.e., classical NK  cells), from the remaining “helper” 
ILC lineage (ILC1, ILC2, and ILC3). This is characterized by 
the development of a common helper ILC progenitor (CHILP) 
that expresses high levels of the transcription factor ID2 and 
IL-7R and which is able to generate ILC1, ILC2, and both ILC3 
subsets but has lost the potential to generate progeny from 
other lymphocyte lineages (13). Additionally, a subset of ID2+ 
progenitors develops downstream of the CHILP, characterized 
by the expression of the transcription factor PLZF and surface 
PD-1—termed the common ILC precursor (ILCp) (14, 15). 
However, while ILCp can give rise to ILC1, ILC2, and NCR+ 
ILC3, they are unable to generate LTi-like ILC3 progeny (14), 
suggesting that a bifurcation of ILC3 subset development occurs 
during the progression from CHILP to ILCp. In line with these 
findings, LTi-like ILC3 have been demonstrated to derive from 
an ID2+ α4β7

+ CXCR5+ progenitor cell that diverges upstream 
of ILCp, prior to the acquisition of PLZF (16–18). As such LTi-
like ILC3 develop via a distinct route from the remaining ILC 
family members, including NCR+ ILC3, which may underlie key 
transcriptional and functional differences recently highlighted 
between ILC3 subsets (6, 19–21). Moreover, recent studies have 
uncovered plasticity among ILC3 and other ILC populations that 
is dictated by changes in the cytokine milieu within the tissue 
microenvironment (22–24). Thus, in addition to transcriptional 
decisions made during development, plasticity of mature ILC3 
may shape the composition of these cells in tissues.

Seeding of intestinal tissues and associated lymphoid 
structures by ILC3 occurs during embryogenesis and is further 
regulated by environmental signals encountered following birth. 
Seminal studies demonstrated LTi-like ILC3 are present in the 
fetal gut, whereas NKp46+ ILC3 are largely absent but proliferate 
rapidly following birth to become the dominant ILC3 subset in 
the small intestine (8). ILC3 subset maturation and migration 
to the gut is in part dictated by maternal, microbial and dietary 
signals (Figure 1; Inputs). The extent to which ILC3 can directly 
sense microbial-derived cues remains poorly understood. 
Indeed, unlike many myeloid cell populations, ILC3 do not 
appear to express toll-like receptors or other canonical pattern 
recognition receptors. Rather ILC3 responses to microbial cues 
are dependent upon other key intermediaries, such as resident 
mononuclear phagocyte (MNP) populations that convey infor-
mation to ILC3 (detailed below). ILC3 are particularly sensitive 
to alterations in the microbiota and their numbers are modulated 
following neonatal colonization by commensal microbes, in part 
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FiGURe 1 | Group 3 innate lymphoid cells (ILC3): communications hubs of the intestinal immune system. Input: ILC3 have the capacity to receive environmental 
cues and host-derived signals from a range of sources including the immune system, stroma, the enteric nervous system, the microbiota, and the diet. Translation: 
these signals are integrated through a range of intracellular signaling mechanisms, including phosphorylation of STAT proteins, ligand-binding transcription factors, 
epigenetic modification, and multiple intracellular processes with the potential to support long-term survival of ILC3. Integration of multiple signals likely happens 
simultaneously, indicating a complicated and dynamic process that determines the threshold, magnitude, and type of ILC3 responses that are propagated to 
communicate with other cells in the intestinal environment. Output: translated signals are conveyed to other cells within the local environment through a variety of 
distinct mechanisms, most notably via the production of effector cytokines and growth factors that modulate and orchestrate the wider immune response and 
intestinal barrier function. The nature and balance of the signals perceived by ILC3 ultimately determine the downstream effector response, and dysregulation of 
homeostatic signals in disease may dramatically alter ILC3 responses and drive pro-inflammatory phenotypes. Finally, direct cell–cell communication through antigen 
presentation and co-stimulatory molecules can directly regulate the adaptive immune response.
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through an IL-25-dependent negative feedback mechanism that 
restricts expansion of ILC3 in a microbiota-dependent manner 
(9). Recent studies suggest that ILC3 are directly regulated by 
bacterial metabolites, such as short-chain fatty acids (SCFAs) 
produced through microbial metabolism of dietary fiber. 
Consistent with this, NCR+ ILC3 present in the Peyer’s patches 
(PP) of the ileum were found to express Gpr109a—the receptor 
for butyrate—and SCFA signaling acted to restrict NCR+ ILC3 
numbers and cytokine production (25). Additionally, NCR+ ILC3 
are dependent upon the aryl hydrocarbon receptor (Ahr) for 
their development and persistence in the small intestine (26–29). 
Ahr ligands can be derived from intestinal bacteria, as well as 
dietary and endogenous sources and further regulate cytokine 
production of mature adult ILC3, while immunoglobulin-bound 
Ahr ligands are also transferred from the mother to promote the 
migration of NCR+ ILC3 to the neonatal small intestine (30).

