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Abstract

Summary: While alignment has been the dominant approach for determining homology prior to phylogenetic infer-
ence, alignment-free methods can simplify the analysis, especially when analyzing genome-wide data. Furthermore,
alignment-free methods present the only option for emerging forms of data, such as genome skims, which do not
permit assembly. Despite the appeal, alignment-free methods have not been competitive with alignment-based
methods in terms of accuracy. One limitation of alignment-free methods is their reliance on simplified models of
sequence evolution such as Jukes—Cantor. If we can estimate frequencies of base substitutions in an alignment-
free setting, we can compute pairwise distances under more complex models. However, since the strand of DNA
sequences is unknown for many forms of genome-wide data, which arguably present the best use case for
alignment-free methods, the most complex models that one can use are the so-called no strand-bias models. We
show how to calculate distances under a four-parameter no strand-bias model called TK4 without relying on
alignments or assemblies. The main idea is to replace letters in the input sequences and recompute Jaccard
indices between k-mer sets. However, on larger genomes, we also need to compute the number of k-mer
mismatches after replacement due to random chance as opposed to homology. We show in simulation that
alignment-free distances can be highly accurate when genomes evolve under the assumed models and study the
accuracy on assembled and unassembled biological data.

Availability and implementation: Our software is available open source at https://github.com/nishatbristy007/NSB.
Contact: smirarab@ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

The dominant methodology used in phylogenetic inference is
assembling and aligning sequences and using the alignments as in-
put to phylogenetic inference. However, a large body of work also
exists on alignment-free (Bogusz and Whelan, 2016; Daskalakis
and Roch, 2013; Haubold, 2014; Hohl and Ragan, 2007; Jun et al.,
2010; Leimeister et al., 1 2017; Wu et al., 2009) and even
assembly-free methods for inferring phylogenies (Allman ez al.,
2017; Fan et al., 2015; Linard et al., 2019; Sarmashghi et al., 2019;
Yi and Jin, 2013). While, for the most part, the alignment-free
methods have not been as accurate as alignment-based methods
(Bogusz and Whelan, 2016; Hohl and Ragan, 2007), they do
provide several benefits and enjoy emerging applications. The most
obvious advantage is that inferring alignments is difficult, and
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forgoing them would simplify the tree inference. The challenges are
further exacerbated when working with genome-wide data, where
long sequences and large-scale events such as rearrangements fur-
ther challenge alignment (Zielezinski ez al., 2017). There is, there-
fore, a hope that by skipping the alignment step, we can eliminate
the errors (Zielezinski et al., 2017) that can occur in the alignment
step and impact phylogenetic accuracy (Wang et al., 2011; Lunter
et al., 2008; Ogden and Rosenberg, 2006). In particular, at the
whole-genome level, homology detection and alignment are both
challenging and error-prone (Earl et al., 2014; Letsch and Kjer,
2011; Springer and Gatesy, 2018). Therefore, it seems possible
(though by no means certain) that alignment-free methods could
provide a better trade-off between accuracy, running time and com-
plexity of analyses, especially for analyzing genomes (Forsdyke,
2019).
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The main advantage of alignment-free methods may come from
situations where alignment is not possible. In particular, genome
skimming has recently emerged as a promising method of acquir-
ing genome-wide data inexpensively (Bohmann ez al., 2020) by
generating short reads from across the genome at low coverage
(e.g. 1X). While such data cannot be assembled, mapping them
against a reference genome, when available (Westbury ez al.,
2021), or analyzing them in an assembly-free fashion, when refer-
ences are unavailable, are now possible (Balaban and Mirarab,
2020; Balaban ef al., 2020; Lau et al., 2019; Sarmashghi et al.,
2019; Tang et al., 2019). Multiple sequence alignment is not pos-
sible given the low coverage, leaving us with alignment-free meth-
ods as the only option. Many assembly-free methods use k-mers to
compute distances between all pairs of species and use distance-
based methods to infer a phylogeny. A long history (Reinert et al.,
2009; Ren et al., 2018; Yi and Jin, 2013) of methods using k-mer
counts (with small k) exists. Some recent k-mer-based methods
that work with both assembled and unassembled data and model
low coverage instead use presence/absence with large k (Fan et al.,
2015; Sarmashghi et al., 2019; Tang et al., 2019); refer to a recent
benchmarking analysis for a complete survey (Zielezinski et al.,
2019).

Despite their practical benefits, alignment-free methods have
limitations of their own, notably, the reduced complexity of the se-
quence evolution models employed. Most alignment-free methods
rely on the simplest model of sequence evolution, Jukes—Cantor (JC;
Jukes and Cantor, 1969), which assumes equiprobable bases and
base substitutions. Criscuolo (2019) recently showed how to com-
pute alignment-free distances under the slightly more complex F81
(Felsenstein, 1981) model where the base frequencies can be differ-
ent. By contrast, alignment-based methods use more complex mod-
els, such as the general time-reversible (GTR; Tavaré, 1986) model
paired with models of rate variation across sites and further parti-
tioning data to allow changing model parameters. The reliance on
models like JC and F81 is not an oversight by the research commu-
nity. In the absence of alignments, it is more challenging to design
methods for more complex sequence evolution models that need to
estimate parameters related to relative rates of substitutions among
bases. The difficulties are exacerbated by the fact that sequences can
come from either of the two strands for unassembled and unaligned
data, making it difficult to calculate some parameters of complex
models and impossible to compute others (Zagordi and Lobry,
2005). Nevertheless, Sarmashghi ez al. (2019) proposed a trick that
they conjectured could be used in conjunction with the well-known
LogDet technique (Steel, 1994) to compute distances under the GTR
model from unassembled reads. The claim that distances under
more complex time-reversible models like GTR can be computed
from unassembled data has never been carefully examined.

Here, we observe that for unassembled input data, where reads
can be of either strand, no strand-bias models are the most complex
time-reversible models one can employ. We go on to describe an
algorithm that can estimate all the parameters needed to compute
distances for a time-reversible no strand-bias model called TK4
(Takahata and Kimura, 1981). Our algorithm replaces the nucleo-
tide characters in input sequences in four ways (e.g. C — G) and
computes the Jaccard index between these letter-substituted sequen-
ces. We then observed that a fundamental assumption of many
k-mer-based methods (that matching k-mers can only appear by
homology for a large enough k) is often violated after letter substitu-
tions, especially for genomes with unbalanced base frequencies, be-
cause the number of characters in the base genomes decreases from
four to three. Luckily, the expected number of random matches be-
tween two k-mers from two random genomes can be derived
(Rohling et al., 2020); we go one step further and compute the
expected (containment) Jaccard between two unrelated genomes
(Lemma 1). Using these calculations, we can correct for the effect of
non-homologous k-mer matches. We go on to show that using this
technique to compute distances under the TK4 model can improve
accuracy compared to JC, especially when the distances are high and
deviations from the JC model are sufficiently high. We then use bio-
logical data to demonstrate that using the TK4 model improves the

concordance of phylogenetic trees inferred using alignment-free
methods and alignment-based methods, indicating improved accur-
acy. We end by discussing the limitations of the method.

2 Approach

2.1 Background information

2.1.1 Evolutionary model

Suppose that we have two homologous DNA sequences G and H on
character alphabet £ = {A, C, G, T} taken from two species F7 and
F that share a common ancestor. For a given base i € %, let i de-
note its complementary base (e.g. A = T). We assume that each
homologous site in G or H is evolved independently and according
to a stationary continuous-time Markov-chain process on state set £
that is defined by a 4 x 4 instantaneous rate matrix R = (7;). Letting
n=[na 7mc =me nr] denote the stationary base frequencies in G
and H (thus, 7R = 0), the most general time-reversible stationary
model, GTR (Tavaré, 1986), adds local balance constraints (i.e.
Vi,j : mirij = mjrji), which lead to nine free parameters. Another con-
straint is added by requiring the time to be in the unit of one
expected mutation, leaving us with eight free parameters. The transi-
tion matrix P = R governs probabilities of base substitutions after
time ¢.

