
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 141 (2022) 105134

Available online 14 December 2021
0010-4825/© 2021 Elsevier Ltd. All rights reserved.

A computer-aided diagnosis system for the classification of COVID-19 and 
non-COVID-19 pneumonia on chest X-ray images by integrating CNN with 
sparse autoencoder and feed forward neural network 

Gayathri J.L. a, Bejoy Abraham a,*, Sujarani M.S. a, Madhu S. Nair b 

a Department of Computer Science and Engineering, College of Engineering Perumon, Kollam, 691 601, Kerala, India 
b Artificial Intelligence & Computer Vision Lab, Department of Computer Science, Cochin University of Science and Technology, Kochi, 682 022, Kerala, India   

A R T I C L E  I N F O   

Keywords: 
Computer-aided detection 
COVID-19 
CNN 
Sparse autoencoder 
Feed forward neural network 

A B S T R A C T   

Several infectious diseases have affected the lives of many people and have caused great dilemmas all over the 
world. COVID-19 was declared a pandemic caused by a newly discovered virus named Severe Acute Respiratory 
Syndrome Coronavirus 2 (SARS-CoV-2) by the World Health Organisation in 2019. RT-PCR is considered the 
golden standard for COVID-19 detection. Due to the limited RT-PCR resources, early diagnosis of the disease has 
become a challenge. Radiographic images such as Ultrasound, CT scans, X-rays can be used for the detection of 
the deathly disease. Developing deep learning models using radiographic images for detecting COVID-19 can 
assist in countering the outbreak of the virus. This paper presents a computer-aided detection model utilizing 
chest X-ray images for combating the pandemic. Several pre-trained networks and their combinations have been 
used for developing the model. The method uses features extracted from pre-trained networks along with Sparse 
autoencoder for dimensionality reduction and a Feed Forward Neural Network (FFNN) for the detection of 
COVID-19. Two publicly available chest X-ray image datasets, consisting of 504 COVID-19 images and 542 non- 
COVID-19 images, have been combined to train the model. The method was able to achieve an accuracy of 
0.9578 and an AUC of 0.9821, using the combination of InceptionResnetV2 and Xception. Experiments have 
proved that the accuracy of the model improves with the usage of sparse autoencoder as the dimensionality 
reduction technique.   

1. Introduction 

The novel coronavirus outbreak was reported by officials in 
December 2019 in Wuhan City, China. The virulence of COVID-19 has 
affected more than 200 million lives and killed more than four million 
people across the world [1]. The Reverse Transcription-Polymerase 
Chain Reaction (RT-PCR) test is treated as the golden standard for 
detection of the SARS-CoV-2 virus. The rapid increase in the number of 
patients, and the lack of sufficient RT-PCR test facilities in several parts 
of the world causes delay in testing and detection of the disease. 
Accessible, fast and affordable methods could play an important role in 
the diagnosis of the disease. Radiographic methods are easily available 
and affordable compared to RT-PCR test. A computer-aided diagnosis 
method using X-ray images could assist the medical practitioners in the 
detection of COVID-19 at an early stage. 

Modalities for COVID-19 detection include Computed tomography 

(CT), X-Ray and Ultrasound imaging. COVID-19 manifests common 
abnormal X-ray findings including ground glass and consolidative 
opacities in the peripheral lung regions, nodular opacities and bilateral 
patchy and confluent patterns. Some image findings include small 
amounts of pleural effusions, which are uncommon.Viral pneumonia 
exhibits patches in bilateral areas of consolidation, thickening of bron-
chial walls, bilateral consolidations, and ground glass opacities or cen-
trilobular nodules poorly defined. Since COVID-19 and other pneumonia 
share some of these X-ray characteristics, it is not easy to differentiate 
the COVID-19 images from other pneumonia. Typical radiological 
COVID-19 pattern including bilateral peripheral or focal round ground 
glass opacities with or without consolidation differentiates COVID-19 
from other pneumonia [2]. 

However, manual examination of the image modalities is time- 
consuming as the number of cases are increasing day by day. The 
application of machine learning in the biomedical field can assist 
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physicians in the computer-aided diagnosis of medical images efficiently 
and effectively. CAD systems aid radiologists to expound the medical 
images. Hence computer-aided detection could assist the radiologists in 
distinguishing COVID-19 infected radiographic images. CAD systems 
using Artificial Neural Networks (ANNs) and Deep Learning (DL) have 
shown tremendous success in the field of medical data analysis [3]. Deep 
learning technologies widely used in disease diagnosis include CNNs, 
autoencoder, Deep Belief Networks (DBN) and Generative Adversarial 
Network (GAN) [3]. Several works using ANNs and Deep Learning has 
been published in the application of disease diagnosis, including 
detection of interstitial lung disease [4], depression screening [5], 
schizophrenia [6], ECG arrhythmias classification [7], and ischemic 
heart disease [8]. 