In addition to microbial metabolites, ILC3 are subjected to 
further direct modulation by dietary cues. Maternal retinoids 
transferred during embryogenesis favor the development and 
maturation of LTi-like ILC3 by promoting and stabilizing RORγt 

expression (31), while dietary vitamin A-derived RA is required 
for the maintenance of adult small intestinal ILC3 subsets 
(32–34). In support of a role for dietary vitamins in the regula-
tion of ILC3 responses, human ILC3 were found to up-regulate 
vitamin D receptor expression following cytokine stimulation 
and vitamin D treatment subsequently resulted in suppression 
of the IL-23R, implicating vitamin D as a regulator of ILC3 
function (35). In line with this vitamin D receptor-deficient 
mice exhibit elevated ILC3 numbers and IL-22 production (36). 
Taken together, these studies implicate dietary vitamins as key 
modulators of ILC3 numbers and function and demonstrate the 
capacity of ILC3 to directly sense dietary signals.

SeTTiNG THe TONe: HOMeOSTATiC 
iNPUTS MAiNTAiN ADULT iLC3 SUBSeTS

In addition to environmental cues derived from the microbiota 
and diet, the numbers and relative balance of ILC3 subsets at 
steady state are additionally regulated by host-derived inputs 
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(Figure 1; Inputs). In contrast to the dynamic changes observed 
within the neonatal intestine, adult ILC3 populations appear to 
be stable and long-lived with little to no replenishment from 
the bone marrow under homeostatic conditions (37). Current 
understanding suggests that ILC3 are maintained through self-
renewal and/or replenished from tissue-resident precursors and 
several groups have reported the presence of tissue-resident 
RORγt+ progenitors that can give rise to mature ILC3 subsets in 
both mice and humans (38, 39). In particular, intestinal resident 
NKp46−CCR6−RORγt+ ILC3 precursors give rise to NCR+ ILC3, 
and to a lesser extent the LTi-like ILC3 compartment, a process 
that is regulated by local tissue cytokines and Notch signaling 
(40–44). Adult ILC3 subsets differ in their tissue localization; 
CCR6+ ILC3 are largely restricted to lymphoid structures such 
as the mesenteric lymph node and cryptopatches and ILFs 
within the small intestine and colon (45, 46), while NCR+ ILC3 
are largely excluded from lymph nodes and colon but reside 
within both the lamina propria and ILFs of the small intestine, 
with localization of NCR+ ILC3 dictated in part through CXCR6 
expression (47–51). Thus, local signals perceived by ILC3 subsets 
likely dictate their maintenance and survival within specific tis-
sue microenvironments.