We aim to estimate the time of divergence # between the two
given genomes. Such estimates, if statistically unbiased, would con-
verge to additivity and can be used with any distance-based phylo-
genetic inference method. In the last 50years, numerous models
with reduced complexity (i.e. fewer parameters) compared to the
general Markov model have been proposed (Hasegawa et al., 1985;
Jukes and Cantor, 1969; Steel, 1994; Tamura and Nei, 1993), and
some of these models have analytical equations for distance calcula-
tions (Hasegawa et al., 1985; Tamura and Nei, 1993). For example,
let genomic distance d be the probability of observing a change in a
homologous position. Under the simplest model, JC, the maximum
likelihood estimator is

.3 4
t:72m<1f§d>. (1)

2.1.2 No strand-bias models

A restriction of GTR, relevant to the study of next-generation
sequencing (NGS) reads, is the model proposed by Sueoka (1995).
Chargaff (1951) had earlier noted that in double-stranded DNA, the
frequency of A should equal T, and that of G should equal C (parity
rule 1). Thus, an i — j substitution occurring on the forward DNA
strand must have an identical rate to an i — j substitution occurring
on the reverse strand, which is the basis of Sueoka’s no strand-bias
model (Fig. 1). Since an i — j entails an i — ; substitution on its op-
posite strand, the model constrains 7;; = 5 and therefore reduces
the number of independent parameters in the model to six.
Surprisingly, the parity of A with T and C with G has been exten-
sively documented on single-strand DNA as well (parity rule 2;
Mitchell and Bridge, 2006). The reason behind parity on a single
strand has been debated from the start (Forsdyke, 1995; Galtier and
Lobry, 1997) and continues to be debated (Forsdyke, 2021; Meyer,
2021), with the two (not mutually exclusive) hypotheses based on
(i) Sueoka’s model of mutational bias in the replication of polymer-
ase in neutrally evolving genomes (Lobry, 1995; Sueoka, 1995) and
(i) Forsdyke’s structural model that invokes selective pressure.
Regardless of the cause of parity rule 2, a no strand-bias model can
be appropriate even for single-strand data, as Sueoka intended the
model to be used.

In this article, we deal with conditions where the no strand-bias
model is the best we can do due to parity rule 1. Assume that G is
not a single-stranded sequence but a set of # homologous sequences
G1,Ga,...,G, (similarly for H) where each sequence G; or H; comes
from an arbitrary strand. Inputs made of k-mers, reads or
(unaligned) contigs can be viewed this way. With these data, 7; is
unidentifiable from 5 The main limitation of the no strand-bias
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Fig. 1. (a) Sueoka’s no strand-bias model of evolution with six rate parameters. TKS model (b) is a special case of the six-parameter model with the constraint 741 = rgc. TK4
is the time-reversible version of the TKS model with the condition » = %ﬁ = 5 where w is the total equilibrium frequency of bases A and T. (c) Nucleotide base pairs in hom-

ologous sites and their observed relative frequencies

model is that it does not allow analytical calculation of distances
(Zagordi and Lobry, 2005).

Predating Suoeka’s paper by 14years, Takahata and Kimura
(1981) introduced the five-parameter non-time reversible model
TKS (Fig. 1b) that imposes on the general six-parameter model the
constraint 741 = 714 = rGc = rcg = y and assumes that ©4 = n =
w/2 and nc=rmnc=(1-w)/2. By imposing w= ﬁ =5,
Takahata and Kimura (1981) introduce a time-reversible version of
the TKS model with four parameters, called TK4, and derive an ana-
lytical formula for distance estimation under TK4. This equation
uses 16 combinations of bases possible at each site, as summarized
in Figure 1c. Let f;; for 7,j € Z denote the relative frequency of sites
where the first and second genome has character 7 and j, respective-
ly. We define P = fac + foa + frc + fer, Q = fac + fea+ frc +for,
R = far +fra, S =fcc + foc, S1 = faa + frr, and S = fec + foo-
Note that P+ Q1 + Q2 + R+ 81 + 8> = 1. An unbiased estimated
phylogenetic distance ¢ between G and ‘H is given by Takahata and
Kimura. We note that the original article (Takahata and Kimura,
1981) has a mistake and has the term (S;+ Qi) instead of
(S1 — O1). Substituting the values of X_(T) and Y_(T), as defined
in Equation (2) of the original paper, to Equation (18) in the original
paper results in (S; — Q4) instead of (S; + Q1) and gives us the
estimator:

1 [fsi-00s: - 00 - ()
4 n w(l - w) (2)

P+R 8u(l-w)-1
~{172(1)(1—(»)} ’

where  can also be written as:

fo—

szl+Q1+%(P+R) (3)

Comparing (1) and (2), it is not obvious if the differences are
consequential. By plotting the relative difference between (1) given
the expected hamming distance under TK4 and the true time ¢, we
can see that when parameters diverge from JC in biologically plaus-
ible ways, the often-used equation (1) can underestimate the true
distance by more than 25% (Fig. 2). For example, with an AT-rich
genome with @ = 0.75, setting « = 4 but keeping all other parame-
ters equal to JC leads to 8% and 16% bias for true distances
t=0.25 and 0.5, respectively. As expected, bias is reduced when
TK4 parameters are all close to 1 (i.e. JC assumption). Overall, it
seems that high levels of bias correspond to cases where some of the
relative rates diverge from others while base frequencies also diverge
substantially from 25% (both of which are biologically plausible).

2.1.3 Assembly-free distance estimation
Although it is trivial to compute observed frequencies of substitutions
between two aligned sequences, such calculations are challenging in the

absence of alignment, for instance, when inputs are sets of unassembled
reads. In the assembly-free setting, most methods assume the simple JC
model, which only requires genomic distance. Luckily, various
alignment-free methods can estimate d (Jain ez al., 2018; Ondov et al.,
2016; Sarmashghi et al., 2019; Yi and Jin, 2013). Many of these algo-
rithms (Sarmashghi ez al., 2019; Ondov et al., 2016) break down the
genome skims into k-mers.

We assume that a genome X is a finite i.i.d. stochastic process
X1X; -+ X;, where each random variable (site) X,,, is drawn from
categorical distribution with probability distribution P[X,, = A] =
P[X,y = T) = n4 = 17 = /2 and P[X,, = C| = P[X,, = G| = n¢c =
76 = (1 —w)/2. A k-mer at position m is X;u X1 - Xpmyh1 and
denoted with x,, in short. We make the standard simplifying
assumption of k-mer independence (x,, is independent from all k—1
k-mers on each side). We denote the set of all k-mers in X with
s(X). When k is sufficiently large with respect to L and w, we can as-
sume that |s(X)| ~ L. A second genome ) originates from X
through a substitution process described earlier. The probability of a
match between two homologous k-mers is (1 — d)*. Therefore, the
expected total number of homologous k-mer matches between s(X)
and s(Y) is approximately $ = L - (1 — d)* (Fan et al., 2015; Ondov
et al., 2016; Sarmashghi ez al., 2019). Denoting by C = %/t the con-
tainment Jaccard index, note that

d=1-Ct. (4)

The Jaccard index ], defined as the intersection divided by the
union of two sets, is easy to compute using techniques such as min-
hash (Ondov et al., 2016). Thus, instead of C, most methods have
relied on /, which is intimately connected to C because | = 575 and
thus, C=4 = 2L Finally, following the TK4 notations, d = P + O

=14
+Q3 + R holds.

