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Cell adhesion to the extracellular matrix is generally mediated by

integrin receptors, which bind to intracellular adhesion proteins

that form multi-molecular scaffolding and signalling complexes.

The networks of proteins, and their interactions, are dynamic,

mechanosensitive and extremely complex. Recent efforts to

characterise adhesions using a variety of technologies, including

imaging, proteomics and bioinformatics, have provided new

insights into their composition, organisation and how they are

regulated, and have also begun to reveal unexpected roles for

so-called adhesion proteins in other cellular compartments (for

example, the nucleus or centrosomes) in diseases such as

cancer. We believe this is opening a new chapter on

understanding the wider functions of adhesion proteins, both

proximal and distal to cell-matrix contacts.
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Introduction
The extracellular matrix (ECM) forms an essential part of

the cellular microenvironment; adhesion of cells to the

ECM is critical for much of metazoan development, and

its perturbation contributes to disease. The composition

of ECM is highly diverse, containing proteins, glycopro-

teins and proteoglycans that interact to form a complex

milieu [1]. It provides a structural support for cells to

enable tissue formation and mechanosensing, and it

binds soluble ligands and cell-surface receptors to trigger

and coordinate cellular signalling [2]. Cells also use cell-

surface adhesion receptors to sense the topology and

stiffness of the pericellular ECM [3]. Mechanical infor-

mation is transmitted via receptor-associated proteins to,

and from, the actin cytoskeleton. Thus, adhesion recep-

tors integrate and process biochemical and biophysical

cues to control many aspects of cell behaviour, including

differentiation, proliferation and migration.
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The proteins that mediate adhesion signalling have been

studied for decades. Recently, progress has been made

in cataloguing the components of adhesions in various

cell types, revealing that adhesion signalling is complex

and diverse, both in terms of the number of components

and the interrelations between them in signalling net-

works. Furthermore, the spatial restriction of this sig-

nalling is thought to drive emergent properties of

multicellular systems in a way that is not yet fully

understood [4]. Working out how cell adhesion systems

function at a holistic network level is currently under

intense scrutiny.

Here, we review recent progress in the elucidation of

adhesion protein networks that mediate cell adhesion and

provide the downstream effector signalling mechanisms.

We also highlight new studies that have uncovered wider

roles for adhesion protein signalling downstream of — and

distal from — cell-ECM receptors. These studies suggest

important new roles for adhesion proteins in diverse

cellular locales.

Adhesion signalling complexes: defining the
players
The best-characterised family of cell-surface ECM recep-

tors is the integrins, members of which interact with a

range of ligands in the extracellular milieu [5]. Upon

ligand binding, intracellular adhesion proteins are

recruited to clustered integrin heterodimers at the plasma

membrane, forming adhesion complexes [6,7]. These

consist of signalling and structural proteins that connect

integrins to the actin cytoskeleton, the sum of which has

been termed the ‘adhesome’ [8]. The latest literature-

curated adhesome database contained 232 proteins

derived from studies using multiple cell types and exper-

imental conditions [9��].

Until recently, the comprehensive, global analysis of

adhesomes was restricted by the challenges of purifying

the labile, membrane- and cytoskeleton-linked adhesion

complexes. The development of biochemical methodol-

ogies to isolate integrin-associated proteins, coupled with

advances in proteomics and informatics, has largely over-

come the earlier major challenges, thus enabling the

characterisation of adhesion complexes by quantitative

mass spectrometry [10–14]. Computational integration of

multiple adhesion-site proteomes yielded an experimen-

tally defined ‘meta-adhesome’, from which a core set of

60 frequently identified proteins — a ‘consensus’ adhe-

some — was identified [15��] (Figure 1).
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Definition of a consensus adhesome. Adhesion complexes induced by the integrin ligand fibronectin were stabilised and purified (curly arrows) and

their proteomes were characterised by quantitative mass spectrometry (LC–MS/MS) in multiple studies using different cell types. Integration of