While the cell-extrinsic and cell-intrinsic signals that sup-
port ILC3 under homeostatic conditions remain incompletely 
defined, recent evidence suggests that ILC3 subsets are differen-
tially dependent on constitutive signals received via pro-survival 
cytokines for their maintenance. ILC3 constitutively express high 
levels of common γ chain cytokine family receptors including 
IL-2R, IL-7R, and IL-15R. Of these, the IL-7:IL-7R interaction 
has been most extensively studied and IL-7 deficient mice have 
reduced numbers of lymph nodes, consistent with a loss of LTi 
cells in the embryo, and decreased ILC3 numbers in the adult 
(40, 52–54). Furthermore, enhanced signaling through IL-7Rα 
increases LTi-like cell numbers in the adult (53), arguing that 
IL-7 has the capacity to directly regulate ILC3 numbers. Notably 
overexpression of TSLP, which signals through a heterodimer of 
TSLPR and IL-7R, could overcome the effect of IL-7 deficiency, 
further arguing that other signals can compensate (55). A more 
recent study demonstrated that residual numbers of all ILC 
groups persist in the absence of IL-7, with IL-15 necessary 
to support the survival of the remaining NCR+ ILC3, but not 
LTi-like ILC3, in the intestinal tract (56). Provision of survival 
signals such as IL-7, IL-15, and TSLP is mediated largely 
through critical interactions with non-hematopoietic, stromal 
cell populations (Figure  1; Inputs). Studies of IL-7 reporter 
mice identified marginal reticular cells as a key source of this 
cytokine in lymph nodes (57), although analysis of IL-7 mRNA 
indicates that fibroblastic reticular cells (FRCs) also produce 
IL-7 (58). Strikingly, production of IL-7 by stromal cells requires 
signaling through the lymphotoxin β-receptor (59), indicating 
that continued interactions between stroma and lymphotoxin 
expressing immune cells support normal FRC function, which 
in turn maintains ILC3. Similarly, FRCs in lymph nodes and PP 
are a key source of IL-15, which supports NCR+ ILC3 as well 
as NK cells and ILC1 (56, 60). Thus, the stromal infrastructure 
of tissue microenvironments provides much of the survival 
requirements of ILC3. However, there is evidence that some 

LTi-like ILC3 persist in the absence of both of IL-7 and IL-15 
(56), arguing for a role for other cytokine signals or indicating 
that alternative mechanisms of survival exist. Given that LTi-
like ILC3 also highly express CD25 (IL-2R) and are enriched in 
lymphoid structures in close proximity to proliferating T cells 
(61, 62), it is possible that IL-2 may play an additional role in the 
long-term maintenance of LTi-like ILC3. Together these findings 
suggest that stromal cells form critical niches within secondary 
and tertiary lymphoid tissues that provide signals required to 
support ILC3 survival.

TALKiNG TO YOURSeLF: DiveRSe  
HOST-DeRiveD SiGNALS ReGULATe  
iLC3 eFFeCTOR ReSPONSeS

As addressed earlier, ILC3 have the capacity to receive input 
from cells and soluble molecules within their local tissue micro-
environment (Figure  1; Inputs). In addition to stromal cells, 
other innate immune cells, such as MNPs, play key roles in both 
homeostatic and effector ILC3 responses (63, 64). Within the 
intestine it is clear that IL-23, produced by CX3CR1+ MNPs, is 
a key regulator of ILC3 function (65–67). CX3CR1+ MNPs were 
observed to cluster with ILC3 in distinct intestinal lymphoid 
tissues, such as cryptopatches. Following weaning sensing of the  
microbiota by intestinal lymphoid tissue, MNPs result in local 
production of IL-23 and the induction of IL-22 from lymphoid 
tissue-resident LTi-like ILC3 (46). Moreover, depletion of 
CX3CR1+ MNPs results in a failure to control Citrobacter roden-
tium infection due to impaired IL-22 production by ILC3. In 
addition to IL-23, IL-1β drives IL-22 production by ILC3 and 
this is further augmented by TL1A, again produced by CX3CR1+ 
MNPs (67). The balance of cytokine signals perceived by ILC3 
is also critical in determining phenotype and function. Indeed, 
intestinal ILC3 exhibit significant plasticity and signals includ-
ing IL-12, IL-15, and IL-18 released in the context of infection 
and inflammation promote the progressive up-regulation of 
T-bet and production of pro-inflammatory cytokines such 
as IFN-γ and TNF-α by NCR+ ILC3 and a subsequent loss of  
RORγt expression by this subset, resulting in these cells being 
labeled “ex-ILC3” (40, 41). Conversely, upon resolution of 
infection or inflammation, restoration of homeostatic levels 
of MNP-derived signals including IL-23 and IL-1β favors the 
reconversion of inflammatory “ex-ILC3” back to an RORγt+ 
NCR+ ILC3 phenotype (43, 68).