2.2 Containment Jaccard correction

In addition to homologous ones, k-mers in non-homologous posi-
tions in the two genomes can also match, albeit with lower probabil-
ity. Distance estimation using the Jaccard index requires computing
the number of shared k-mers through homology. The number of
non-homologous k-mer matches contributing to [s(X') N s(Y)] is neg-
ligible in most settings when k is large enough for the size of the al-
phabet; e.g. k=31 with |Z| = 4, leading to 43! ~ 4 x 10'® possible
k-mers. However, our algorithm for estimating TK4 distances
requires reducing the alphabet set to three letters, which may lead to
biased probabilities based on the value of w. Under such conditions,
the non-homologous k-mer matches cannot be ignored.

Rohling et al. (2020) have derived an expression for the expected
number of k-mers x,, and y,, n # m that match between the two
genomes by chance (i.e. not through homology). However, to com-
pute the contribution of non-homologous k-mer matches to
|s(X) Ns(Y)], not only we need to know the expected number of
k-mers matching by chance, we also need to account for a k-mer x,,
matching multiple k-mers in the other genome. Consequently, we
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Fig. 2. JC under-estimates TK4. The gradient shows relative bias of JC defined as % with # computed using Equation (1) where d is set to the expected hamming distance under
TK4, which can be computed as d = 1 — n.diag(e®’). Each subplot corresponds to a choice of «,d,7, changing « across rows and 7 across columns, fixing = 1. The x-axis
changes the true evolutionary distance #, and the y-axis changes the base frequency parameter . Note that the JC model correspondstox =5 =y =40 =1

propose a more precise estimate for the cardinality of the intersec-
tion between two random genomes.

Lemma 1The expected value of C , containment Jaccard for
k-mers between two genomes X and Z generated by two i.i.d processes
with stationary distribution np = nr = 0/2 and nc = ng = 1;“’, is:

I\ 2
Lok k (%) “(1—w)k_a k (5)
- ()
a=0
Proof.For0 < a < k,letr € =% be a k-mer with a A’s and T’s.

Pixm=1r)=Pam=r)= (%)“(I—Tw) "‘“.

Thus, due to the independence assumption of x,,, from its overlap-
ping neighbors, the probability of 7 being in set s(X') is the following

_ sons(2)]
L

L

P(res(X)) =1—P(rgs(X)) =1 [[P(r#xm)

m=1
=1-(1-P@r=x,)*
k—a L
=1 (1= ()")
Results follow by noting that there are 2* <k) many selections
for each r and P(r € s(X)) = P(r € s(2)). O
By stationarity of the substitution process, ) has the same base
frequencies as X. Thus, |s(X) Ns(Z)| can be used to estimate the
non-homologous portion of |s(X) Ns(Y)|. In other words, [s(X) N
sV —|s(X)Ns(Z)| is the number of homologous k-mers.

Combining (4) and (5), d can be estimated from the containment
Jaccard C of X and Y:

d=1-(C-E[C]). (6)

On unassembled data, we account for lack of coverage and
sequencing errors when computing d using the approach of Skmer
(Sarmashghi ez al., 2019) as detailed in Supplementary Methods.
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2.3 Calculation of TK4 terms via replacement

Given the possibility of high error with the JC model (Fig. 2), we
would like to develop alignment-free methods of computing distan-
ces according to the TK4 model using (2). Therefore, our goal is to
estimate the terms P, Q1, O, R, S1, S, and w. Consider the replace-
ment technique where every occurrence of a character i € ¥ in X
and ) is replaced with character j € X, i # j. Let d;; be the genomic
distance between two genomes after such replacement. The reduc-
tion in genomic distance after 7 to j substitution is exactly fj; + f;i.
Using the Equation (6), d;; can be estimated from empirical contain-
ment Jaccard C; and expected number of background k-mer
matches E[C,,] Using this replacement scheme, the P, Qy, O, and R
terms in (2) are estimated as follows:

P=2d— dA(—d(T O1 = d dAT_
R = Zd dA(' — dGT Qz = dCG

As base frequencies w = (n"zﬂ can be trivially computed from
X and Y, we can compute the remaining terms S; and S using (3):

7

P+R

P+R
S1=w— Ql—T $; =

1-0-0;- — (8)

As mentioned previously, estimating d;; requires computation of
E[C;]. Calculating this term depends on the type of replacement.
Lemma 1 can be easily updated to account for replacements. For
instance,

s (o5 )) (e
E[Ccq] = %; (l - <1 - (%)a(l — w)kﬂ>L>2<§)2a

Since letter replacements (especially A to T for v > 0.5 and G to
C for @ < 0.5) lead to a high expected number of shared k-mers by
chance, correcting for random matches is essential. For example,
with a pair of genomes of length 10* and w = 0.6, the expected
number of background matches between two-way genomes after
A-to-T replacement is 289 000, which is 5x larger than the number
of homologous k-mer matches when ¢=0.5. Supplementary Figure
S2 shows the accuracy of Equation (9) and their improvement over
simply using the expected number of k-mer matches derived by
Rohling et al. (2020).

2.4 Handling mixed-strand conditions

We now consider the case in which each k-mer in X and ) may
come from the forward or reverse DNA strand arbitrarily. In prac-
tice, chromosomes or contigs in an assembly or reads in a sequenc-
ing run may come arbitrarily from either forward or reverse strands.
For simpler exposition, assume each genome consists of a single con-
tig from an unknown strand (the method can handle any number of
contigs or reads). Let X’ be another finite i.i.d. stochastic process
X1 X5 X5 ... X such that is X} = X; with some unknown but fixed
probability p, > 0 and X} = X _; with probability 1 — p, where X;
is the reverse complement (RC) of X;. )’ is defined similarly. The
genomic distance between X and ) can still be computed using (4)
by using canonical k-mers, a concept utilized by several tools
(Margais and Kingsford, 2011; Ondov et al., 2016). We utilize the
same concept j}nd constrggt a two-way genome Z=
22075 .. ZVZ2, 2, 1ZL ... Zy with Z € {X,Y} by adding the
RC of each genome to 1tself By design, both forward and reverse
copies of each k-mer in Z are present in Z. If x,,, = y,,,, either (x,, =

ym) A (QICZL*WI = yZL—m) or (xm = yZL—m) A (xZLfm = ym) Either
way, the number of homologous k-mer matches and genome length
both double compared to the case where all sequences are of the
same strand, leaving containment Jaccard due to homologous
k-mers unchanged; thus, Equation (6) is applicable to two-way
genomes as long as E[C] is computed with 2 L.

Similarly to the replacement technique, we introduce i to j
replacements on a two-way genome. For each homologous site (X,,,,
Y,,.) in the base genomes X and Y, we have two pairs of homologous
sites in Xand )} Although there are four alternative choices for as-
signment of forward and reverse strand to {Xm7 Y Xo1—m,
YzL m}> without loss of generality, let X, Vi) = (Xm,Y ) and
(XZL w, Yor_ m) = (X, Yu). After replacing every occurrence of i
with j in Xand )}

P(Xm:Ym)zl_(d_P(Xm:i7Ym:j)

. —P(Xn =, Y =1))

Youm)=1—(d—-PXu=1,Yn=7)
_P(Xm:77ym:;))

P(Xor—m =

The reduction in the genomic distance between Xand Yafter the
replacement, d —dj, is f;+f; in the forward strand (i.e.
(Xl, Yl) N (XL, YL)) and f;; Jrf/’-;
(XLH, YL+'I) ... (XzL, YZL))- The overall reduction is the average of
the reduction in the forward and reverse strands, which is
%(fz] "rf,‘i + f;; +}%;). As aresult, dgyg = dcr and dac = dgr. The P,
Q1, O, and R terms in (2) are estimated from two-way genome
using:

in the reverse strand (i.e.

