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We present a new approach to investigate how the photody-

namics of an octahedral ruthenium(II) complex activated
through two-photon absorption (TPA) differ from the equiva-

lent complex activated through one-photon absorption (OPA).
We photoactivated a RuII polypyridyl complex containing bio-

active monodentate ligands in the photodynamic therapy

window (620–1000 nm) by using TPA and used transient
UV/Vis absorption spectroscopy to elucidate its reaction path-

ways. Density functional calculations allowed us to identify the
nature of the initially populated states and kinetic analysis re-

covers a photoactivation lifetime of approximately 100 ps. The
dynamics displayed following TPA or OPA are identical, show-

ing that TPA prodrug design may use knowledge gathered

from the more numerous and easily conducted OPA studies.

Ruthenium pyridyl complexes have been deployed in a myriad
of technological and medical applications, such as light har-

vesting,[1] light-emitting devices,[2] fluorescence imaging,[3] cyto-
toxic action,[3b, 4] and, of particular relevance to the present

study, photodynamic therapy (PDT).[5, 6] In PDT, an inert precur-

sor drug is activated with light. The afforded spatial control
limits possible side effects to the immediate area of irradiated

tissue,[7] and has the potential to generate unique reactive spe-
cies that might otherwise be biologically incompatible, that is,

caged delivery.[8] Although PDT is now used to treat a number
of skin conditions,[9] a major hindrance to its more widespread

usage is the low transmittance of UV and visible light through

biological tissue, with a transmission, or PDT window, existing
between 620 and 1000 nm.[10]

To circumvent the absorption of UV/Vis radiation by tissue,

two-photon absorption (TPA) has been utilized over one-
photon absorption (OPA),[11] in which the precursor drug is

now activated by radiation in the PDT window in contrast to
UV/Vis radiation (OPA). From a precursor drug design point of

view, it is imperative to understand the initial activation mech-

anism following TPA for such species. Such knowledge will pro-
vide a platform for the future design of more effective PDT

agents (e.g. optimum choice of substituents).[12] To address the
apparent paucity of the mechanistic insight following TPA, we

studied a ruthenium(II) complex containing nicotinamide,
a water soluble vitamin (part of the vitamin B group), cis-[Ru(b-

py)2(NA)2]2 + (1, shown in Figure 1 inset) (bpy = 2,2’-bipyridine

and NA = nicotinamide, pyridine-3-carboxamide). Following ex-
citation of 1 with UV/Vis light (i.e. OPA), it is well established

that the initial photoactivation mechanism involves the forma-
tion of the mono-aquated species [Ru(bpy)2(NA)(H2O)]2 + (2), as

shown by the UV/Vis absorption spectra in Figure 1. This trans-
formation occurs on a picosecond (ps) timescale, and is medi-

ated via a pentacoordinate intermediary species.[12] To allow

the activation of 1 in the PDT window, we used TPA with
800 nm radiation. The present study addresses whether there

are significant differences between the one- and two-photon
activation mechanisms of 1 by tracking the dynamics of photo-

activation following TPA. Particularly, it is the role of the excit-

Figure 1. Static UV/Vis absorption spectra of cis-[Ru(bpy)2(NA)2]2 + (solid line,
1: structure shown) and its mono-aquated form, cis-[Ru(bpy)2(NA)(H2O)]2 +

(dash-dot line, 2) formed by irradiation of 1 in water with a blue (465 nm)
light source, which yields 2. DFT calculated OPA oscillator strengths, f (blue,
right axis) and TPA cross sections, d (red, left axis) for 1 in the gas phase.
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ed-state deactivation pathways in TPA and OPA, that is, those
competing with the formation of 2, that we are interested in

examining. The main processes of concern are internal conver-
sion of the lowest excited electronic state to the ground state

and geminate or caged recombination of the nascent penta-
coordinate species and free NA ligand. Although the latter is

unlikely to be affected, the relaxation of excited states follow-
ing TPA may differ from OPA, given that TPA and OPA have dif-

ferent selection rules which govern the states that are initially

populated, and the efficiency of the flow into the ’desirable’
pathway may be lower. If the OPA versus TPA dynamics are

comparable, then TPA drug design may be approached by
using knowledge garnered from (the more numerous and

easily conducted) OPA studies. This study appears to be the
first to address this issue, with far-reaching repercussions in
future PDT drug design (vide supra).

We have used transient electronic (UV/Vis) absorption spec-
troscopy (TEAS) and complementary density functional theory

(DFT) calculations to elucidate the excited-state dynamics of
1 following TPA. For TEAS, a 650 mm aqueous sample of 1 was
probed following irradiation with an 800 nm, femtosecond (fs)
pulsed laser. The TEAS setup is described elsewhere,[12, 13] and

briefly in the Supporting Information. The recorded transient

absorption spectra (TAS) for select pump–probe time delays
are shown in Figure 2. The initial 5 ps is dominated by a multi-

photon signal from the sample cell (glass window), thus our
experimental analysis here does not consider the initial excited

state evolution. The UV/Vis excitation of this class of RuII poly-
pyridyl complex (most notably [Ru(bpy)3]2 +) has been heavily

studied[14] and it is typical for the initial excited state to evolve

to a manifold of near-degenerate metal-to-ligand charge-trans-
fer triplet states (3MLCT), formed by intersystem crossing from

the initially photopopulated (singlet) 1MLCT state, with near-
unity quantum yield.[15] Dissociation may then occur through

a triplet metal-centered (3MC, d–d ligand field) state, if it is of
a similar energy to the 3MLCT.