ILC3 may also respond to other fundamental innate immune 
factors, such as the complement system. A subset of ILC3 appear 
to be sensitive to the complement cascade via expression of the 
C3aR (69), while Complement Factor P—a positive regulator 
of the alternative complement pathway—was found to directly 
bind NKp46 (70), suggesting NCR+ ILC3 in particular may sense 
pathogen infection via interactions with the complement cas-
cade. Beyond interactions with the immune system, an increas-
ing body of evidence indicates intestinal resident ILC3 can 
directly sense cues from the enteric nervous system. In a series 
of studies, LTi-like ILC3 were demonstrated to express RET—a 
receptor for neurotrophic factors (71, 72). RET expression is 
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required for PP formation and accumulation of lymphotoxin-
producing LTi cells, although this occurs indirectly via ligation 
of RET on lymphoid tissue-initiator cells and induction of 
chemokine production to sequester immune cells, including LTi 
cells, to drive PP formation. Nonetheless, adult CCR6+ LTi-like 
ILC3 express RET and can directly respond to glial-derived neu-
rotrophic factor (GDNF) family ligands. Production of GDNF 
by intestinal glial cells in response to stimulation by microbial 
ligands acts to reinforce intestinal barrier function via regula-
tion of IL-22 transcription and secretion by LTi-like ILC3 (72). 
Interestingly, enteric neurons also have the capacity to provide 
RA signals, which are critical for the maturation of LTi cells 
(73), thus suggesting that alternative, non-dietary sources of RA 
may also play roles in ILC function and immune homeostasis. 
In addition to local neuronal signals, systemic nervous signals 
may modulate the tone and magnitude of ILC3 responses. Vagal 
nerve innervation of the colon is required for the formation of 
tertiary lymphoid structures, via regulation of local chemokine 
production (74). Although a direct effect of vagal denerva-
tion on ILC3 was not demonstrated in this study, more recent 
evidence suggests that the vagal nerve acts to regulate ILC3 
responses to bacterial pathogens in the peritoneal cavity (75). 
This effect was in part dependent upon the ability of NCR+ ILC3 
to enzymatically generate lipid precursors that were in turn 
metabolized by resident macrophages to promote resolution of 
inflammation (75). Together these findings suggest signals from 
both tissue-resident and systemic neurons may directly regulate 
ILC3 numbers and function during homeostasis or following 
infection. Interestingly, ILC3 may also play important roles in 
the central nervous system and a recent study demonstrated 
that NCR+ ILC3 are present in the meninges and promote 
neuroinflammation in a model of multple sclerosis by licensing 
entry of inflammatory Th17 cells into the brain (76). It is highly 
likely that other signals from the nervous system and beyond 
may impact upon ILC3 function. For example, host-derived lipid 
mediators—such as prostaglandin E2—have been demonstrated 
to directly promote homeostatic ILC3 cytokine production (77). 
Similarly, endocrine signals, particularly sex hormones, are long 
appreciated to regulate innate immunity. In this regard testoster-
one directly inhibits ILC2 responses (78); however, the capacity 
of androgens, estrogens, or other hormones to modulate ILC3 is 
yet to be investigated.

TRANSLATiNG THe MeSSAGe: 
iNTeGRATiON AND TRANSCRiPTiONAL 
DYNAMiCS

The ability of tissue ILC3 to sense a breadth of exogenous and 
endogenous cues of significantly varying natures provokes the 
question as to how these various inputs are simultaneously 
integrated, and prioritized, in order to control ILC3 function. 
While significant advances have been made in understanding 
the effector functions of ILC3, as well as the transcriptional deci-
sions that determine ILC development, relatively little is known 
about the signaling pathways and transcriptional dynamics that 
act to integrate external cues and determine the nature and 

magnitude of downstream ILC3 responses. Advances in RNA 
sequencing and epigenetic profiling have begun to redress this 
balance and allowed for enhanced resolution of individual cellu-
lar states among ILC populations (18–21, 79, 80). Furthermore, 
comparison of the transcriptional networks of ILC3 subsets and 
their Th17 counterparts will likely prove useful in identifying 
common and distinct signaling pathways utilized by RORγt-
expressing cells (81). While significant overlap may be expected 
in this case, it is critical to note that ILC3 and Th17 cells also 
demonstrate key difference in their transcriptional regulation. 
For example, while Th17 is acutely dependent on RORγt for the 
maintenance of a mature functional phenotype, ILC3 were able 
to maintain core effector functions and phenotype following 
deletion of RORγt (82). Surprisingly, human IL-22-producing 
ILC3 can be generated from circulating ILCps even when 
derived from Rorc-deficient donors (83). Thus, it is likely that 
ILC3 also exhibit unique and differing signaling transduction 
pathways and transcriptional regulation that underlie their 
innate functions (Figure  1; Translation). As detailed earlier, 
ILC3 transcription dynamics are acutely modified by dietary and 
bacterial metabolites via Ahr and it is likely epigenetic changes 
may be imprinted via histone deacetylases downstream of SCFA-
sensing, as in other lymphocytes (84).