P=2d- 2dAG QlZC?—CgAT
R=2d—2dsc Or—d—dco

_ Thus, we need to _compute only five values from the data,
d, dac, dag, dat and d g in addition to an estimation of w.

Although P, Q1, Q> and R can be determined independently
given the estimate d, they must satisfy the constraint P+ Qi+
Q; +R= d Thus, d Zd ZdAG +d dAT+d dCG +2d—
2d sc. Since all five estlmated values d dA(J, dA(,, dAT and d(J(, are
empirical, it cannot be ensured that this equation will be satisfied. In
other words, the system of equations has one excess observation.
Among the five, the distance with no replacements d is always the
largest, i.e. has the lowest containment Jaccard index. For large dis-
tances, the containment Jaccard can be zero, which prohibits com-
puting any evolutionary distance (JC or TK4) from the data. In
order to increase the distance upper-bound of TK4 model, we opt to
reduce the number of free variables in the system by computing d
from dj;, not directly from data. More precisely,

d Zd ZdAc -‘rd dAT-‘rd dcc +2d ZdAC

10
(ZdAG +2dAC+dAT+dCG)/5 (10)

We use this equation to compute JC model distances using (1)
and to calculate P, O, Q¢ and R as a linear combination of four d;;
distances calculated using (6) after replacement:

P=(- 6dAG +4dAc+2dAT+2ch)/5
R= (4dA(, - 6dA( + ZdAT + cho)/5
O = (ZdA(; +2dAC—4dAT+dCG)/5
02 :(ZdA(,+2dA( +dATf4d((,)/5

(11)

2.5 NSB: TK4 distance estimation using k-mers

Algorithm 1 combines results in the previous sections into a three-
step process (Supplementary Fig. S1) for estimating phylogenetic dis-
tances under the TK4 model. We implemented the algorithm using
Python in a method called the NSB (No Strand-Bias) distance esti-
mator. In its first step, NSB adds the RC of all input sequences. It
then builds separate k-mer libraries for each of the inputs using a
left/right encoding scheme where nucleotide bases A, C, G and T are
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Algorithm 1. NSB: TK4 Distance estimation. We denote the
set of all reference sequences by S. NSB first runs
PREPROCESS; ADD_RC computes the RC of a genome. It
then calculates pairwise distances of the sequences according
to the PAIRWISE-DIST procedure. BG_INTERSECT com-
putes expected number of background matches after replace-
ment the using Equation (9).

1: procedure PREPROCESS(S)

2: for G Sdo

3 E —ENCODE(ADD_RC(G))

4 for (i,j) € {(A4,C),(A,G),(A, T),(C,G)} do
S: Ej—J

6 for e € E do

7 E; — E;U{i_TO_j(e) }

8 Save {EAC;EAG7EAT7ECG} to disk
9: procedure ENCODE(G2,4y)

10: E—J

11:  for k-mer a € Gyypay do

12: e «— 2k bit zeros

13: for letter [; € a do
14: e —1ifl; € {C,G}
15: e — 1if I € {A, G}

16: E — EuU{e}

17:  return E

18: procedure A_TO_C(e)
19:  mask — 2% -1

20: ey « first k bits of e
21: e, « last k bits of e
22: ez — ep & (el ©mask)

23: e] «— eq @63

24. ey «— ey @63

25:  return 2k bits ((e; < k) +e2)

26: procedure PAIRWISE-DIST(G4, G,)

27: for (i,) € {(A,C),(A,G), (A, T),(C,G)} do

28: (Eij1,Eij2) < Read encoded (Gy, G,) from disk
29: Dif — GENOMEiDIST(E,H 5 Ei/’.Z» Ll7 Lz, w1, wz)
30: return CLC-TK4-DIST(Dac, Dag, Dat,Dcg)

31: procedure CLC—TK4—DIST(DAc, DAG, DAT, DCG)

32: D« (2DaG +2Dac + Dar + Dcg)/S

33: P+~ D —Dgyc

34: Q1< D—Dyr

35: Q2 D—Dcg

36: R« D—Dyc

37 o+ (w1 +w)/2

38 Si<—w—-(P+R)/2-01

39: S —1-w—-(P+R)/2-02

40: return TK4 distance using Equation (2)

41: procedure GENOME_DIST(E,H 7Eif_27 L1 3 Lz, w1, a)z)
42: |« |E,'/'11 mEi/',Zl

43: I, — BG_INTERSECT(i,j, L1, L2, w1, w2)

44: C«—2(I—-1.)/(L1 + L,) # Containment Jaccard

1

45:  return 1 — (C)t

> an example of i_TO_j function

represented as two-bit numbers, thus requiring 64-bit integer for k
< 32. NSB then builds base substituted encoded k-mer libraries
from the initial encoded library by replacing the encoded bits of
base i with the encoded bits of base j, for (i,j) € {(A,C), (A, G),
(A, T),(C,G)}. Thanks to a Left/Right encoding scheme, a replace-
ment operation on an array of k-mers can be computed rapidly using
fast and vectorized bitwise operations such as XOR, AND and Shift

(e.g. see A_to_C function in Algorithm 1). Finally, NSB computes
the Jaccard indices for four pairs of base-substituted encoded libra-
ries by computing the cardinality of the intersection succeeded by
containment Jaccard correction. In practice, input genomes are sel-
dom the same size and with the same base frequencies. When com-
puting IE[C,v,-] using Lemma 1, P(r € s(X)) and P(r € s(})) are
computed using L and o of the respective genome for a given k-mer
r. In the final stage, we estimate the phylogenetic distance of each
pair of genomes using Equation (2). Various components in this
equation are calculated using the Equations (8)—(11). L and w are
set to the average of the two input genomes. When input data are
unassembled (reads), we run Skmer prior to NSB to obtain L, cover-
age and sequencing error rate. Computing the cardinality of the
intersection between two encodings of size N takes O(N log(N))
time and O(N) memory. Therefore, the time and memory complex-
ity of Algorithm 1 are O(n>N log (N)) and O(N) since no more than
two encodings are loaded into the memory simultaneously.

3 Validation results

We validate NSB in simulations and on real data and compare it to
three methods. NSB-JC is JC distance computed using (10) and (1)
with our tool. We also test using Jellyfish (2.3.0) and Skmer (3.1.0)
to estimate containment Jaccard index and subsequently JC distance
using (1) and (6). Jellyfish computes Jaccard exactly, and Skmer
approximates it using 10° sketches. On genome skims, we compare
NSB-TK4 to Skmer.

