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Background: Genome-wide association studies (GWASs) have identified more than
150 genetic loci that demonstrate robust association with coronary artery disease (CAD).
In contrast to the success of GWAS, the translation from statistical signals to biological
mechanism and exploration of causal genes for drug development remain difficult, owing
to the complexity of gene regulatory and linkage disequilibrium patterns. We aim to
prioritize the plausible causal genes for CAD at a genome-wide level.

Methods: We integrated the latest GWAS summary statistics with other omics data
from different layers and utilized eight different computational methods to predict CAD
potential causal genes. The prioritized candidate genes were further characterized
by pathway enrichment analysis, tissue-specific expression analysis, and pathway
crosstalk analysis.

Results: Our analysis identified 55 high-confidence causal genes for CAD, among
which 15 genes (LPL, COL4A2, PLG, CDKN2B, COL4A1, FES, FLT1, FN1, IL6R, LPA,
PCSK9, PSRC1, SMAD3, SWAP70, and VAMP8) ranked the highest priority because
of consistent evidence from different data-driven approaches. GO analysis showed
that these plausible causal genes were enriched in lipid metabolic and extracellular
regions. Tissue-specific enrichment analysis revealed that these genes were significantly
overexpressed in adipose and liver tissues. Further, KEGG and crosstalk analysis also
revealed several key pathways involved in the pathogenesis of CAD.

Conclusion: Our study delineated the landscape of CAD potential causal genes and
highlighted several biological processes involved in CAD pathogenesis. Further studies
and experimental validations of these genes may shed light on mechanistic insights into
CAD development and provide potential drug targets for future therapeutics.

Keywords: coronary artery disease, genome-wide association studies, prioritize, causal genes, expression
quantitative trait locus, protein–protein interaction, network, integration analysis

HIGHLIGHTS

- Conducted an integrative analysis to prioritize the CAD potential causal genes by using eight
computational methods.

- Identified 55 high-confidence causal genes for CAD, among which 15 genes ranked the
highest priority.

- Plausible causal genes were enriched in lipid metabolic and extracellular region.
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INTRODUCTION

With the number of all-age deaths closing to nine million in
2017, CAD is the leading cause of mortality worldwide (GBD
2017 Causes of Death Collaborators, 2018). Parallel to the high
prevalence and vast number of deaths, CAD also places a
crushing economic burden. According to the recent American
Heart Association report, the medical costs and productivity
losses of CVD are expected to grow from $555 billion in 2015 to
$1.1 trillion in 2035 (Dunbar et al., 2018; Benjamin et al., 2019).
Although CAD has become a major concern in global public
health, there still a long way to fully understand the etiology of
CAD before getting it under control.

In addition to lifestyle risk factors such as physical inactivity,
unbalanced diet, smoking, alcohol, and obesity (Meier et al.,
2019), genetic factors also play a pivotal role in CAD
susceptibility (Musunuru and Kathiresan, 2019). Family and twin
studies have demonstrated a strong genetic component of CAD,
with heritability estimated between 40 and 60% (McPherson
and Tybjaerg-Hansen, 2016; Khera and Kathiresan, 2017). To
unravel the genetic underpinnings of CAD, multiple large-scale
genetic studies have been performed. During the past decade,
GWASs have identified more than 150 genetic loci at the
commonly accepted genome-wide statistical significant threshold
of P < 5 × 10−8 to account for multiple testing (Howson et al.,
2017; Klarin et al., 2017; Nelson et al., 2017; van der Harst and
Verweij, 2018). Considering the polygenic nature of CAD, more
variants are expected to be identified in the near future owing to
the rapid increase in sample size (Zhang et al., 2018). However,
the success of GWAS has not been fully translated into an ability
to find biological mechanisms and therapeutic targets behind
these associations (Shu et al., 2018; Musunuru and Kathiresan,
2019).