these datasets generated a meta-adhesome, from which a core consensus adhesome was established [15��]. Network nodes (circles) represent

interacting proteins; thick node borders indicate proteins that define the axes of emergent consensus adhesome modules (labelled, right).
It was clear from the first mass spectrometric analyses of

isolated adhesion complexes that the number of proteins

in these assemblies was greater than previously appre-

ciated [16–18]. This showed that integrin-mediated adhe-

sions are sites of considerable molecular complexity and

diversity, and it is likely that they are sophisticated

signalling hubs with physical and functional links to

the cytoskeleton and to other organelles and cellular

processes. Moreover, adhesion complexes induced by

different extracellular ligands, or recruited to different

integrin receptors, contain both common and condition-

specific subsets of proteins [16,19,20]. Therefore, under-

standing the precise and context-dependent relationships

between multiple adhesion proteins, and the mechanisms

by which they control cell behaviour, have become im-

portant future priorities.

Adhesion signalling close to integrins:
mechanosensing the microenvironment
The assembly and disassembly of adhesion complexes are

tightly and dynamically regulated. However, the precise

interactions of adhesion proteins are poorly defined in

both space and time. A recent fluorescence correlation

microscopic analysis of tagged adhesion proteins led to a

model of hierarchical protein recruitment to integrins at

early (nascent) adhesions [21�]. This proposed initial

binding of kindlin-2 to a5b1 integrin, a role for a-actinin

in nucleation of adhesions and subsequent association of

talin and vinculin in response to myosin II activation

(Figure 2). Talin forms a complex with vinculin before it

associates with integrin [21�], as appears to be the case for

several other adhesome components [22�]. Active myosin

II generates mechanical forces that can change the con-

formation of proteins, including talin [23]. In filopodial
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and lamellipodial protrusions, talin links integrin to

RIAM, which can promote actin polymerisation [24].

Focal adhesion kinase (FAK) may also accumulate at

adhesion sites at the front of cells before paxillin [25],

while some molecules, such as zyxin and tensin, are

generally absent from nascent adhesions [26]. However,

the temporal sequence of events may be cell and context

specific. Proteomic quantification of assembly and disas-

sembly of isolated adhesion complexes has revealed

distinct temporal profiles of protein recruitment [15��].
These proteomic studies support the early recruitment of

a-actinin and the later appearance of zyxin at adhesion sites

(Figure 2). Moreover, adaptor proteins are apparently lost

from adhesion complexes more rapidly than actin-binding

proteins during disassembly, suggesting a relatively late

disruption of the integrin-actin connection during adhesion

turnover [15��].

Despite the remarkable consistency of very early adhe-

sion assembly, regardless of ligand density, rigidity or

intracellular tension [27,28�], the stability and growth of

nascent adhesions are regulated by physical links to the

cytoskeleton and are influenced by actin-associated pro-

teins (for example, formins, septins and synaptopodins

[29–31]). Microtubules also influence adhesion complex

composition and dynamics [32�,33–36], with their target-

ing to adhesion sites being regulated by integrin activa-

tion state [37�].

The interactions of vinculin with talin and actin probably

form the major mechanosensory module that controls

adhesion site composition, organisation and stability

[38,39�,40,41], with a role also for FAK [42–44]. Proteomics

experiments have identified many proteins, including a
www.sciencedirect.com
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Figure 2
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Temporal dynamics of adhesion complex composition. (a) Hierarchical recruitment of adhesion proteins to integrins (assembly, left), as determined

by fluorescence microscopy studies. Some proteins may exist as pre-formed complexes in the cytoplasm (such as talin and vinculin, grey font). a-

Actinin aggregates are transiently incorporated into developing adhesions and link integrins to the actin cytoskeleton. In membrane protrusions,