ILC3 additionally integrate multiple soluble signals including 
common gamma chain cytokines and growth factors—many of 
which induce signal transduction via phosphorylation of STAT5 
(85). Thus, pSTAT5 and downstream signal activation (ERK/AKT) 
are likely to play key roles in orchestrating intracellular responses 
in ILC3. Similarly, both IL-23 and RET signals are transduced in 
part by pSTAT3 to regulate IL-22 production (72, 86). Thus, it is 
likely that a threshold of intracellular signaling downstream of 
multiple receptors, sensing cues from multiple biological systems, 
acts to establish the tone and magnitude of the ILC3 response 
(Figure 1; Translation). The signaling pathway engaged following 
stimulation by cytokines or other cues is likely to determine the 
biological processes that are modulated. For example, ILC3 from 
mice with mutations in Jak signaling exhibited an impaired abil-
ity to phosphorylate STAT5 in response to IL-7, while inhibiting 
Jak3 signaling in mature human ILC3 suppressed proliferation of 
these cells but not cytokine production (87).

Maintenance of ILC3 subsets is likely to be regulated tran-
scriptionally via multiple mechanisms (Figure 1; Translation). 
Mice lacking the scaffolding protein dedicator of cytokinesis 8 
(DOCK8) demonstrate reduced ILC3 numbers and defective 
immunity to C. rodentium, in part due to a reduced ability of 
DOCK8-deficient ILC3 to respond to IL-7 and IL-23 and an 
increased rate of apoptosis (88). Similarly, survival of ILC3 is 
modulated via long non-coding RNAs that orchestrate down-
stream gene accessibility (89). In particular, lncKdm2b expression 
by ILC3 controls activation of transcription factors, including 
Zfp292, and recruitment of chromatin organizational machinery 
that promote ILC3 maintenance in vivo (89). ILC3 survival may 
also be dependent upon expression of anti-apoptotic machinery. 
Indeed, LTi-like ILC3 highly express the anti-apoptotic molecule 
Bcl-2, expression of which fluctuates following perturbation of 
local cytokine signals such as IL-7 (56). In addition, regulation 
of intracellular organelle degradation through autophagy has 
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been implicated in ILC survival (90). The autophagy related fac-
tor Atg5 was found to be required for ILC family development, 
suggesting that autophagy may play a role in ILC3 persistence 
and maintenance (90). Nonetheless, and despite these advances, 
many of the precise mechanisms through which ILC3 mainte-
nance is instructed via changes in gene expression or epigenetics 
and the environmental signals that are required to promote ILC3 
survival are yet to be defined.

PASS iT ON: iLC3 ORCHeSTRATiON  
OF iNTeSTiNAL TiSSUe iMMUNe 
ReSPONSeS

ILC3 possess multiple mechanisms through which they relay host 
and environmental signals to orchestrate the intestinal immune 
response and to maintain tissue function (Figure  1; Outputs). 
ILC3 were initially identified as potent sources of effector 
cytokines, most notably IL-22. ILC3-derived IL-22 plays critical 
roles in regulating host-commensal bacteria interactions in the 
healthy intestine in addition to mediating responses to enteric 
pathogen infections (27, 86, 91–98). IL-22 mediates its effects on 
IL-22R-expressing non-hematopoietic cells, including intestinal 
epithelial cells, epithelia-associated stem cells, and Paneth cells 
(99–101), and promotes barrier function and segregation of com-
mensal bacteria from the underlying immune system via induc-
tion of epithelial tight junction proteins (97, 102), fucosylation of 
epithelial cell-associated glycans (103–105), secretion of mucin, 
and production of anti-microbial peptides (e.g., S100A8/A9 and 
RegIIIβ/γ), which together induce bacterial killing and prevent 
translocation of commensal organisms into the circulation and 
peripheral organs (102).