Various works related to computer-aided detection of COVID-19 was 
published. Abraham et al. [9,10] developed models comprising an 
ensemble of CNNs to detect COVID-19. Ardakani et al. [11] discussed 
the usage of ten convolutional networks on COVID-19 detection. Horry 
et al. [12] highlight the use of different image modalities to help faster 
detection of the disease. Shaban et al. [13] adopted a new methodology 
for feature selection by integrating filter and wrapper methods and 
classifying using an ensemble learning technique. Phankokkruad et al. 
[14] developed a transfer learning technique that involves fine-tuning of 
the pre-trained network. Rekha Hanumanthu et al. [15] discussed 
different deep learning and transfer learning methods adopted for the 
early diagnosis of the disease. Wang et al. [16] adopted a method where 
the features are extracted using a UNet, and later, the classification was 
performed using a progressive classifier. Hassantabar et al. [17] used a 
convolutional neural network, where the Softmax layer helps detect 
SARS-COV2 infection. Rahimzadeh and Attar et al. [18] used transfer 
learning methodology, which involves fine-tuning a concatenation of 
Xception and Resnet50V2 for diagnosing COVID-19. Phankokkruad 
et al. [14] implemented a model involving transfer learning experi-
mented on three different pre-trained networks such as VGG16, Xcep-
tion and InceptionResnetV2. Ucar and Korkmax et al. [19] presented an 
Artificial Intelligence structure based on Squeezenet pre-trained 
network accompanied by Bayesian optimization. Li et al. [20] 
explored a multi-task contrastive learning for COVID-19 diagnosis. The 
contrastive learning task has been implemented using supervised neural 
networks. The method involves aggregation through contrastive loss. 
Pandit et al. [21] adopted fine-tuning of VGG-16 network for the diag-
nosis of the COVID-19 from chest radiographs. Chandra et al. [22] uti-
lized an ensemble learning methodology for the detection of 
coronavirus. The methodology involves majority voting from different 
weak learners. Saufi et al. [23] used stacked sparse autoencoders to 
extract features from X-ray and CT scans for the detection of COVID-19. 
Lazrag et al. [24] explored wavelet analysis for feature extraction fol-
lowed by autoencoder for feature modelling to detect COVID-19. Behura 
et al. [25] used XGBoost and sparse autoencoder for feature selection 
and classification. Ismael and Sengur et al. [26] developed a model 
involving classification using Support Vector Machine(SVM) pro-
specting the features extracted from X-ray using Resnet50 for the diag-
nosis of COVID-19. Toraman et al. [27] accomplished a methodology for 
discovering COVID-19 infections using capsule networks utilizing X-ray 
lung imaging. 

Most of the existing works have used Convolutional Neural Networks 
for the detection of COVID-19. No methods have explored the combi-
nation of CNN with sparse autoencoder for the diagnosis of COVID-19. 
The proposed method chose to explore sparse autoencoder as a dimen-
sionality reduction method. Sparse autoencoder has been found suc-
cessful in the field of disease diagnosis, including Alzheimer’s [28], 
Parkinson’s disease [29], heart disease [30], identification of neonatal 
sleep state [31], glaucoma [32], cerebral microbleeds [33], etc to name 
a few. Sparse autoencoder enforces the sparsity constraint directing the 
single layer network for code learning resulting in error minimization 
while code reconstruction [34]. The sparsity penalty imposed on the 
hidden layers on top of the reconstruction error eliminates overfitting 

[35]. Sparse representation of data has benefits in denoising robustness 
and improved classification performance in high dimensional latent 
spaces [36]. The proposed work has the following contributions.  

● The method uses an ensemble of Xception and InceptionResnetV2 for 
feature extraction. The features are passed to a custom made sparse 
autoencoder for reducing dimensionality of feature vector, followed 
by a Feed Forward Neural Network (FFNN) for classification. No 
state-of-the-art methods have employed such a pipeline for the 
detection of COVID-19.  

● The proposed method explores neural network techniques for all 
stages of computer-aided diagnosis of the disease, namely feature 
extraction, dimensionality reduction and classification. The tech-
nique utilizes neural networks, namely, CNN, Sparse autoencoder, 
and FFNN, for feature extraction, dimensionality reduction, and 
classification. Most of the existing methods have either performed 
transfer learning using CNN or used non-neural network methods for 
feature selection and classification combined with features extracted 
using CNN. 