To further address the nature of the initially populated excit-

ed states, we performed DFT calculations with the CAM-B3LYP
functional for both OPA and TPA. This functional was shown to

give accurate TPA transition strengths relative to highly corre-
lated methods,[16] owing to its ability to better describe transi-

tions to and from intermediate states in a sum-over-states rep-
resentation of the transition tensor.[17] Further details of the cal-

culations are in the Supporting Information. The one- and two-
photon intensities of the first nine singlet-state transitions are

shown in Figure 1. Assessment of the optically bright states
(see Table S1 in the Supporting Information) indicates that the

dominant contribution of these is of MLCT character, with MC

states adding very little to either OPA or TPA intensities. Al-
though direct population of the dissociative state may be pos-

sible, that is, 1MLCT!3MC, little evidence is found for such be-
havior in the literature.

The TAS shown in Figure 2 comprises three identifiable re-
gions for pump–probe delays of 5–100 ps and an additional

feature appearing from 200 ps onwards. A strong negative

signal is observed, centered at 420 nm (Figure 2, feature ii),
which, as it closely resembles the static UV/Vis absorption of

1 (Figure 1, solid line), is assigned to the ground-state bleach
(GSB) signal. This signal is narrowed significantly, owing to the

overlapping of positive signals at approximately 370 and
475 nm. UV/Vis spectroelectrochemistry measurements of

[Ru(bpy)3]2+ [18] and related complexes with functionalized bpy

derivatives[19] indicate that the strong, positive feature at
370 nm (Figure 2, feature i) can be assigned to the excited-

state absorption (ESA) of a 3MLCT excited state, and specifically
corresponds to an absorption from the bpy anion (bpy¢) pres-

ent within the formally charge-separated character of the
3MLCT state (i.e. [RuIII(bpy)(bpy¢)(NA)2]2 +).[20] The broad plateau

of the transient absorption signal at l>550 nm (Figure 2, fea-

ture iii) is assigned to a pentacoordinate intermediate (PCI)
complex, [Ru(bpy)2(NA)]2 + , in agreement with previously calcu-

lated gas-phase absorption profiles.[12] Following these features
over the first few hundred picoseconds, the GSB feature (ii) re-

covers back toward zero, whereas the 3MLCT ESA feature (i)
and the PCI feature (iii) concomitantly decay. As mentioned
above, beyond 200 ps, there is a new absorption feature cen-

tered at 475 nm (Figure 2, feature iv) that reaches a maximum
after 500 ps, which, owing to the resemblance with the static
UV/Vis absorption spectrum of 2 (Figure 1, dash-dot line), can
be assigned to the aquation of the PCI and the formation of

photoproduct 2. The photoproduct signal and the correspond-
ing GSB signal remain constant for the remaining probed time

delays (up to 2 ns).

Confirmation of a TPA is provided by measuring the depend-
ence of the GSB signal (magnitude of GSB signal at 420 nm for

a given pump–probe time delay) with laser excitation power.
This is shown in a log–log plot in Figure S3 in the Supporting

Information. As there is a second-order dependence of TPA on
the excitation intensity, the gradient of approximately 2 in the

linear fit confirms that the excitation is indeed mediated

through TPA. From this point on, we seek to gain insight into
the TPA activation mechanism and to identify differences for

the OPA case by examining kinetic traces for these key features
and the timescales involved. Owing to the shrouding of early

time dynamics by the glass-only signal, a full analysis discover-
ing ultrafast (<1 ps) processes cannot be performed. In our

Figure 2. Two-photon excitation (800 nm) transient absorption spectra of
cis-[Ru(bpy)2(NA)2]2+ in water for selected time delays. The features are very
similar to those seen following OPA (Figure S2).
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previous OPA study (excitation at 340 nm),[12] where such time

resolution was available, a detailed ’target analysis’ approach
was used to extract time constants and quantum yields for the

branched kinetics, as well as to formulate the general mecha-
nism shown in Figure 3. The time constants extracted from the

following analysis are used to qualitatively show that the pho-

toactivation of 1 following TPA proceeds along the same (if
not, very similar) pathway as that following OPA, that is,