Although the importance of ILC3 in regulating intestinal 
health and inflammation has largely been ascribed to the 
production of IL-22, ILC3 produce several other cytokines that 
contribute to intestinal immune responses. In particular, ILC3 
subsets have the capacity to produce IL-17A and IL-17F (2). 
Although both embryonic LTi and adult ILC3 isolated from 
the small intestine can be induced to secrete IL-17A upon ex 
vivo stimulation (9), fate mapping of IL-17A producing cells 
revealed that only a small proportion of ILC3 in the intestine 
exhibit a history of IL-17A expression (106). Nonetheless, ILC3-
derived IL-17A may contribute to the formation of pulmonary 
tertiary lymphoid structures following infection and inflam-
mation (107), can contribute to host immunity to fungal and 
bacterial pathogens (63, 108, 109), and has been implicated in 
the pathogenesis of obesity-associated airway hyper reactivity 
(110). Additionally, dysregulated IL-17A production by ILC3 
may act to exacerbate inflammation and disease pathology in 
a range of inflammatory diseases, including psoriasis and IBD 
(65, 111, 112). IL-17F has high homology to IL-17A and can 
be secreted as either a homodimer or heterodimer with IL-17A 
(113). ILC3 are a dominant source of IL-17F after induction 
of colitis in Rag1−/− mice (65, 114), upon oral infection with 
Candida albicans and following skin wounding (108, 115), sug-
gesting that IL-17F production by ILC3 may play critical roles 
in inflammation and immunity or resolving immune responses. 

Although IL-17F has largely been ascribed pro-inflammatory 
roles and may play pathogenic roles in colitis models (116, 117), 
it can also synergize with IL-22 to enhance production of anti-
microbial peptides (118). Despite this evidence, the exact role of 
ILC3-derived IL-17F and its mechanisms of action in infection 
and disease, and how its effects differ from those of IL-17A, 
remain incompletely understood.

Recent studies have additionally highlighted ILC3 as a  
potent source of the cytokine and growth factor GM-CSF (67, 
119–121). GM-CSF modulates myelopoiesis in the bone mar-
row, as well as extramedullary hematopoiesis in tissues, and acts 
on mature peripheral myeloid cells including monocytes, mac-
rophages and neutrophils by regulating their activation, matura-
tion, and migration into tissues (122). ILC3 are the predominant 
source of GM-CSF at steady state in the intestinal tract, with both 
NCR+ and LTi-like ILC3 capable of GM-CSF secretion. Under 
homeostatic conditions ILC3-derived GM-CSF acts to main-
tain immune tolerance by regulating DC subsets that further 
promote regulatory T-cell populations (120). Thus, constitutive 
homeostatic ILC3-derived GM-CSF secretion acts to maintain a 
tolerogenic environment. The interplay between MNPs and ILC3 
in the intestine is bidirectional. Indeed, microbiota-dependent 
signals, including IL-1β, IL-23, and TL1A, derived from intes-
tinal MNPs act to potentiate GM-CSF production by ILC3 (67, 
120), suggesting the potential for a regulatory feedback loop in 
the intestine regulated by ILC3-derived GM-CSF-dependent 
crosstalk with myeloid cells. This crosstalk may also be impor-
tant in the context of intestinal inflammation and following 
perturbation of intestinal barrier function as MNP-derived 
cytokines were found to regulate ILC3 production of IL-22, in 
addition to GM-CSF, in mouse models of colitis and human IBD 
patients (67). In contrast to a tissue-protective role for ILC3-
derived GM-CSF two independent studies demonstrated that 
ILC3-derived GM-CSF acted to exacerbate intestinal pathology 
in an innate cell driven model of colitis (anti-CD40 treatment 
of Rag1−/− mice), in part through recruitment of inflammatory 
monocytes (121, 123). Furthermore, onset of colitis results in 
migration of ILC3 out of intestinal cryptopatches and into the 
lamina propria in a GM-CSF-dependent manner (121), further 
demonstrating that GM-CSF-dependent ILC3-MNP crosstalk 
may dictate the migration and localization of immune popula-
tions within the intestinal tissue.