The method has chosen the ensemble of CNNs, sparse autoencoder 
and FFNN empirically based on experimental analysis. The experiments 
we performed prove the effectiveness of the novel framework composed 
of CNN, sparse autoencoder, and FFNN in diagnosing COVID-19. The 
rest of the paper is organized as follows. Section 2.1 discusses datasets 
used for training the model. Section 2.2 describes the architecture of the 
proposed model. Section 3 is a result analysis phase utilizing single-CNN 
and different combinations of pre-trained networks. The section also 
gives an overview of the comparison of the proposed model with other 
classifiers and dimensionality reduction techniques. Section 4 presents 
the conclusion of our work based on the result analysis phase. 

2. Materials and methods 

2.1. Dataset 

Two publicly available datasets have been used to train the model. 
The first dataset is a public dataset by Cohen et al. [37], available in 
Github, consisting of both CT and Chest X-ray images of COVID-19 ob-
servations, other types of pneumonia and healthy patients. From this 
dataset X-ray images are filtered for training the model. The dataset 
consists of 783 X-ray images, among which 504 are COVID-19 images 
and 279 are non-COVID-19 images. The second dataset is a public open 
data set from Kaggle created by Paul Mooney [38]. The dataset consists 
of 390 chest X-ray images of bacterial and other viral pneumonia. It was 
constructed before the COVID-19 outbreak. 

A balanced dataset is essential for building an effective model [39]. 
To balance the dataset for achieving an effective model, the first 263 
X-ray images of Pneumonia affected patients have been extracted from 
the second dataset. The combined dataset consists of 504 COVID-19 
images and 542 non-COVID-19 images. The non-COVID-19 images 
consist of both normal and pneumonia images. 

2.2. Proposed method 

The proposed architecture is divided into three phases. The model 
consists of feature extraction, dimensionality reduction and the classi-
fication phase. 

2.2.1. Feature extraction 
Feature extraction phase reduces the dimension of the initial raw 

dataset into manageable groups for optimizing the processing. Many of 
the recent research studies have worked on models based on pre-trained 
networks as a feature extractor [9]. In the proposed model, pre-trained 
networks are used as a feature extractor. Pre-trained networks are 
trained on an Imagenet database [40] consisting of 1000 image classes. 
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Even though trained on non-biomedical images, pre-trained CNNs in 
combination with off-the-shelf classifiers were found successful in the 
detection of a wide range of diseases from X-ray images, including 
tuberculosis [41], breast cancer [42] and pneumonia [43]. The con-
volutional layers built on top of each other, learn more complex features 
for reliable classification tasks. Automated feature extraction by CNN 
makes these networks highly efficient for classification tasks. 

In the proposed model, images are pre-processed according to the 
input size in the input layer of the chosen pre-trained model, and then 
the dataset is fed into the network. Both single-CNN and multi-CNN has 
been utilized for the analysis. InceptionResnetV2 [44], Xception [45], 
EfficientnetB0 [46], Darknet-53 [47], Resnet101 [48] are used for the 
experimentation. The input size of different pre-trained networks differs 
in size. Table 1 denotes some of the pre-trained networks, their depth 
and their input size used for the analysis. The images are pre-processed 
to the respective input sizes of the pre-trained models before the feature 
extraction phase. The dataset used for the proposed model consists of 
1046 instances. 

The method has used CNN as a feature extractor and not as a transfer 
learning method, where parameters of an end-to-end pre-trained CNN 
are fine-tuned to suit the data at hand. While using pre-trained CNN as a 
feature extractor, activations from any of the deep layers except Softmax 
layer can be used as features for classification using an off-the-shelf 
classifier like FFNN. The layer from which features are to be extracted 
is a design choice [49,50]. However, selecting features from the fully 
connected layer right before the Softmax classification layer is a good 
option [49,50]. The activations of the last fully connected layer repre-
sent global feature representation of the image [51,52]. Another func-
tion of the last fully connected layer is dimension reduction [53]. 
Softmax layer output the vector of probability values of an input image 
belonging to one among the 1000 classes and hence it cannot be used as 
a feature extractor. 

In the study by Abidin et al. [54], features extracted from the last 
fully-connected layer outperformed features from the other layers. 
Several research works have used the last fully-connected layer to 
extract features for classification using an off-the-shelf classifier [51, 
55–64]. Based on the above-mentioned reasons, we have chosen acti-
vations of the last fully-connected layer as the feature vector. The output 
set after the feature extraction phase is a feature set with dimension 
1046 × 1000. 