There exist some difficulties in localizing the causal genes
directly from the GWAS results. First, the lead variant identified
by GWAS represents a set of variants in LD that usually spans
large genomic regions (Farh et al., 2015). The complicated LD
between SNPs and causative mutations is a major barrier to
pinpoint the plausible causal genes. Second, the genes in the
closest physical proximity to the top associated variants may be
not the causal genes because of gene regulation (Smemo et al.,
2014). The causal variants mediate the effect on disease risk
through either a local effect on gene within the locus or action at
a distance on a more remote gene. Therefore, the complexity of
LD structure and distal regulation impedes our ability to identify
causal genes from GWAS results. To address this issue, many
GWAS-based computational methods aiming to prioritize the
most likely causal genes have been developed (Rossin et al., 2011;

Abbreviations: CAD, coronary artery disease; CVD, cardiovascular disease;
DAPPLE, Disease Association Protein–Protein Link Evaluator; DEPICT, Data-
Driven Expression Prioritized Integration for Complex Traits; eQTL, expression
quantitative trait locus; FDR, false discovery rate; GO, Gene Ontology;
GTEx, Genotype-Tissue Expression; GWAB, Genome-Wide Association Boosting;
GWAS, genome-wide association study; KEGG, Kyoto Encyclopedia of Genes
and Genomes; LD, linkage disequilibrium; NetWAS, Network-Wide Association
Study; PPI, protein–protein interaction; SMR, summary data-based Mendelian
randomization; SNP, single-nucleotide polymorphism; TWAS, transcriptome-
wide association studies.

He et al., 2013; Greene et al., 2015; Pers et al., 2015; Tasan et al.,
2015; Gusev et al., 2016; Zhu et al., 2016; Shim et al., 2017). For
example, Sherlock, SMR, and TWAS prioritize causal genes by
combining GWAS and eQTL data; DAPPLE integrates GWAS
data with PPI network to identify potential causal genes; DEPICT
identifies causal genes through integrating GWAS and predicts
gene functions; and prix fixe, NetWAS, and GWAB predict causal
genes using co-function network, tissue-specific network, and
human functional gene network, respectively.

In this study, we systematically prioritized the potential
causal genes for CAD through eight cutting-edge methods
(Sherlock, SMR, DAPPLE, NetWAS, prix fixe, GWAB, DEPICT,
and TWAS), which are complementary with each other.
Candidate causal genes were further characterized by pathway
enrichment analysis, tissue-specific enrichment analysis, and
pathway crosstalk analysis (Figure 1). This landscape of potential
causal genes could provide information and evidence to elucidate
the genetic mechanisms underlying CAD.

MATERIALS AND METHODS

Genome-Wide Association Study Data of
Coronary Artery Disease
We used summary statistics from a large-scale CAD GWAS in
our study (Nelson et al., 2017). In brief, Nelson et al. (2017)
performed a genome-wide association meta-analysis of the
United Kingdom Biobank data with two published datasets
(CARDIoGRAMplusC4D 1000 Genomes-imputed GWAS
(Nikpay et al., 2015) and MIGen/CARDIoGRAM Exome chip
study (Stitziel et al., 2016; Webb et al., 2017). The study comprised
a total of 71,602 CAD cases and 260,875 controls and identified
304 independent variants, clustering 243 loci, associated with
CAD at 5% FDR. More detailed information regarding sample
recruitment, genotyping, quality control, and statistical analysis
in provided in the original study (Nelson et al., 2017).

Blood Expression Quantitative Trait
Locus Data
We used eQTL summary data from the Consortium for the
Architecture of Gene Expression (CAGE, n = 2,765 in peripheral
blood) and the GTEx Consortium v7 release (n = 369 from
whole blood). Briefly, Lloyd-Jones et al. (2017) performed this
analysis of 2,765 samples from peripheral blood, with gene
expression data observed from Illumina gene expression arrays
(38,624 gene expression probes) and SNP genotype data imputed
to the 1000 Genomes Phase 1 Version 3 reference panel (∼8
million SNPs). Information about tissue collection, genotyping,
RNA quantification, and statistical analysis can be found in the
original study of Lloyd et al. (2017). The GTEx project (GTEx
Consortium, 2013) contained samples from 44 healthy tissues of
20- to 70-year-old human postmortem donors. For GTEx eQTL
data (v7), whole blood tissues of 369 individuals were used, and
gene expression levels measured by RNA-seq. SNP genotyping
was performed using the Illumina OMNI SNP Arrays.
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FIGURE 1 | Overview of study pipelines.

Prioritization of Coronary Artery Disease
Candidate Causal Genes
Sherlock Integrative Analysis
Based on the assumption that the expression change of a
specific gene may contribute to CAD risk, we used Sherlock
integrative analysis method to integrate SNP associations from
CARDIoGRAMplusC4D consortium and blood eQTL from
GTEx (He et al., 2013). Sherlock utilizes a Bayesian statistical
framework to infer causal genes. It calculates the logarithm of
Bayes factor (LBF) for each gene to represent the probability
of association between specific gene and CAD. Bonferroni
correction was used to correct the P value of genes identified by
Sherlock integrative analysis. The corrected threshold of P value
is 8.7× 10−6 (there were 5,747 genes in the eQTL test).