3.1 Simulation study

3.1.1 Simulating genome sequences under the TK4 model

We use our own procedure to simulate pairs of genomes evolved
under the TK4 model with controlled levels of distance and model
parameters (https://github.com/balabanmetin/tk4-evol-sim). First,
we either use a real genome as the ancestral genome or simulate one
by drawing each site randomly from © with user-defined w. We
simulate two separate genomes from the ancestral genome by intro-
ducing substitutions at random positions. The frequency of each
substitution type is determined by the TK4 model transition prob-
ability matrix P and half of the targeted distance #/2, producing two
genomes with the evolutionary distance . We create two simulated
datasets. The first dataset uses a randomly generated 100 Mb base
genome with @ = 0.6. The second dataset uses a real assembled gen-
ome of Saccharomyces arboricola (11 Mb) as the base sequence.
The base frequencies of the available S.arboricola genome are ms ~
nr ~ 0.307 and 7n¢c ~ ng =~ 0.193, which follow the assumptions of
TK4 with @ = 0.614. We set the parameters of the TK4 model
according to Figure 1, exploring eight values of o, J, and 7. Recall
that %=/ and o :%:Lf&, leaving us with only three free
parameters for a fixed w. We generated eight model conditions with
different TK4 parameters (Supplementary Table S1) chosen to in-
clude cases with both minimal and substantial deviations from the
JC model based on the earlier calculations (Fig. 2). For each model
condition, we simulated genome sequences with true distances
t €{0.01,0.05,0.1,0.2,0.3,0.4,0.5}, each with 10 replicates, cov-
ering a range of both short and long distances.

3.1.2 Results on simulations under the TK4 model

3.1.2.1 Random base genomes. When input genomes are generated
in the i.i.d. fashion assumed by both evolutionary models, across all
model conditions, and regardless of the true phylogenetic distances
t, the distances estimated by NSB-TK4 are highly accurate (Fig. 3).
By contrast, JC distances are accurate when the true distance ¢ is low
but are under-estimated when ¢ increases. In the most challenging
case, t=0.5, NSB-TK4 deviates only 0.3% from the true value on
average compared to 7.8% for Jellyfish-JC. The error of Jellyfish-JC
is as high as 18% when y=32, which causes extreme deviations
from JC. The best performance of JC is when all parameters except
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Fig. 3. Comparing the accuracy of distances estimated by different approaches on random and Yeast-based simulated genomes. Genome sequences were simulated by randomly
substituting the genome skims of S.arboricola (11 Mb) and a random 100 Mb sequence with eight sets of TK4 parameters and with seven controlled true distances. Here,  is

fixed, and since these rates do not have a scale, «=1 in all cases. We show the average true distance divided by estimated distances (y-axis) with standard errors (over repli-
cates, requiring at least two) against the true distances. Annotated numbers show the number of replicates out of 10 where Skmer or JellyFish return infinity. See

Supplementary Figure S4 for linear scale

o follow JC. As models become successively more deviant from JC
assumptions, the accuracy of JC diminishes.

Finally, comparing the two ways of obtaining JC distances, for
t < 0.3, the approximate Skmer distances are slightly more accurate
than Jellyfish. However, when #> 0.3, Skmer distances become less
accurate. When true distance ¢ > 0.4, Skmer fails to estimate distan-
ces in some cases (most cases for t=0.5) because the true Jaccard
index becomes too small (e.g. < 1075) to compute reliably with
sketches of size 10°.

3.1.2.2 Yeast-base simulations. The TK4-based calculations show
improvements over JC computed using NSB or Skmer across some
model conditions except for 6 =7y =1 that resembles JC (Fig. 3).
However, the comparison to JC computed exactly (using JellyFish)
is more complex. When deviations from JC are relatively low,
JellyFish-JC can be as accurate or even more accurate than
NSB-TK4. It is only with higher levels of deviation from JC that
improvements of NSB-TK4 over JC are clear. Regardless of simula-
tion parameters, phylogenetic distances ¢ < 0.1 are estimated with
high accuracy under both TK4 and JC models. However, the JC
model starts to underestimate the distance as we increase the dis-
tance t, and the underestimations are substantial when ¢t > 0.3.
Moreover, the JC error is not linear or even monotonically increas-
ing with ¢, meaning that the distance matrices obtained from the JC
model may not be additive. When ¢ is increased to 0.5, TK4-based
distances tend to have reasonable accuracy with a few exceptions
(e.g. for y=38). In some cases, TK4 distances have more than 10%
error with increased ¢ and are consistently less accurate in three con-
ditions than JC. Comparing the results to random base genomes, the
reduced accuracy of TK4 on these conditions has to be due to viola-
tions of the model in the base genome, a point that we will return to
in the Discussion section.

Finally, we explore the impact of the choice of k-mer size on ac-
curacy. We select the simulated yeast genomes with a fixed model-
condition 6=1 and y=4 and test k € {21,23,25,27,29,31} over
10 replicates. We do not explore k> 31 because Jellyfish and NSB
do not support it. No single k value performs universally better than
others (Supplementary Fig. S3); the choice depends on the distance
and the method. For k=21, NSB-TK4 overestimates or underesti-
mates the true distance when d < 0.1 or 0.1 < d < 0.4, respect-
ively. On the other hand, for d values larger than 0.4, NSB-TK4

does not return a valid distance due to overestimation of the number
of background matches. As k increases, distance estimation using
NSB-TK4 becomes more accurate, reaching peak accuracy with
k =31. More generally, NSB-TK4 and NSB-JC are more sensitive to
the selection of k than Jellyfish and Skmer. For example, when
d=0.4, the estimation error difference between the most and the
least accurate estimates are 13.7% (k=31 and k=23), 12.5%
(k=31 and k=23), 6.3% (k=27 and k=31) and 1.2% (k=31
and k=21) for NSB-TK4, NSB-JC, Skmer-JC and Jellyfish-JC, re-
spectively. Given the totality of results, we recommend setting
k=31 for NSB-TK4.

3.1.3 Simulation of phylogenies under the GTR model

To compare TK4 and JC models under the presence of model mis-
specification, we simulate an eight-taxa dataset with genomes
evolved under the GTR model (Tavaré, 1986), which can substan-
tially violate the assumptions of JC and TK4 models. Of the 120
fully balanced and caterpillar tree topologies simulated by
Rachtman et al. (2022) using Simphy (Mallo et al., 2016), we
first proceed with taking the first 20 for each category. In these
eight-taxa trees, branch lengths are randomly selected from the log-
uniform distribution ranging between 0.00001 and 0.12. Next, we
simulate 10 Mb genome sequences using INDELible (Fletcher
and Yang, 2009). Base frequences of the GTR model follow
{na,nc,ng,nr} ={w/2,(1 —w)/2,(1 —w)/2,w/2} where o is a
drawn from Beta (30, 21) distribution. Other entries of the GTR
matrices are drawn from Dirichlet distribution with parameters
(50,7,12,12, 14,50) corresponding to C— T, A—T,G < T,
A« C, G« C, G+« A. Each method produces an 8 x 8 distance
matrix, which is then given to FastME 2.0 (Lefort et al., 2015) to es-
timate the phylogeny. Since we have a tree, we compare the methods
by measuring Robinson-Foulds (RF) (Robinson and Foulds, 1981)
distance between the true tree and the inferred tree. Beyond topo-
logical accuracy, we quantify the divergence of the TK4 and JC dis-
tances from the additivity using the FME (Fitch and Margoliash,
1967) weighted least squares error. Since FME metric weights dis-

tances by #72, it is insensitive to the unit and scale of branch lengths.
When measuring the FM metric, we use the combination of true tree
topology and estimated distances, which ensures measurements
across different methods are based on the same (true) tree.
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3.1.4 Results on phylogenies evolved under the GTR model
Topological accuracy remains high even with model mis-specification
(Fig. 4). NSB-TK4, NSB-JC and JellyFish-JC infer the correct topology
in all 40 cases, whereas Skmer-JC is erroneous in 6/40 trees tested.
The mean FME error of NSB-TK4 (4e-035) is an order of magnitude
lower than those of NSB-JC and Jellyfish-JC (5e-04), which have near
identical levels of error. Therefore, in simulations, the TK4 model pro-
duces distances closer to additivity than JC when model misspecifica-
tion is present. However, Skmer-JC has 27 times higher error than the
other two JC-based methods, indicating that the sketching process
affects accurate distance estimation to a higher degree than model
misspecification. Finally, regardless of the method used, the 20 repli-
cates with balanced topologies tend to have lower deviations from
additivity than those based on unbalanced topologies.