The CNN includes three basic layers: convolution layer, pooling layer 
and a Softmax layer. The center of the convolutional neural network is 
the convolution layer. Convolutional operation is performed in this layer 
which is the linear multiplication of the filter mask and the input array 
image to produce a feature map. Consider f(x, y) as the input image and 
h(x, y) be the filter mask. Convolution operation can be mathematically 
expressed as: 

g(x, y) = f (x, y) ∗ h(x, y) (1) 

An activation function is applied to the output of the convolution 
layer. The activation function used is ReLU. The next block after the 
convolution layer is the pooling layer. The most commonly used pooling 
layer is max-pooling layer. The pooling layer reduces the number of 
parameters used for the computation of the network. The final layer of 
the convolutional neural network is the classification layer, where the 
instances are classified according to the respective classes. For multi- 

CNN the features are extracted from two CNN models and then 
concatenated to produce a new feature set. The dimension of the feature 
set is n × 1000 m, where n is the number of X-ray images and m is the 
number of pre-trained CNN models. 

2.2.2. Dimensionality reduction 
Dimensionality reduction process reduces the dimension of feature 

vector by eliminating the features that will less contribute to the pre-
dictor variable. The presence of these irrelevant features may result in a 
decrease in the overall performance of the model. The proposed model 
uses sparse autoencoder for dimensionality reduction. Autoencoder is a 
network that imposes a bottleneck architecture, representing the input 
image in a compressed knowledge representation form [65]. The 
network follows an unsupervised learning technique for the task of 
representation learning [66]. 

The basic idea of the autoencoder is that it encodes the input sensor 
data using its hidden layer and outputs the best feature expression. The 
concept of autoencoder lies in taking in an unlabelled set and framing it 
as a supervised problem to get an output x̂, which is a reconstruction of 
the original input x. The amount of information that traverses in the 
whole network is constrained in the bottleneck that drives a learned 
compression of the input image. Only the variations in the input data are 
maintained by the model for avoiding the redundancies. An autoencoder 
is composed of an encoder and a decoder. An encoder maps the input to 
a latent space using encoder activation. Later the input is reconstructed 
by the decoder using a decoder activation function. The activation of a 
basic autoencoder is represented as: 

TAE = Ex[l(x, gd(ge(x)))] (2)  

where Ex denotes the pre-activation values, l is the squared loss function, 
ge denotes the encoder activation function, and gd indicates the decoder 
function. The cost function of an autoencoder is represented as: 

Cx =
Σ((L(x, x̂))

n
+

ρ
n

Σw2
ij (3)  

where L(x, x̂), n, ρ and wij denotes the reconstruction error loss, number 
of training samples (X-ray images), weight decay parameter and the 
weight at (i,j)th location, respectively. 

Different kinds of activation autoencoders are available, among 
which our proposed model uses sparse autoencoder. Sparse autoencoder 
constructs a loss function, and the network is allowed to learn encoding 
and decoding, which relies only on a small number of neurons. Rather 
than regularizing the activations, sparse autoencoders regularizes the 
weights of the network. Activations of different nodes of the neural 
network are data-dependent, as different inputs will activate different 
neurons. 

Sparse autoencoders learn patterns by imposing sparsity constraints 
on the hidden layers [66]. The difference between the sparse autoen-
coder and the basic autoencoders lies in the cost function. Global reg-
ularization is used to solve the main objective function, whereas the 
sparsity penalty solves the trivial identity mapping and overfitting. In 
the model, features extracted using multiple pre-trained networks of the 
dimension 1046 × 1000 m, where m denotes the number of pre-trained 
networks is reduced to most relevant features of the dimension 1046 ×
1000 using the sparse encoder for improving the performance of the 
model. 

2.2.3. Classification 
The model utilizes Feed Forward Neural Network for classifying the 

predictor variables. Feed Forward Neural Networks were found suc-
cessful in a wide range of medical applications including Alzheimer’s 
disease [67], chronic kidney disease [68] and lung cancer detection [69] 
to name a few. The wide usage of Feed Forward Neural Network in 
pattern classification is due to their prediction capability regardless of 
the probability distribution information of distinct labels. These 

Table 1 
Pre-trained networks.  

Network Depth Input Size 

InceptionResnetV2 164 299 × 299 
Resnet101 101 224 × 224 
Xception 72 299 × 299 
EfficientnetB0 82 224 × 224 
Darknet53 53 256 × 256  
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networks gain efficiency from their parallel structure and their ability to 
improve their performance by experience. Hence, they can be used to 
efficiently classify the observations into different classes [67]. They can 
store the information in the network with less fault tolerance capacity. 
Advanced developments have proved these networks as the function 
approximators as they can approximate any arbitrary functions by 
fine-tuning the number of hidden layers and their parameters [70]. 