Summary Data-Based Mendelian Randomization
Analysis
Similar to Sherlock, SMR performs integrative analysis through
integrating genetic associations from GWAS and eQTL data from
CAGE (Zhu et al., 2016). Additionally, SMR uses HEIDI test to
distinguish pleiotropy from linkage. Genes were considered as
plausible causal gene only if they passed both SMR and HEIDI
tests. The genome-wide significant threshold was defined as
PSMR < 5.24 × 10−6, because we retained 9,538 gene expression
probes from the CAGE eQTL analysis.

Disease Association Protein–Protein Link Evaluator
Based on the “guilt by association” principle, many previous
studies incorporated PPI network into GWAS analysis in order
to prioritize candidate genes (Jia et al., 2012; Jia and Zhao,
2014), and DAPPLE is one of the popular approaches (Rossin
et al., 2011). It requires a set of association loci as input and

prioritizes genes according to connectivity in the PPI network.
Genes with a corrected P value less than 0.05 will be considered
as potential causal genes.

Network-Wide Association Study
Network-Wide Association Study is a machine learning method
that combines gene-level association with the tissue-specific
interaction network (Greene et al., 2015). The network was built
using 14,000 publications and low-throughput tissue-specific
expression data, which could describe the gene–gene functional
interactions within a specific tissue. In this study, we used
VEGAS2 (Mishra and Macgregor, 2015) to convert SNP-based
summary statistics into gene-based P values. We prioritize the
genes in a network built from liver tissue and set 0.05 as P value
threshold, which implied that genes with P value below this cutoff
were treated as positive in NetWAS.

Prix Fixe Analysis
The prix fixe strategy uses co-function networks to prioritize
genes from multiple disease-associated loci (Tasan et al., 2015).
It identifies genes by evaluating the significance of combinations
of genes, with one gene from each GWAS candidate locus, in a
gene network. In this study, the top 100 index SNPs from CAD
GWAS were used as input for prix fixe (as prix fixe only accepts a
maximum of 100 SNPs as input). By averaging the importance
measurements, prix fixe (PF) score was obtained to prioritize
candidate genes.

Genome-Wide Association Boosting
Holding the view that the genes associated with a disease
tend to be functionally together, GWAB prioritizes candidate
disease genes by integrating the GWAS data and human
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functional gene network (Shim et al., 2017). Unlike other
network-based approach, GWAB has an advantage that it
integrates complementary information from both population-
based approach and molecular profiling approach to identify
disease-associated genes. Therefore, it can make the best of
information identified from functional experiments apart from
the statistical association from GWAS. Shim et al. (2017)
used GWAS data from Schunkert et al. (2011) as input and
referenced genes from three disease gene databases (OMIM,
DO, and CADgeneDB) as benchmark to predict for disease-
associated genes. We therefore included Jung Eun Shim’s
results into our study.

Transcriptome-Wide Association Studies
The TWAS (Gusev et al., 2016) is a powerful strategy
that integrates SNP–expression correlation, GWAS summary
statistics, and LD reference panels to identify genes whose cis-
regulated expression is associated with disease risk. This method
can be conceptualized as having imputed expression data for all
cases and controls who participated in GWAS. It then correlated
the imputed gene expression with traits to perform a TWAS
and identified significant expression-trait associations. Mancuso
et al. (2017) have integrated gene expression measurements from
45 expression panels with 30 large-scale summary GWAS data
to gain insight into the role of expression in the etiology of
complex traits by using TWAS. We therefore included Mancuso’s
results into our study.

Data-Driven Expression Prioritized Integration for
Complex Traits
The DEPICT tool predicts the most likely causal genes by
integrating GWAS and data and gene functions (Pers et al.,
2015). Predefined gene sets and gene-transcriptional component
matrix developed from gene expression data are used to obtain
gene function. van der Harst and Verweij (2018) have prioritized
candidate causal genes for CAD using DEPICT. They defined
sentinel SNPs as the most significant variant in a 1-Mb region
that was independent from other sentinel SNPs (r2 < 0.1), which
was consistent with Pers et al. (2015). Therefore, we included Van
der Harst’s results (van der Harst and Verweij, 2018) (prioritized
causal gene list) into our study.