ReGULATiON OF ADAPTive iMMUNe 
ReSPONSeS

Embryonic LTi cells are required to generate secondary lym-
phoid tissues, and this role has been expertly reviewed before  
(10, 124) Further to this role in establishing the microenviron-
ments that foster B- and T-cell responses, more recent studies 
have revealed that CCR6+ LTi-like ILC3 contribute to the 
regulation of adaptive immune responses via both indirect and 
direct interactions with the adaptive immune system (Figure 1; 
Outputs). CCR6+ ILC3 reside within the spleen, mucosal-asso-
ciated lymphoid tissues, and lymph nodes—particularly those 
draining mucosal sites such as the mesenteric and mediastinal 
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lymph nodes (62). Phenotypically, adult LTi-like CCR6+ ILC3 
are very similar to the embryonic LTi population but additionally 
express molecules such as OX40L and CD30L that may foster 
interactions with lymphocytes (125–128). Interestingly, expres-
sion of OX40L can be induced in embryonic LTi cells through 
ex vivo culture with inflammatory cytokines, such as TL1A 
(129). Whether embryonic-derived LTi persist in the neonate 
and adult, and for how long, is unclear—but given the pres-
ence of long-lived LTi-like cells in the adult and the functional 
heterogeneity of ILC3 subsets, the potential persistence of bona 
fide embryonic LTi cells after birth needs to be addressed. It is 
striking that CCR6+ ILC3 in adult PP, LNs, and spleen associate 
with stromal populations that closely resemble the embryonic 
“organizer” cells through which fetal LTi orchestrate lymphor-
ganogenesis (57, 130). Thus, tissue microenvironments fostered 
early in the life in secondary lymphoid tissues by ILC3 may be 
maintained in the adult. In support of this, restoration of the 
splenic white pulp architecture after viral infection was delayed 
in the absence of ILC3 (131).

Direct regulation of CD4+ T  cells by ILC3 can be mediated 
through MHCII-dependent antigen presentation. ILC3-
conditional deletion of MHCII resulted in moderate colitis due 
to a failure to control T-cell responses to commensal bacteria 
(61, 132). Thus, within the gastrointestinal tract, ILC3 appear 
to play a crucial suppressive role in regulating CD4 T-cell 
responses to commensal organisms to maintain tissue homeo-
stasis. Mechanistically, ILC3 were found to control commensal 
bacteria-specific CD4+ T-cell responses in part by outcompeting 
T cells for IL-2, thus starving that T cells of growth factors needed 
for proliferation and resulting in apoptosis (61). Similarly, ILC3 
may regulate the T-cell pool by controlling the availability of other 
critical growth cytokines in lymphoid tissues, including IL-7 
(133). Further investigations have indicated that the outcome of 
ILC3:T-cell interactions may be determined by the specific tissue 
environment, with splenic ILC3 found to support, rather than 
suppress, CD4 T-cell responses in an MHCII-dependent manner 
(134). This discrepancy could be partially explained by the ability 
of cytokines to modulate ILC3—for example, IL-1β can induce 
ILC3 expression of co-stimulatory molecules (e.g., CD80 and 
CD86) and alter the nature of ILC3 antigen presentation (134).  
In addition to the presentation of protein-derived antigenic 
peptides via MHCII, LTi-like ILC3 have the capacity to present 
lipid antigens to iNKT cells via surface CD1d (135). Furthermore, 
ILC3 are required to suppress homeostatic CD8+ T-cell expansion 
in neonatal mice (136).

ILC3 also have the capacity to modulate humoral immunity 
(Figure 1; Outputs). ILC3 present in the spleen and PP support 
innate T-cell-independent IgA production through production 
of secreted and membrane bound lymphotoxin, which supports 
local DC populations and aids IgA class switching (137–139). 
Similarly, splenic ILC3 provide B-cell growth factors, includ-
ing BAFF/APRIL and Dll1, to enhance local Ab production by 
marginal zone innate B cells (119). Despite these advances, the 
full extent and nature of the crosstalk between ILC3 and other 
lymphocyte populations, and how these signals are integrated 
alongside those provided by traditional antigen-presenting cell 
populations such as DC and B cells, remain to be fully elucidated.