1 + hn!! 3MLCT! 3MC! PCI! 2.
The target analysis uses basis functions derived from known

absorption profiles, fitted to spectra at each pump–probe time
delay, to extract an integrated signal for each spectral compo-

nent over time. These transients are shown in Figure 4 (with

corresponding OPA traces shown in Figure S4 in the Support-
ing Information). Fitting of mono-exponential decay functions

yields time constants for the evolution of the 3MLCT, PCI, 2,
and GSB recovery. It is important to note that, for a branched

kinetics scheme, where there are competing relaxation path-
ways for these features, for example, the 3MLCT state may con-

vert to either the ground state or 3MC state, there are at least

two lifetimes contributing to the time constant extracted from
a mono-exponential fit. The fits returned the time constants
shown in Table 1 for the evolution of features i, ii, iii, and iv
(Figures 4 a–d, respectively), which were 188�2 ps for the
3MLCT state, 198�4 ps for the GSB recovery, 167�7 ps for the

PCI species, and 95�5 ps for formation of 2. These time con-
stants compare favorably with the time constants determined

by using the same analysis of one-photon excitation data (see

Figure S4 in the Supporting Information) with the exception of
k2. This is unsurprising given the strong overlap between the

spectral features of 2 and all other features here, and that the
population (amplitude) of this signal is determined at an early

time (<5 ps), so that we do not fully resolve for our TPA data
(as was done with the OPA experiment).

The general agreement of these time constants suggests

that the dynamics following either TPA or OPA follow the same
pathways and timescales, that is, it is only the initially populat-

ed state that is different for either absorption, and the popula-
tion still arrives at the 3MLCT state following intersystem cross-

ing. To assert this fully, a complete kinetic analysis using fitting
functions derived from the branched kinetic scheme (not

simple exponentials) and simultaneous fitting would be

needed. For the previously published OPA data, it was possible
to evaluate all quantum yields for branching of reaction path-

ways by using target analysis and simultaneously fitting traces
with multi-exponential functions derived from a full kinetic

scheme. Owing to the lack of early time data (<5 ps) for TPA,
we are unable to elucidate critical ultrafast timescales that

affect the evolution of the initially excited states and branching

ratios. Certainly, we cannot fully rule out other deactivation
pathways that compete with intersystem crossing of the
1MLCT to 3MLCT, for example, 1MLCT!3MC!GS.[21] However,
we can still compare the final GSB recovery of both OPA and

TPA. Doing so reveals that the GSB recovery after TPA is ap-
proximately equal to that of the OPA, suggesting that, for the

TPA formation of 2, this returns a quantum yield of F�0.4
(based on previous OPA analysis).

To summarize, we have demonstrated for the first time that

the evolution of a photoactivatable prodrug following two-
photon activation can be probed. Surprisingly, TPA and OPA

produce the same photochemistry. The fact that the TPA and
OPA mechanisms are the same (or at the very least, very simi-

lar)—attributed here to “funneling” of excited-state flux into

the 3MLCT manifold—means that it may be possible to alter
the structure of 1 and repeat OPA measurements with the in-

tention of employing TPA in a final clinical stage. This “bottom-
up approach” to study and tune the OPA is more easily ach-

ieved, owing to the higher absorption strengths and the exper-
imental simplicity that this provides. Further studies, in which

Figure 4. Kinetic traces for time-dependent evolution (following excitation
with two photons of 800 nm) of a) 3MLCT (i) state population, b) ground-
state bleach (ii) recovery, c) PCI (iii) population, and d) 2 the photoproduct
(iv), obtained from integration of basis functions used in the ’target analysis’.
The obtained lifetimes are summarized in Table 1.

Table 1. Time constants [ps] obtained from the kinetic analysis.

3MLCT GSB PCI 2

OPA 183�2 179�3 168�9 151�9
TPA 188�2 198�4 167�7 95�5

Figure 3. Schematic for the photoactivation mechanism of 1. Following exci-
tation with either OPA or TPA of energy equivalent to approximately 3–4 eV,
2 is formed through a dissociative 3MC state and five-coordinate intermedi-
ary state. Nonreactive pathways are omitted. Colored states correspond to
features in the TAS that are used in the kinetic analysis (see Figure 4): GSB of
1, red, feature ii ; 3MLCT, violet, feature i ; 2, blue, feature iii ; and PCI, green,
feature iv.
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the glass response is reduced to allow for the study of the
very early dynamics, may, however, prove lucrative. This could

be achieved through the use of molecules with larger TPA
cross sections or glass-free sample delivery, such as with

a thin-film liquid jet. Additionally, photoexcitation to higher en-
ergies, where the effects of different selection rules for OPA

versus TPA are likely to be more pronounced (owing to the in-
creased density of states) may result in different excited-state

dynamics and could provide interesting results, in particular if

competing pathways other than the main MLCT!GS relaxa-
tion are identifiable. We conclude by noting that the photo-

physics of RuII complexes is well studied and as such provides
a fruitful base from which other similar complexes may be de-

signed. Particularly, the use of ligands that increase the TPA
cross section will prove critical if this type of species is to find

clinical use. Such complexes have been made and are now

being studied by using OPA TEAS to evaluate their efficacy.
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