3.2 Evaluation on biological bacterial data

We created a dataset consisting of 10 clades of microbial species
subsampled from the Web of Life (WoL; Zhu ez al., 2019) ASTRAL
tree of 10575 Bacteria and Archaea taxa. We started by finding all
the clades with 30-50 leaves and 0.2-0.7 diameter (the maximum
pairwise tree distance between any pair). We then selected the top
25 clades with the highest support and for each clade, computed an
all-pairwise distance matrix using Skmer (sketch size 10 million),
inferred a phylogenetic tree using FastME 2.0, and computed the RF
distance between the WoL ASTRAL reference tree and the inferred
tree. We then selected nine clades with the lowest RF distance, and
these clades had 32-46 species and RF distances between 0.16 and
0.42. As none of the nine selected clades had any missing data in
their distance matrix, we also curated a challenging subtree with 86
taxa from the Erysipelotrichaceae family from the WoL tree that
contained 114 missing data entries in its distance matrix (RF dis-
tance: 0.43) computed using Skmer.

3.2.1 Results on bacterial dataset

On the 10 bacterial datasets, while methods are generally competi-
tive (Fig. 5a), overall, NSB-TK4 is better than others as it produces
the best result in 8 datasets out of 10. The total number of missing
branches for NSB is 120 (out of 403; Supplementary Table S2),
which is lower than Jellyfish, with 133 missing branches. Results
are similar when focusing on highly supported branches: NSB-TK4
misses 95 out of 374 branches with at least 0.95 support, while
Jellyfish misses 109. Among the three methods that compute JC dis-
tances, NSB-JC is the most accurate, matching or improving on
Jellyfish and Skmer in 7 out of 10 cases and with eight and four
fewer wrong branches, respectively. In the most challenging case
(Set 10), the distance matrix produced by NSB-TK4 contains
20 fewer missing entries (infinity) than both Jellyfish-JC and
Skmer-JC. As a result of its replacement technique, NSB can
compute distances where other tools cannot. To perform a tree
inference on distance matrices with missing data, we impute the
missing distances using a machine-learning-based algorithm
(Bhattacharjee and Bayzid, 2020). Here, NSB-TK4 distances pro-
duce the tree with the fewest differences to the reference phylogeny
compared to JC-based tools.

Jellyfish-JC had between 7% and 57% (mean: 22%) higher FM
error than NSB-TK4 across datasets (Supplementary Table S3).
NSB-TK4 distances are not only more additive but also on average
13% and 32% larger than those of Jellyfish and Skmer, which may
underestimate the distances.

TK4 model parameters inferred by NSB-TK4 demonstrate that
JC model assumptions are significantly violated in the real data
(Fig. 5b). For instance, 2w, assumed to be 1 in the JC model, is as
low as 0.65 on average across all pairs in a set. In addition, transver-
sion to transition ratios R/P and (Q1 + Q2)/P are less than 1 in al-
most every case, in clear violation of the JC model; thus, NSB
captures the long understood (Yang and Yoder, 1999) divergence of
transversion and transition rates.
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3.3 Evaluation on biological yeast dataset

We also study an existing the yeast dataset used (Balaban and
Mirarab, 2020), consisting of eight genomes (Supplementary Table
S4) with sizes in the 10.9-12.4 Mb range and the number of scaf-
folds varying between 16 and 2808. We use ART v2.5.8 (Huang
et al., 2012) to create in silico genome skims of 150 bp reads with
Illumina HiSeq 2500 error profile. We test for 1, 2, 4 and 8x
sequencing coverage levels. We use a published yeast phylogeny
(Shen et al., 2016) as the reference and compare it to alignment-free
trees inferred under TK4 and JC models using FastME 2.0.

When analyzing Yeast assemblies, NSB-TK4 and Jellyfish-JC
produce a phylogenetic tree identical to the reference phylogeny
(Supplementary Fig. S5). However, Skmer-]JC distances produce a
tree with one branch mismatch. Although the trees inferred using
NSB-TK4 and Jellyfish-]JC distances are topologically identical, their
branch lengths differ: NSB-TK4 trees have 16% increased tree
height (Supplementary Fig. S6), indicating that the JC model likely
underestimates distances. In terms of additivity, Jellyfish-JC distan-
ces have an FME of 0.0034, which is 70% higher than that of
NSB-TK4 (Supplementary Table S5).

When analyzing the genome skims, the tree inferred by
NSB-TK4 and Jellyfish-JC is identical to the reference phylogeny re-
gardless of the sequencing coverage (Supplementary Fig. S5). Similar
to assemblies, NSB-TK4 and Jellyfish-JC recover the reference phyl-
ogeny on Saccharomyces genome skims for all levels of coverage
(Supplementary Table S5). While Skmer-JC can match the reference
phylogeny on the genome skim of 2x coverage, the Skmer tree has
one branch mismatch in other coverage levels. On yeast genome
skims, NSB-TK4 consistently achieves the lowest FM error among
the three methods tested. Furthermore, even on the shallowest gen-
ome skim data (1x) tested, the NSB tree achieves a lower FM error
than JC-based method on assembled data. By contrast to NSB and
Jellyfish, Skmer-JC trees have higher FM errors with increasing
coverage. Nevertheless, at 8x coverage, where most k-mers in the
genomes are covered by at least one read, all three methods seem to
approximate their level of error on the assembled data.

4 Discussion

We introduced a method for computing phylogenetic distances on
alignment-free data based on the time-reversible, no strand-bias,
four-parameter evolutionary model, TK4. Through theoretical and
empirical analyses, we explored the model conditions where the
more general model TK4 offers more accurate distances than the JC
model, which is the simpler yet most widely used model. As
expected, the improvements are most pronounced for larger distan-
ces and more substantial deviations from the JC model assumptions.

Despite overall improvements, in the simulations based on the
yeast genome, we observed conditions where the TK4 model was
less accurate than the JC model it contains. Deviations from the
TK4 model can explain this surprising result. Even if used as the
base genome for subsequent simulations, the real genomes can vio-
late the assumptions of our algorithm in several ways. (i) Presence of
non-randomly generated repeats (e.g. recent gene duplications)
causes overestimating of the Jaccard index. The probability of a
k-mer being present in both input genomes is higher when it repeats
multiple times across the genome. Our calculations only correct for
these repeats when they occur randomly but not by homology. (ii)
Systematic variations of @ across the genomes, violating i.i.d.
assumptions, can create loci with increased numbers of homologous
and non-homologous matches after replacement. (iii) Presence of
k-mer motifs can invalidate assumptions of Lemma 1. While some
of these issues also violate JC assumptions, NSB-TK4 may be less ro-
bust to these violations than JellyFish-JC due to the more complex
equations or the more complex estimation procedure (e.g. letter re-
placement) used by NSB.

More broadly, while the TK4 model is more complex than JC,
relevant processes are also missed by TK4. An important aspect of
molecular evolution we did not model is the rate heterogeneity
among sites. Leading alignment-based phylogenetic estimation tools
model the heterogeneity using a discrete or continuous gamma dis-
tribution. JC model can be extended to support Gamma-distributed
rates (Nei and Gojobori, 1986) if the parameters of the Gamma
model are known. With GTR-based simulations, we showed that
TK4 is robust to model misspecification. One question is whether
TK4 distances are accurate in data simulated under GTR + I' model
of evolution. Furthermore, it may be possible to incorporate a meas-
ure of rate variation in the TK4 formula (2) as well. We leave these
questions to future work.