The network includes connections, with each of the links designated 
to different weights. The information flow in the network exists only in 
one direction. The output of the previous layer serves as the input for its 
successive layer. The output of a neuron is represented as the weighted 
sum of its inputs. Equation (4) depicts the weighted sum of inputs of a 
layer. 

ρk
p =

∑mk− 1

q=1
wk

qprk− 1
q (4)  

where ρk
p represents the weighted sum of inputs, mk− 1 represents the 

number of nodes in (k − 1)th layer, rk− 1
q represents the output of the pth 

node in (k − 1)th layer and wpq denotes the weight of the link. Equation 
(5) denotes the output of a layer. 

rk
p = h(ρk

p) (5)  

where h represents the output function and p ranges from 1 to mk. Error 
loss is computed from the predicted and actual output by reforming the 
connection weights. Equation (6) depicts the error loss. 

δ =
1

2N

∑N

p=1
(rp − tp)

2 (6)  

where δ represents the error loss, rp and tp are the predicted and actual 
outputs, respectively. Accounting the error loss, the connection weights 
are updated. The weights are updated such that the δ values are mini-
mized. In each epoch of training, the weight reformation process hap-
pens for minimized error loss. Weight reformation takes place from the 
last layers proceeding towards the lower layers. 

Fig. 1 shows the diagrammatic representation of the model. The set 
f1, f2 …. , fn denotes the feature set extracted by the pre-trained net-
works, f

′

1, f
′

2…., f
′

n denotes the features after reducing dimensionality 
and h1, h2, h3, h4, …‥, h10 denotes the 10 nodes in the hidden layer of 
FFNN. These features are fed as input to the Feed Forward Neural 
Network. 

3. Results and discussions 

3.1. Experimental setup 

The experimentation was performed on Intel core i5 processor with 
GPU support of 4 GB and 8 GB RAM. The model has been implemented 
using MATLAB. Neural network toolbox by Jingwei Too [71] is used for 
implementing FFNN. Accuracy, F1-Score, Precision, Specificity, Sensi-
tivity, Area Under Curve(AUC) and Matthews Correlation Coefficient 
(MCC) have been computed to evaluate the model. 

3.2. Classification results 

The experiments were performed on both single pre-trained net-
works and concatenation of multiple pre-trained networks. For single 
CNN, the features were extracted and passed to Feed Forward Neural 
Network. Ten-fold cross-validation has been performed for analysing the 
model. Random partitioning of data into 10 equal folds with 9 folds of 
data treated as training and the remaining 1 fold serves as the testing 
dataset at each iteration. A single iteration takes 90% of data for training 
and 10% for testing. Analysing the model using a single pre-trained 
network as the feature extractor and a Feed Forward Neural Network 
as an off-the-shelf classifier exhibits good performance. The pre-trained 
networks used for the analysis phase are EfficientnetB0, Resnet101, 
Darknet-53, InceptionResnetV2 and Xception. The last fully connected 
layers of the pre-trained networks have been used as the feature 
extractor, which outputs a feature set of dimension 1046 × 1000. 

EfficientnetB0, Resnet101, Darknet-53, InceptionResnetV2 and 
Xception was able to achieve an accuracy of 0.9321, 0.9216, 0.86043, 
0.9149 and 0.9081, respectively. It was noticed that EfficientnetB0 
achieved the highest performance among the five networks used for 
training. The specificity, sensitivity, precision, F1-Score and AUC of 
EfficientnetB0 was 0.9452, 0.9188, 0.9305, 0.9425 and 0.9756, 
respectively. Out of 504 COVID radiographic images, 475 instances were 
correctly classified by the FFNN. Among 542 non-COVID-19 images, 500 
instances were correctly classified. 

Fig. 2 represents the graphical analysis of the model performance 
using single-CNN without using the dimensionality reduction module. 
Table 2 indicates the performance of the model using the Feed Forward 
Neural Network as the off-the-shelf classifier and without performing 
dimensionality reduction using sparse autoencoder. Using multi-CNN, 
the greatest performance was achieved using the combination of Xcep-
tion and EfficientnetB0 with an accuracy of 0.9301. Out of 542 in-
stances, 461 instances were predicted correctly. Fig. 3 depicts the 

Fig. 1. Architecture of the proposed method.  
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Fig. 2. Graphical analysis of model performance using Single-CNN without using sparse autoencoder.  

Table 2 
Performance of the model using CNN and FFNN, without using sparse autoencoder.  