RIAM binds Ena/VASP (brown nodes) and talin to link integrins to actin. Recruitment of talin to b1 integrin tails and maturation of adhesions

requires myosin II activity, as indicated. Loss of adhesion proteins during disassembly (right), as suggested by proteomic experiments, also

appears to occur hierarchically. (b) Assembly (left) and disassembly (right) dynamics of consensus adhesome proteins. Line profiles for each

cluster show trends of protein abundance over time, as quantified by mass spectrometry [15��]. Integrin-binding and actin-binding proteins are

indicated. Kindlin in the assembly dataset is kindlin-3 (italics), whereas kindlin-2 is the family member in the consensus adhesome.
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number with LIM domains, that are preferentially incor-

porated into more mature adhesions under myosin II-

generated tension [15��,17,18], so increasing the repertoire

of likely proteins involved in mechanotransduction [45,46].

Particular integrins (for example, a5b1 and aV) selectively

recruit proteins that mediate differential responses to

force, indicating that receptor-specific and multiple modes

of rigidity sensing exist [20]. The key mechanisms by

which adhesion complex components, and their molecular

interactions, enable cells to sense their microenvironment

remain to be fully defined in the future.

Unexpected adhesion proteins: old functions
for new proteins
Bioinformatic interrogation of datasets of adhesion pro-

teomes has identified a substantial number of proteins that

were not previously recognised as adhesion-linked pro-

teins, and these have a broad range of predicted cellular

functions [12,15��,37�]. Among the ‘non-canonical’ adhe-

sion components, translation regulators are frequently

detected in adhesion proteomes, supporting a long-held

view that local protein translation occurs at adhesion sites

[47]. Proteins involved in cytokinesis have also been dis-

covered in adhesion complexes (e.g. RCC2 [16], CDK1

[48�]), strengthening the links between integrins and cell

division [49]. There may also be transient ‘moonlighting’
Figure 3

LC-MS/MS
analysis

Nuclear FAK
complex
isolation

Microarray
analysis

TF
prediction

C

qRT-PCR array
analysis

Gene hit
identification

CellECM

Integrative analysis of non-canonical FAK function. FAK complexes were iso

were characterised by quantitative mass spectrometry (LC–MS/MS). The di

onto a network neighbourhood of transcription factors (TFs). Selected TFs w

Ccl5), as identified by microarray and quantitative reverse transcription poly

predicted TFs of FAK-regulated genes (e.g. transcription factor II D (TFIID) s

[57��].

Current Opinion in Cell Biology 2016, 39:93–100 
roles for these proteins in integrin-mediated adhesion that

have not yet been explored [50].

Adhesion protein roles far from integrins: new
functions for old proteins
Classical adhesion proteins appear to perform unantici-

pated functions at non-adhesion cellular sites. For exam-

ple, the integrin-binding protein kindlin-1 has been

found at centrosomes, where it ensures correct assembly

of mitotic spindles [51]. FAK, in association with paxillin,

is also required for correct spindle orientation [52�]. It

therefore seems that a number of proteins may link cell

adhesion status with spindle assembly and so tight control

of cell division.

FAK is also targeted to the nucleus (i) when normal cells

receive cellular stress, where it can promote cell survival

and regulate VCAM-1 expression [53–55], or alter het-

erochromatin organisation and promote muscle differen-

tiation [56], and (ii) when it is overexpressed in squamous

cell carcinoma (SCC) cells, thereby controlling the tu-

mour microenvironment and immune evasion [57��].
Although FAK is predominantly visualised at focal adhe-

sions by fluorescence microscopy, biochemical fraction-

ation of SCC cells that express high levels of FAK

revealed abundant nuclear FAK that we now know causes

profoundly important effects on transcription [57��].
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lated from purified SCC cell nuclei (curly arrow) and their interactomes

scovered protein interaction network was contextualised by mapping

ere predicted to bind promoters of genes regulated by FAK (e.g.