By relying on the (containment) Jaccard index similar to Mash
(Ondov et al., 2016) and Skmer (Sarmashghi et al., 2019), NSB ena-
bles application to both assembled genomes and NGS reads in an
assembly-free fashion. Interestingly, our results showed high levels
of accuracy with shallow coverage (e.g. 1X) in computing distances,
as demonstrated by the low FME values obtained on the yeast data-
set. Thus, beyond phylogenetic inference, other applications such as
species identification using genome skims can benefit from NSB.

Using k-mers is not the only option for distance calculations. For
example, tools like pyANI (Pritchard ez al., 2016) and Co-phylog
(Yi and Jin, 2013) estimate the distance between two genomic
sequences by efficiently finding local alignments. It is possible to
infer substitution probabilities from these local alignments and cal-
culate evolutionary distance according to the TK4 model. While
such approaches will not be fully alignment-free, future work should
compare these methods to our proposed approach. However, even if
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accurate, such methods cannot be incorporated into the analyses of
low-coverage short-read NGS data mentioned above when assembly
is impossible.

In the scenario where assembly and alignment are available, NSB
can be compared to the standard alignment-based methods for dis-
tance and phylogeny estimation. A careful comparison would re-
quire far more complex simulation pipelines—as our existing
simulations do not handle indels and rearrangements. As stated ear-
lier, alignment-free methods can improve accuracy when rearrange-
ments make it hard to create reliable alignments; phylogenomic
analyses often remove large chunks of the genome and focus on
parts that are easier to align. If alignment-free methods can incorp-
orate more complex models than currently possible, perhaps they
can surpass alignment-based methods by using all the data. We be-
lieve reaching that goal will require further increases in the model
complexity of alignment-free methods.

Due to the exact computation of k-mer counts, NSB and
JellyFish can both have substantial running times. Running time for
NSB scales linearly with the input genome size (Supplementary Fig.
S7). On two random genomes of length 100 Mb, NSB completes
within 11 min where 7min is spent preprocessing the samples and
computing the encodings and <4 min for computing all four Jaccard
values and the pairwise TK4 distance. Running time for Jellyfish is
about a quarter of NSB since it requires the computation of a single
Jaccard value. Jaccard indices can be estimated accurately without
looking at all k-mers using the MinHash sketching technique
(Ondov et al., 2016) that dramatically improves the running time,
disk space and memory usage. For instance, for the fixed sketch size,
Skmer completes under 15s on the same two random genomes of
length 100 Mb (Supplementary Fig. S7). However, we saw that for
large distances where Jaccard is small, MinHash sketching fails.
This limitation may be alleviated with newer methods such as
Dashing (Baker et al., 2019). Nevertheless, for smaller distances
where it is accurate, we could incorporate sketching into NSB. In
preliminary tests, we saw that while the main Jaccard index is often
computed accurately using sketching, the replaced Jaccard indices
can have consequential error levels. This reduced accuracy is likely
because hash functions used in existing tools assume four letters and
need to be updated for genomes with replaced letters. It may even be
possible to compute all four Jaccard indices without actually replac-
ing letters by defining hash functions that do not distinguish letters.
Finally, NSB may be able to use compressed k-mer sets (Rahman
et al., 2021) to reduce its storage while keeping the same accuracy.
We leave the exploration of these avenues to further work.

Acknowledgements

The authors thank the anonymous reviewers for their valuable suggestions.

Author contributions

S.M., M.B. and M.S.B. conceived of the idea. M.B. derived mathematical
results. N.A.B, M.B. and A.F. implemented the code and performed all the
analyses. M.B., S.M., N.A.B., and M..S.B. wrote the first draft all authors con-
tributed to the final writing.

Funding

This work was supported by the National Institutes of Health (NIH:
1R35GM142725) and the National Science Foundation (NSF: 1815485). It
was partially supported by the Research and Innovation Centre for Science
and Engineering (RISE-BUET) Internal Research Grant to M.S.B.

Conflict of interest: None declared.

Data availability

The data underlying this article are available in Zenodo, at https://doi.org/10.
5281/zen0d0.6974987 and https://doi.org/10.5281/zenod0.6975011.

References

Allman,E.S. et al. (2017) Statistically consistent k-mer methods for phylogen-
etic tree reconstruction. J. Comput. Biol., 24,153-171.

Baker,D.N. and Langmead,B. (2019) Dashing: fast and accurate genomic dis-
tances with HyperLogLog. Genome Biol., 20, 265.

Balaban,M. et al. (2020) APPLES: scalable distance-based phylogenetic place-
ment with or without alignments. Syst. Biol., 69, 566-578.

Balaban,M. and Mirarab,S. (2020) Phylogenetic double placement of mixed
samples. Bioinformatics, 36,1335-1343.

Bhattacharjee,A. and Bayzid,M.S. (2020) Machine learning based imputation
techniques for estimating phylogenetic trees from incomplete distance
matrices. BMC Genomics, 21,497.

Bogusz,M. and Whelan,S. (2016) Phylogenetic tree estimation with and with-
out alignment: new distance methods and benchmarking. Syst. Biol., 66,
218-231.

Bohmann,K. et al. (2020) Beyond DNA barcoding: the unrealized potential of
genome skim data in sample identification. Mol. Ecol., 29, 2521-2534.

Chargaff,E. (1951) Structure and function of nucleic acids as cell constituents.
Fed. Proc., 10, 654-659.

Criscuolo,A. (2019) A fast alignment-free bioinformatics procedure to infer
accurate distance-based phylogenetic trees from genome assemblies. Res.
Ideas Outcomes, 5, e36178.

Daskalakis,C. and Roch,S. (2013) Alignment-free phylogenetic reconstruc-
tion: sample complexity via a branching process analysis. Ann. Appl.
Probab., 23, 693-721.

Earl,D. et al. (2014) Alignathon: a competitive assessment of whole-genome
alignment methods. Genome Res., 24,2077-2089.

Fan,H. et al. (2015) An assembly and alignment-free method of phylogeny re-
construction from next-generation sequencing data. BMC Genomics, 16,
522.

Felsenstein,]. (1981) Evolutionary trees from DNA sequences: a maximum
likelihood approach. J. Mol. Evol., 17, 368-376.

Fitch,W.M. and Margoliash,E. (1967) Construction of phylogenetic trees.
Science, 155,279-284.

Fletcher,W. and Yang,Z. (2009) INDELible: a flexible simulator of biological
sequence evolution. Mol. Biol. Evol., 26, 1879-1888.

Forsdyke,D.R. (1995) Relative roles of primary sequence and (G + C)% in
determining the hierarchy of frequencies of complementary trinucleotide
pairs in DNAs of different species. J. Mol. Evol., 41, 573-581.

Forsdyke,D.R. (2019) Success of alignment-free oligonucleotide (k-mer) ana-
lysis confirms relative importance of genomes not genes in speciation and
phylogeny. Biol. J. Linn. Soc., 128, 239-250.

Forsdyke,D.R. (2021) Neutralism versus selectionism: Chargaff’s second par-
ity rule, revisited. Genetica, 149, 81-88.

Galtier,N. and Lobry,].R. (1997) Relationships between genomic G+C con-
tent, RNA secondary structures, and optimal growth temperature in prokar-
yotes. J. Mol. Evol., 44, 632-636.

Hasegawa,M. et al. (1985) Dating of the human-ape splitting by a molecular
clock of mitochondrial DNA. J. Mol. Evol., 22, 160-174.