LOST iN TRANSLATiON: DYSReGULATeD 
iLC3 COMMUNiCATiON AND DiSeASe

Here, we have highlighted the roles of ILC3 in integrating signals 
from the environment and relaying information to surrounding 
immune and non-immune cells, thus functioning as a critical 
communications hub within intestinal tissue. Through being 
able to respond to both epithelial and myeloid-derived cytokines, 
vitamins, metabolites, and also neuropeptides, ILC3 integrate a 
wealth of regional cues to maintain the appropriate balance of 
key effector molecules and ensure local tissue homeostasis. Thus, 
while ILC3 have a clear protective role in the tissue, dysregula-
tion or dramatic changes in environmental cues can result in 
disrupted ILC3 communication and may contribute to disease 
pathology, in part via altered ILC3 effector functions. For example, 
dysregulated cytokine production in the context of mouse models 
of colitis can promote ILC3 production of disease driving pro-
inflammatory cytokines such as IFN-γ and IL-17A (40, 68, 111).  
Similarly, while ILC3-derived IL-22 is critical for supporting 
homeostatic intestinal barrier function, epithelial cell repair 
and regeneration, chronic overproduction of IL-22 by ILC3 may 
promote colorectal cancers (140, 141). Interestingly, genetic 
polymorphisms associated with chronic inflammatory disease 
or cancer may also alter the inflammatory milieu and have the 
potential to drive dysregulated ILC3 communication. For exam-
ple, Card 9 deficiency results in disrupted IL-1β production and 
impacts upon epithelial cell proliferation and colitis-associated 
cancer due to perturbed ILC3-associated IL-22 production (142). 
It is likely that many other polymorphisms seen in patients with 
intestinal inflammatory disorders, including IL-23R, IL-10/
IL-10R, Atg16l1, and Nod2, also impact upon ILC3 function 
either directly or by altering the integration of tissue-specific 
signals that are sensed, interpreted or propagated by ILC3. 
Dysregulation of protective ILC3 functions in intestinal disease 
is also not limited to effector cytokine production. Indeed, ILC3-
intrinsic expression of MHCII has been observed to be reduced 
in two separate cohorts of Crohn’s patients and found to correlate 
with enhanced Th17 responses in disease (61, 143), suggesting 
that the altered intestinal tissue environment may impact upon 
antigen presentation by these cells.

Infections may additionally disrupt ILC3 populations in 
the gut, resulting in a loss of their normal sentinel activity, the 
breakdown of gut barrier integrity, and intestinal pathology.  
In particular, infection with human or simian immunodeficiency 
viruses (HIV/SIV) results in depletion of ILC3 from the intestinal 
mucosa and lymph nodes (144–147). Thus, further investigation 
is needed to understand how alterations in ILC-related signals 
result in loss of these cells and how this balance can be redressed 
to restore homeostatic numbers and functions of ILC3. Finally, as 
the next generation of anti-inflammatory therapeutics enter the 
clinics, their relative impact on beneficial intestinal ILC3 need 
to be thoroughly addressed. In particular, monoclonal antibod-
ies and small molecule inhibitors targeting common pathways 
shared by Th17 and ILC3 (e.g., anti-IL-23, anti-IL-12, anti-IL-
17A, and small molecule antagonists of RORγt) have the potential 
to suppress inflammation but may have long-term consequences 
for patients by disrupting protective ILC3 pathways. In this 
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regard, an increased understanding of the differences and simi-
larities between Th17 and ILC3 regulation is required to guide 
therapeutic interventions and treatment regimen. Promisingly, 
recent studies suggest that acute targeting of RORγt effectively 
reduces Th17-driven inflammation while leaving protective ILC3 
responses intact (82), although chronic inhibition of this master 
transcription factor may eventually negatively impact upon ILC3 
responses. Furthermore, ILC3-derived cytokines may have ben-
eficial roles in maintaining epithelial barrier function and healthy 
host–microbe interactions, thus targeting that these cytokines 
and their receptors in the context of Th17-driven inflammation 
may result in undesirable consequences. Indeed, treatment with 
neutralizing monoclonal antibodies against IL-17A or its recep-
tor has been reported to worsen disease and increase incidence of 
adverse effects in several IBD patient cohorts (148, 149), further 
highlighting the need to understand the potential repercussions 
of emerging therapeutics on ILC3. Future studies will lead to 
a further understanding of how these critical innate immune 

sentinels are regulated in order to harness their protective func-
tions to maintain tissue health, while suppressing dysregulated 
responses that exacerbate disease.
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