Ranking the Potential Causal Genes
We used eight different approaches to predict the potential
causal genes of CAD. As they are complementary with each
other, we assigned equal weights to all methods. Each candidate
gene will receive a score of 1 if it is identified by any of the
above-mentioned approaches. A cumulative scoring strategy was
performed to rank the causal genes. For example, if a gene was
only identified by Sherlock analysis, the total score of this gene
was 1 point. If a gene was identified by both Sherlock and SMR,
the total score of this gene was 2 points. The higher the score of
a gene, the more consistent its evidence for identification across
the methods and thus the greater the likelihood of involvement
in disease susceptibility.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Enrichment
Analysis
We performed GO analysis to test if the identified potential causal
genes were significantly enriched in specific functional categories
by using DAVID (Huang da et al., 2009a,b). Three GO terms,
including biological process (BP), cellular component (CC),
and molecular function (MF) were used. We also conducted
KEGG enrichment analysis using ToppGene (Chen et al., 2009).
KEGG pathways and GO terms with adjusted P values less than
0.05 [Benjamini and Hochberg (BH) method for correction of
multiple testing] were considered as statistical significant.

Tissue-Specific Enrichment Analysis
In order to identify the most relevant tissue for CAD candidate
causal genes, we calculated a pSI score for each gene to represent
its enrichment in a specific tissue. Details of pSI score calculation
can refer to the original publication (Wells et al., 2015). For
each tissue, genes with pSI < 0.05 are considered as significantly
enriched in the tissue. The overlap between CAD potential causal
genes and the genes enriched in each tissue was estimated by
Fisher’s exact test. Bonferroni correction was used to adjust
for multiple testing. The significant threshold was defined as
P < 0.002, because 25 tissues were tested.

Analysis of Protein–Protein Interaction
and Co-Expression Network
To explore the physical interaction among the proteins encoded
by the potential causal genes, we used human PPI data from
STRING (Szklarczyk et al., 2017). Additionally, we further
investigated the co-expressed genes of the prioritized causal
genes using GeneMANIA (Montojo et al., 2014). Cytoscape was
employed to visualize the network (Shannon et al., 2003). We
assumed that the gene association density of CAD potential
causal gene set was higher than that of random gene sets. To test
this hypothesis, we generated 1,000 random gene sets, each with
the same number of genes as CAD potential causal gene set, and
we assessed the significance using Z-test.

Pathway Crosstalk Analysis
In order to explore the interactions among significantly enriched
pathways, we further performed pathway crosstalk analysis.
Two pathways were considered to crosstalk if they share a
proportion of genes prioritized in our study. We employed two
measurements to indicate the overlap of a pair of pathways: the
Jaccard coefficient

(
JC; JC = |A∩B|

|A∪B|

)
and the overlap coefficient(

OC; OC = |A∩B|
min(|A|,|B|)

)
, where A and B represent the number

of candidate genes in the two pathways. In order to preclude
non-specific inclusion of crosstalk, we set up the following
rules: (1) only pathways with adjusted P values < 0.05 were
included; (2) only pathways contained at least three candidate
genes were included; and (3) pathway pairs with less than
two overlapped candidate genes were removed. We visualized
the results of pathway crosstalk analysis using Cytoscape
(Shannon et al., 2003).
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RESULTS

Potential Causal Genes Identified by
Sherlock
To identify genes whose expression level change may confer
risk of CAD, we systematically integrated genetic associations
from the largest GWAS of CAD so far with blood eQTL data
from GTEx using Sherlock, a Bayesian statistical framework.
We identified 17 potential causal genes whose expression level
may affect CAD risk at P < 8.7 × 10−6 (Bonferroni corrected
P < 0.05, Supplementary Table S1). For each gene, at least one
SNP showed significant association with the expression of this
gene and CAD risk simultaneously, implying that these SNPs may
exert their effects through regulating gene expression.

Potential Causal Genes Identified by
SMR
We further utilized a different integrative analysis method, SMR,
to identify CAD risk genes through integrating CAD GWAS
and blood eQTL data from CAGE. SMR identified six genes
at P < 5.24 × 10−6. However, VAMP8 and MAT2A did not
pass HEIDI test (P < 0.05), and only four genes (PSRC1, LIPA,
SWAP70, and NT5C2) were retained (Supplementary Table S2).
Intriguingly, three of them (PSRC1, LIPA, and NT5C2) were also
identified by Sherlock, bringing further evidence to support that
they might be the authentic risk genes for CAD.