Pre-trained model Specificity Sensitivity F1-Score Precision Accuracy AUC MCC 

InceptionResnetV2+Xception 0.9206 0.9350 0.9237 0.9127 0.9273 0.9750 0.8546 
InceptionResnetV2+Resnet101 0.9206 0.9350 0.9237 0.9127 0.9273 0.9750 0.8546 
Xception + Resnet101 0.9271 0.9100 0.9163 0.9226 0.9187 0.9733 0.8374 
Darknet53+Resnet101 0.9117 0.9458 0.9228 0.9008 0.9272 0.9564 0.8552 
Xception + EfficientnetB0 0.9225 0.9389 0.9147 0.9266 0.9301 0.9787 0.8604 
Xception 0.9145 0.9016 0.9087 0.9051 0.9081 0.9536 0.8163 
Darknet53 0.8379 0.8891 0.8115 0.8485 0.8604 0.9472 0.7222 
Resnet101 0.9021 0.9451 0.8889 0.9162 0.9216 0.9727 0.8441 
EfficientnetB0 0.9452 0.9188 0.9425 0.9305 0.9321 0.9756 0.8645 
InceptionResnetV2 0.9066 0.9243 0.8968 0.9104 0.9149 0.9599 0.8298  

Fig. 3. Graphical analysis of model performance using Multi-CNN without using sparse autoencoder.  

Table 3 
Performance of the proposed model using Sparse Autoencoder and FFNN.  

Pre-trained model Specificity Sensitivity F1-Score Precision Accuracy AUC MCC 

InceptionResnetV2+Xception 0.9594 0.9563 0.9563 0.9563 0.9578 0.9821 0.9158 
Darknet53+Resnet101 0.9423 0.9613 0.9487 0.9365 0.9511 0.9800 0.9025 
InceptionResnetV2+Resnet101 0.9227 0.9644 0.9378 0.9504 0.9417 0.9805 0.8842 
Xception + Resnet101 0.9454 0.9537 0.9471 0.940 5 0.9493 0.9893 0.8986 
Xception + EfficientnetB0 0.9436 0.9536 0.9460 0.9385 0.9483 0.9792 0.8967  
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graphical analysis of the multi-CNN model without using the dimen-
sionality reduction module. 

Dimensionality reduction using sparse autoencoder was performed in 
the second phase of analysis, which shows an improved result. Table 3 in-
dicates the model’s performance while using Sparse autoencoder and Feed 
Forward Neural Network. The best performance with an accuracy of 0.9578, 
F1-Score of 0.9563 and precision of 0.9563 was achieved with the combi-
nation of InceptionResnetV2 and Xception. The computation time taken by 
the model for testing 10% of the data is 276.87 s. The computation time 
taken by Darknet53+Resnet101, InceptionResnetV2+Resnet101, Xcep-
tion+Resnet101, and Xception + EfficientnetB0 were 550.938 s, 397.66 s, 
367.03 s and 312.18 s, respectively. 

To ensure that the results are statistically significant, p-value based 
on chi-square has been computed for the best performing model of 
InceptionResnetV2 and Xception. A p-value less than 0.00001 is ach-
ieved that show that the results are statistically significant at p less than 
0.05. Statistical model evaluation test, Matthews Correlation Coefficient 
(MCC) measure has also been analyzed for estimating model perfor-
mance. MCC values close to one account for a strong correlation be-
tween predicted and the actual class. The highest MCC value of 0.9158 
exhibited by the combination of Xception and InceptionResnetV2 de-
notes that the model is worth for distinguishing COVID-19 and non- 
COVID-19. 

Xception networks denote extreme inception, with the inception 
architectures as the backbone of these networks. The convolutions in the 
original inceptions modules are restored with depthwise separable 
convolutions in Xception networks. This correlation scanning of 2D 
followed by 1D mapping is easier and more effective than full 3D 
mapping [72]. InceptionResnetV2, on the other hand, is an updated 
inceptionv3 network capable of better performance achievement than 
other convolutional networks. A combination of the inception block 
followed by the residual block in the architecture and the shortcut 
connections adds to the performance enhancement of the model. Thus 
the concatenation of these two efficient networks results in improved 
feature set generation and improved results. 

The combination of InceptionResnetV2 and Resnet 101 achieved the 
highest sensitivity of 0.9644 and the combination of Xception and 
Resnet101 achieved the highest AUC of 0.9893. Even though the above- 
mentioned combinations achieved better sensitivity and AUC, the 
combination of InceptionResnetV2 and Xception outperformed the other 
combinations in all other performance measures. The experiments were 
repeated multiple times to ensure the stability of the results. As seed 
values were used to generate random weights and cross-validation folds, 
we could reproduce the same results each time. 