merase chain reaction (qRT-PCR) array analyses. This identified

ubunits) and their upstream regulators that interact with nuclear FAK
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Indeed, FAK is associated with chromatin, and an inte-

grative proteomic, bioinformatic and network approach

discovered that FAK binds to components of the basal

transcription machinery and upstream regulators of se-

quence-specific transcription factors that control chemo-

kine production, exemplified by the FAK-regulated

chemokine Ccl5 [57��] (Figure 3). While the detailed

mechanisms by which FAK controls nuclear transcription

of genes in a selective manner are still to be worked out,

that study concluded that FAK scaffolds selective reg-

ulators of chemokine transcription, many in a kinase-

dependent manner, in turn leading to regulatory T cell

recruitment and immune evasion [57��] (Figure 4). The

intermolecular interaction of the FAT and FERM

domains of FAK is likely to be disrupted to reveal its

nuclear localisation sequence [58,59�], and nuclear FAK

may remain monomeric, supporting its nuclear scaffold-

ing role (and potentially hindering its observation in the

nucleus by immunofluorescence). Importantly, there is no

detectable nuclear FAK in normal skin keratinocytes

[57��], implying that nuclear accumulation of FAK is

linked to the cancer phenotype. This raises the possibility
Figure 4
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that nuclear functions of FAK, and potentially other

adhesion proteins, could be specific to pathological states,

such as cancer, providing potential therapeutic opportu-

nities.

Other canonical adhesion proteins have been observed in

the nucleus, e.g. zyxin, a-actinin and paxillin [60–62], and

several have been shown to regulate hormone receptor

signalling to influence gene transcription [63]. Indeed,

the presence of a LIM domain appears to characterise a

number of proteins that shuttle between integrin adhe-

sion sites and the nucleus [64]. In addition, catenins,

components of cell-cell adhesions, can enter the nucleus

and control gene expression [65]. These findings raise a

number of important questions about the generality, or

specificity, of adhesion protein roles at sites far from

adhesions. We do not know whether the role of nuclear

FAK — or other nuclear adhesion proteins — is related to

their better-understood adhesion roles (linking, for exam-

ple, transcription to microenvironmental sensing) and, if

so, how this is regulated or linked to disease phenotypes.

It may be that some adhesion proteins have evolved
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scaffolding functions in other subcellular sites that are not

related to their adhesion functions. The answers will

undoubtedly come from further, ever more sophisticated,

proteomic and network analyses, coupled to molecular

intervention via genome editing and in physiologically

relevant disease models. Nevertheless, these emerging

data demonstrate a need to be cautious when addressing

subcellular localisation solely by immunofluorescence

microscopy, and they challenge our current view of the

architecture and function of adhesion protein complexes.

Moreover, they imply that long-range signalling by adhe-

sion proteins, at sites distal to adhesions, will contribute to

diverse cellular processes.

Conclusions
For the coordination of a cellular process such as migra-

tion, networks of scaffolds and signals must combine to

manifest a cohesive biological response. It is now clear

that such molecular systems are extremely complex.

Knowledge of the components that form the machinery

of cell adhesion has become more complete over the past

decade, and a consensus adhesome has now been defined.

A universal adhesion ‘module’ appears to exist, compris-

ing a set of ubiquitous, standard components, to which

other modules of adhesion proteins associate and dissoci-

ate during adhesion site maturation and turnover. Such a

modular system of protein complex assembly/disassem-

bly and signalling could permit modulation of adhesion

strength and rapid response to the ECM with fidelity. Of

course, major questions remain about the precise molec-

ular mechanisms that operate at the extracellular-intra-

cellular interface, the ‘modular’ dynamics needed to

respond rapidly to changing physical and chemical stimuli

and transduce resulting signals, and the features that

define context-dependent adhesion regulation and mis-

regulation — such as in wound healing and disease.

Immediate challenges have to include defining the roles

of unexpected classes of molecules at adhesion sites and

the roles of adhesion proteins at non-canonical, distal

subcellular locations, and these represent active areas

of investigation. Network analyses will provide sys-

tems-level answers.
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