Potential Causal Genes Identified by
DAPPLE
Disease Association Protein–Protein Link Evaluator prioritizes
disease-associated genes through using PPI data. A total of
58 genes were identified at corrected P < 0.05 (Supplementary
Table S3). The top prioritized genes included SVEP1, APOB, FES,
SLC22A4, PLG, ABCG5, FLT1, HNF1A, LDLR, and UBE2Z. GO
analysis showed that these prioritized genes were enriched in
lipid metabolism, transportation, and storage-related pathways
(Supplementary Table S4).

Potential Causal Genes Identified by
NetWAS
We further mapped the gene-wide results to liver-specific
network and classified by machine learning models as
implemented by NetWAS. The top 50 genes were included
in our further analysis (Supplementary Table S5). The most
significant GO terms enriched among promising candidates
genes were “protein binding” (corrected P = 7.6 × 10−8),
“cytosol” (corrected P = 2.0 × 10−7), and “nucleoplasm”
(corrected P = 4.3× 10−7) (Supplementary Table S6).

Potential Causal Genes Identified by Prix
Fixe
We further predicted CAD causal genes using prix fixe, which
incorporates the functionally coherent subnetworks into network
analysis. Ten genes were identified by prix fixe, including PCSK9,
DHCR24, SOD2, LPA, PLG, MAP3K4, CDKN2B, CDKN2A,

ADORA2A, and DERL3 (Supplementary Table S7). Of note,
PCSK9 ranked the highest score among those genes. Genetic
evidence indicated that individuals with inactivating mutations
in PCSK9 have decreased levels of circulating LDL and CAD
risk, which led to the two monoclonal antibodies that inhibit
PCSK9 to be approved by the United States Food and Drug
Administration (Cohen et al., 2006). The finding of PCSK9
further reinforced other genes identified by prix fixe as promising
causal genes for CAD.

The Integrated Landscape of Causal
Genes in Coronary Artery Disease
We utilized different approaches (including Sherlock, SMR,
DAPPLE, NetWAS, prix fixe, GWAB, DEPICT, and TWAS)
to prioritize the potential causal genes for CAD. In order to
obtain the global landscape of plausible causal genes, we also
integrated candidate causal genes identified by previous studies.
Studies included in our further analysis are summarized as
follows: (1) Causal genes predicted by Pavlides et al. using
SMR (Pavlides et al., 2016). By integrating Westra blood eQTL
data (Westra et al., 2013) and CARDIoGRAMplusC4D 1000
Genomes-based GWAS data (60,801 cases and 123,504 controls)
(Nikpay et al., 2015), Pavlides et al. (2016) used SMR to prioritize
genes and identify five candidate genes (VAMP8, SWAP70,
IL6R, ATP5G1, and EIF2B2) that passed both SMR and HEIDI
test (Supplementary Table S8). (2) Causal genes predicted
by GWAB (Shim et al., 2017). Jung Eun Shim et al. used
GWAS data from CARDIoGRAMplusC4D consortium (22,233
cases and 64,762 controls) as input and references genes from
three disease gene databases (OMIM, DO, and CADgeneDB)
as benchmark to predict for disease-associated genes. After
network boosting, 35 genes from the largest component of
the network were significantly associated with CAD (GWAB
score > 7.3) (Supplementary Table S9). (3) Causal genes
predicted by DEPICT (van der Harst and Verweij, 2018). Gusev
et al. (2016) predicted the causal genes for CAD recently. A total
of 433 genes were identified as plausible candidate genes for
CAD (FDR < 0.01) (Supplementary Table S10). (4) Causal
genes predicted by TWAS. Mancuso et al. (2017) integrated
CARDIoGRAM consortium GWAS data (Schunkert et al.,
2011) with various expression panels and identified 12 genes
significantly associated with CAD (Supplementary Table S11).