The results show that the accuracy of the model has been improved 

with sparse encoder dimensionality reduction technique. However, no 
pre-trained CNNs were able to achieve 100% accuracy. Few X-ray im-
ages were misclassified in all the methods. The major cause of false 
positives and false negatives are the similarities in X-ray images of 
COVID-19 and pneumonia images, which makes the accurate prediction 
difficult. Among 504 COVID-19 instances, 482 images were correctly 
classified and the remaining 22 images were misclassified using the best 
performing combination of Xception and InceptionResnetV2 with sparse 
autoencoder and FFNN. Out of 542 non-COVID-19 images, 520 images 
were correctly classified, and 22 images were misclassified. 

The statistical MCC test has proven that the model has improved its 
efficiency by incorporating sparse autoencoder technique. Fig. 4 repre-
sents the graphical analysis of the model after performing dimension-
ality reduction using sparse autoencoder. Fig. 5 presents the graphical 
analysis of the accuracy comparison, integrating dimension reduction 
and without dimension reduction methodology. 

To compare the performance of deep pre-trained CNN with shallow 
network, we further performed feature extraction using a single hidden 
layer sparse autoencoder and classification using FFNN. Feature 
extraction using the shallow sparse autoencoder and classification using 
FFNN achieved accuracy, specificity, sensitivity, f1-score, precision and 
AUC of 0.8528, 0.8345, 0.8755, 0.8412, 0.8095 and 0.9217, respec-
tively. The proposed method, which used deep pre-trained CNNs for 
feature extraction significantly outperformed feature extraction using 
shallow sparse autoencoder. 

3.3. Parameter setting 

For training the model using sparse autoencoder and FFNN, some of 
the parameters have been assigned. The parameters for the model con-
struction has been empirically initialized using trial and error method. 
Table 4 denotes the parameter setting used for training the model. The 
hidden size parameter for sparse autoencoder specifies the number of 
features to be extracted. The model is trained for an epoch of 100. 

3.4. Comparison of the results with other feature selection techniques 

Sparse autoencoder has been empirically chosen for dimensionality 
reduction after performing experimental analysis with two major 
feature selection techniques, namely, Principal Component Analysis 
(PCA) and Correlation Feature Selection (CFS). Attribute selection using 
CFS and PCA has been performed on Weka 3.6. The selected features 
were then passed to feed forward neural network. Table 5 presents the 
results obtained while passing the feature extracted from Inception-
ResnetV2 and Xception to different feature selection techniques. CFS 

Fig. 4. Graphical analysis of Multi-CNN model performance after performing dimension reduction using sparse autoencoder.  
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and PCA were able to achieve an accuracy of 0.8556 and 0.8899, 
respectively. Among PCA and CFS, the proposed Sparse Autoencoder 
dimensionality reduction technique has proven its effectiveness with an 
accuracy of 0.9578. The Sparse Autoencoder has achieved an AUC of 
0.9821, while CFS and PCA have acquired an AUC of 0.9326 and 0.9469, 
respectively. The time consumption for the sparse autoencoder, CFS and 
PCA were 190.308 s, 26 s and 260 s, respectively. 

The superior performance of sparse autoencoder is attributed in the 
following. Sparse autoencoders learn the data projections more effi-
ciently with the dimension and the sparsity constraints rather than the 

other feature selection techniques. Autoencoder networks learn 
nonlinear transformations and are also more constructive in terms of 
model parameters with various layers than PCA with a single trans-
formation [34]. 

3.5. Comparison of the results with other classifiers 

FFNN has been empirically chosen as off-the-shelf classifier from 
experimental analysis with various other classifiers. Table 6 presents the 
performance of various classifiers with the best performing multi-CNN 
and sparse autoencoder. It is evident that only FFNN achieved an ac-
curacy above 90%. Accuracy of Bayesnet, SVM, KNN, Random Forest 
and Adaboost falls in the range of 0.70–0.80. Among the different 
classifiers used for training, FFNN has achieved an accuracy of 0.9578 
using InceptionResnetV2 and Xception as the backbone of the model and 
Sparse Autoencoder as the dimensionality reduction technique. The 
superior performance of FFNN owes to its ability to arrest more complex 
patterns. The time taken for the classification phase by the FFNN, 
Bayesnet, SVM, KNN, Random Forest and Adaboost were 0.128 s, 0.81 s, 
2.17 s, 0.87 s, 2.1 s and 3.35 s, respectively. 