Haubold,B. (2014) Alignment-free phylogenetics and population genetics.
Brief. Bioinform., 15,407-418.

HohLM. and Ragan,M.A. (2007) Is multiple-sequence alignment required for
accurate inference of phylogeny? Syst. Biol., 56,206-221.

Huang,W. et al. (2012) ART: a next-generation sequencing read simulator.
Bioinformatics, 28, 593-594.

Jain,C. et al. (2018) High throughput ANI analysis of 90K prokaryotic
genomes reveals clear species boundaries. Nat. Commun., 9, 5114.

Jukes, T.H. and Cantor,C.R. (1969) Evolution of protein molecules. Mamm.
Protein Metab., 3,21-132.

Jun,S.-R. et al. (2010) Whole-proteome phylogeny of prokaryotes by feature
frequency profiles: an alignment-free method with optimal feature reso-
lution. Proc. Natl. Acad. Sci. USA, 107,133-138.

Lau,A.-K. et al. (2019) Read-SpaM: assembly-free and alignment-free com-
parison of bacterial genomes with low sequencing coverage. BMC
Bioinformatics, 20, 638.

Lefort,V. et al. (2015) FastME 2.0: a comprehensive, accurate, and fast
distance-based phylogeny inference program. Mol. Biol. Evol., 32,
2798-2800.

Leimeister,C.-A. et al. (2017) Fast and accurate phylogeny reconstruction
using filtered spaced-word matches. Bioinformatics, 33, btw776.

Letsch,H.O. and Kjer,K.M. (2011) Potential pitfalls of modelling ribosomal
RNA data in phylogenetic tree reconstruction: evidence from case studies in
the Metazoa. BMC Evol. Biol., 11, 146.


https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac055#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac055#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbac055#supplementary-data
https://doi.org/10.5281/zenodo.6974987
https://doi.org/10.5281/zenodo.6974987
https://doi.org/10.5281/zenodo.6975011

NSB

1

Linard,B. et al. (2019) Rapid alignment-free phylogenetic identification of
metagenomic sequences. Bioinformatics, 35, 3303-3312.

Lobry,].R. (1995) Properties of a general model of DNA evolution under
no-strand-bias conditions. J. Mol. Evol., 40, 326-330.

Lunter,G. et al. (2008) Uncertainty in homology inferences: assessing and
improving genomic sequence alignment. Genome Res., 18,298-309.

Mallo,D. et al. (2016) SimPhy: phylogenomic simulation of gene, locus, and
species trees. Syst. Biol., 65, 334-344.

Margais,G. and Kingsford,C. (2011) A fast, lock-free approach for efficient
parallel counting of occurrences of k-mers. Bioinformatics, 27, 764-770.

Meyer,M.M. (2021) Revisiting the relationships between genomic G + C con-
tent, RNA secondary structures, and optimal growth temperature. J. Mol.
Ewvol., 89,165-171.

Mitchell,D. and Bridge,R. (2006) A test of Chargaff’s second rule. Biochem.
Biophys. Res. Commun., 340, 90-94.

Nei,M. and Gojobori,T. (1986) Simple methods for estimating the numbers of
synonymous and nonsynonymous nucleotide substitutions. Mol. Biol.
Evol., 3,418-426.

Ogden,T.H. and Rosenberg,M.S. (2006) Multiple sequence alignment accur-
acy and phylogenetic inference. Syst. Biol., 55, 314-328.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-
tion using MinHash. Genome Biol., 17, 132.

Pritchard,L. et al. (2016) Genomics and taxonomy in diagnostics for food se-
curity: soft-rotting enterobacterial plant pathogens. Anal. Methods, 8,
12-24.

Rachtman,E. et al. (2022) Uncertainty quantification using subsampling for
assembly-free estimates of genomic distance and phylogenetic relationships.
SSRN Electronic J., 3986497. d0i:10.2139/ssrn.3986497.

Rahman,A. et al. (2021) Disk compression of k-mer sets. Algorithms Mol.
Biol., 16, 10-12.

Reinert,G. et al. (2009) Alignment-free sequence comparison (I): statistics and
power. J. Comput. Biol., 16, 1615-1634.

Ren,]. et al. (2018) Alignment-free sequence analysis and applications. Ansnu.
Rev. Biomed. Data Sci., 1, 93-114.

Robinson,D.F. and Foulds,L.R. (1981) Comparison of phylogenetic trees.
Math. Biosci., 53,131-147.

Rohling,S. et al. (2020) The number of k-mer matches between two DNA
sequences as a function of k and applications to estimate phylogenetic dis-
tances. PloS One, 15, ¢0228070.

Sarmashghi,S. et al. (2019) Skmer: assembly-free and alignment-free sample
identification using genome skims. Genome Biol., 20, 34.

Shen,W. et al. (2016) SeqKit: a cross-platform and ultrafast toolkit for
FASTA/Q file manipulation. PLoS One, 11, ¢0163962.

Springer,M.S. and Gatesy,]. (2018) On the importance of homology in the age
of phylogenomics. Syst. Biodivers., 16,210-228.

Steel,M. (1994) Recovering a tree from the leaf colourations it generates under
a Markov model. Appl. Math. Lett.,7,19-23.

Sueoka,N. (1995) Intrastrand parity rules of DNA base composition and usage
biases of synonymous codons. J. Mol. Evol., 40, 318-325.

Takahata,N. and Kimura,M. (1981) A model of evolutionary base substitu-
tions and its application with special reference to rapid change of pseudo-
genes. Genetics, 98, 641-657.

Tamura,K. and Nei,M. (1993) Estimation of the number of nucleotide substi-
tutions in the control region of mitochondrial-DNA in humans and chim-
panzees. Mol. Biol. Evol., 10, 512-526.

Tang,K. et al. (2019) Afann: bias adjustment for alignment-free sequence com-
parison based on sequencing data using neural network regression. Genome
Biol., 20, 266-212.

Tavaré,S. (1986) Some probabilistic and statistical problems in the analysis of
DNA sequences. Lect. Math. Life Sci., 17, 57-86.

Wang,L.-S. et al. (2011) The impact of multiple protein sequence alignment on
phylogenetic estimation. IEEE/ACM Trans. Comput. Biol. Bioinform., 8,
1108-1119.

Westbury,M.V. et al. (2021) Ocean-wide genomic variation in Gray’s beaked
whales, Mesoplodon grayi. R Soc. Open Sci., 8,201788.

Wu,G.A. et al. (2009) Whole-proteome phylogeny of large dsDNA virus fami-
lies by an alignment-free method. Proc. Natl. Acad. Sci. U S A, 106,
12826-12831.

Yang,Z. and Yoder,A.D. (1999) Estimation of the transition/transversion rate
bias and species sampling. J. Mol. Evol., 48,274-283.

Yi,H. and Jin,L. (2013) Co-phylog: an assembly-free phylogenomic approach
for closely related organisms. Nucleic Acids Res., 41,€75.

Zagordi,O. and Lobry,].R. (2005) Forcing reversibility in the no-strand-bias
substitution model allows for the theoretical and practical identifiability of
its 5 parameters from pairwise DNA sequence comparisons. Gene, 347,
175-182.

Zhu,Q. et al. (2019) Phylogenomics of 10,575 genomes reveals evolutionary
proximity between domains Bacteria and Archaea. Nat. Commun., 10,
5477.

Zielezinski,A. et al. (2017) Alignment-free sequence comparison: benefits,
applications, and tools. Genome Biol., 18, 186.

Zielezinski,A. et al. (2019) Benchmarking of alignment-free sequence com-
parison methods. Genome Biol., 20, 144.


https://doi.org/10.2139/ssrn.3986497