3.6. Comparison with other state-of-the-art methods 

Different state-of-the-art methods were analyzed for proving the 
effectiveness of the proposed model. Table 7 presents a consolidation of 
results achieved by other state-of-the-art methods and the proposed 
method. The comparison has considered only the methods using X-ray 

Fig. 5. Comparison of accuracy before and after employing sparse autoencoder as the dimensionality reduction technique.  

Table 4 
Parameter setting for Sparse autoencoder & FFNN.  

Parameters(Sparse autoencoder) Value 

Hidden Size 1000 
Random Seed 2 
L2WeightRegularization 0.001 
Sparsity Regularization 4.000 
Sparsity Proportion 0.0500 
Decoder Transfer Function purelin 

Parameters(FFNN) Value 

Hidden Layers 1 
Random Seed 1 
Maxepochs 100 
K-Fold 10 
trainFcn trainlm 
Net feed forward net  

Table 5 
Performance achieved using various dimensionality reduction/feature selection techniques, in combination with the proposed pre-trained model and FFNN.  

Pre-trained model Method Specificity Sensitivity F1-Score Precision Accuracy AUC 

InceptionResnetV2+Xception Proposed 0.9594 0.9563 0.9563 0.9563 0.9578 0.9821 
InceptionResnetV2+Xception CFS 0.9031 0.8146 0.8582 0.9067 0.8556 0.9326 
InceptionResnetV2+Xception PCA 0.9228 0.8595 0.8900 0.9226 0.8899 0.9469  

Table 6 
Performance achieved using various classifiers, in combination with the proposed pre-trained model and sparse autoencoder.  

Pre-trained model Classifier Specificity Sensitivity F1-Score Precision Accuracy AUC 

InceptionResnetV2+Xception Bayesnet 0.8299 0.7038 0.7713 0.8532 0.7562 0.7970 
InceptionResnetV2+Xception SVM 0.7949 0.7899 0.7828 0.7758 0.7925 0.7920 
InceptionResnetV2+Xception KNN 0.7851 0.7930 0.7761 0.7599 0.7887 0.7850 
InceptionResnetV2+Xception Random Forest 0.8667 0.7450 0.8073 0.8810 0.7973 0.8790 
InceptionResnetV2+Xception Adaboost 0.8017 0.7079 0.7587 0.8175 0.7495 0.8300 
InceptionResnetV2+Xception Proposed 0.9594 0.9563 0.9563 0.9563 0.9578 0.9821  
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images for the classification of COVID-19 and non-COVID-19 images. 
The methods employing CT scans and ultrasound for COVID-19 detec-
tion have not been considered, as they are entirely different modalities. 

The number of instances used for training the model is different for 
multiple methods analyzed. The methods by Pandit et al. [21], Panwar 
et al. [75], Sethy et al. [73], Ismael and Sengur et al. [26] and Hemdan 
et al. [76] used a held-out validation set for the evaluation, whereas the 
other methods have used cross-validation. The results are on par with 
the state-of-the-art methods. Even though all the methods have achieved 
significant results, the proposed method achieved a better AUC, F1-score 
and precision than the other methods. Fair comparison between the 
different results analyzed are not possible since each method has utilized 
different number of images for the study. 

3.7. Limitations and future research directions 

Even though the method achieved significant results, some of the 
constraints are worth noting. The method is developed for binary clas-
sification of COVID-19 and non-COVID-19 images. The model has not 
been explored in a multi-class scenario in classifying normal, COVID-19 
and pneumonia images. Also, a wide range of sparse autoencoder 
parameter values were not experimented in developing the model, 
which can be customized using the grid search method for relatively 
higher model performance. The method developed is specific to the 
diagnosis of COVID-19 from X-ray images. However, after empirical 
studies, it can be extended to diagnose other diseases. The method seems 
to have prospects in diagnosing other lung diseases and diseases that can 
be detected using X-rays. The strategy can also be applied to other im-
aging modalities, after customization. As a future research study, we 
propose applying the method for diagnosing COVID-19 from other im-
aging modalities such as CT and Ultrasound. 

4. Conclusion 

The proposed model implements a computer-aided model for 
COVID-19 detection utilizing chest X-ray images using Sparse Autoen-
coder and Feed Forward Neural Network. The concatenation of multiple 
pre-trained networks for feature extraction has been implemented which 
outperforms single-CNN. The usage of Sparse Autoencoder has greatly 
contributed in improving the accuracy of the model. It is worth noting 
that the performance of the model has considerably increased with the 
usage of the dimensionality reduction phase rather than using the Feed 
Forward Neural Network alone. From the analysis phase it is observed 
that combination of Xception and InceptionResnetV2 achieved greatest 
accuracy in combination with the custom-made sparse autoencoder and 
FFNN. 
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