Given that the results of the eight analytical methods are
correlated but not identical, genes genuinely involved in disease
susceptibility would be expected to show consistent results
across several methods. We therefore adopted the method of
cumulative scoring strategy and ranked the plausible causal genes
by their frequency of occurrences in the results of different
approaches. We summarized the results in Table 1 and generated
the landscape of potential causal genes in CAD (Figure 2). This
yielded 55 candidate genes with total score ≥2, among which 15
genes were captured by at least three analysis methods. Therefore,
these 15 genes (LPL, COL4A2, PLG, CDKN2B, COL4A1, FES,
FLT1, FN1, IL6R, LPA, PCSK9, PSRC1, SMAD3, SWAP70, and
VAMP8) were considered as the most promising causal genes
for CAD. We queried the NHGRI-EBI GWAS Catalog (Buniello

Frontiers in Genetics | www.frontiersin.org 5 April 2020 | Volume 11 | Article 320

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00320 April 20, 2020 Time: 17:32 # 6

Zheng et al. Integrated Landscape of CAD Causal Genes

TABLE 1 | Summary of 55 prioritized causal genes.

No. Gene Locus First identified
by GWAS

Potential biological function Other related traits* Methods

1 LPL 8p21.3 2017–2018 Triglyceride-rich lipoproteins HDL, TG Sherlock, GWAB, TWAS,
DEPICT, DAPPLE

2 COL4A2 13q34 2011 Cellular proliferation and vascular
remodeling

Colorectal cancer, coronary
artery calcification, DBP, TC

NetWAS, GWAB, DEPICT,
DAPPLE

3 PLG 6q26 2015 Cellular proliferation and vascular
remodeling

Blood protein measurement GWAB, DEPICT, DAPPLE, prix
fixe

4 CDKN2B 9p21.3 2007–2008 Cellular proliferation and vascular
remodeling

Cancer, heart failure, diabetes
mellitus, stroke, atrial fibrillation,
mortality

TWAS, DEPICT, prix fixe

5 COL4A1 13q34 2011 Cellular proliferation and vascular
remodeling

Arterial stiffness measurement,
stroke

GWAB, DEPICT, DAPPLE

6 FES 15q26.1 2017–2018 Uncertain SBP, DBP Sherlock, DEPICT, DAPPLE

7 FLT1 13q12.3 2017–2018 Cellular proliferation and vascular
remodeling

– GWAB, DEPICT, DAPPLE

8 FN1 2q35 2017–2018 Coagulation Blood protein, SBP, DBP GWAB, DEPICT, DAPPLE

9 IL6R 1q21.3 2015 Inflammation C-reactive protein, rheumatoid
arthritis

SMR (Pavlides), DEPICT,
DAPPLE

10 LPA 6q26 2011 LDL cholesterol and lipoprotein (a) Lipoprotein a, LDL, colorectal
cancer

DEPICT, DAPPLE, prix fixe

11 PCSK9 1p32.3 2015 LDL cholesterol and lipoprotein (a) LDL, TC DEPICT, DAPPLE, prix fixe

12 PSRC1 1p13.3 2007–2008 LDL cholesterol and lipoprotein (a) LDL, TC, HDL Sherlock, SMR, TWAS

13 SMAD3 15q22.33 2015 Cellular proliferation and vascular
remodeling

Asthma, Crohn’s disease,
inflammatory bowel disease

GWAB, DEPICT, DAPPLE

14 SWAP70 11p15.4 2015 Cellular proliferation and vascular
remodeling

SBP, DBP SMR, SMR (Pavlides), DEPICT

15 VAMP8 2p11.2 2015 Cellular proliferation and vascular
remodeling

Prostate cancer SMR (Pavlides), DEPICT,
DAPPLE

16 ABCG5 2p21 2017–2018 LDL cholesterol and lipoprotein (a) TC, LDL GWAB, DAPPLE

17 ABCG8 2p21 2017–2018 LDL cholesterol and lipoprotein (a) TC, LDL GWAB, DAPPLE

18 ABO 9q34.2 2011 Uncertain TC, LDL, von Willebrand factor,
hematocrit, hemoglobin, factor
VIII, alkaline phosphatase,
coagulation factor

Sherlock, TWAS

19 ACAD10 12q24.12 2013–2014 Uncertain Esophageal cancer GWAB, TWAS

20 ALDH2 12q24.12 2013–2014 Uncertain Ischemic stroke, alcohol
consumption, uric acid

GWAB, DEPICT

21 APOA1 11q23.3 2011 Triglyceride-rich lipoproteins HDL DEPICT, DAPPLE

22 APOB 2p24.1 2017–2018 LDL cholesterol and lipoprotein (a) TC, LDL DEPICT, DAPPLE

23 ARNTL 11p15.3 2017–2018 Uncertain C-reactive protein, TC DEPICT, DAPPLE

24 ATXN2 12q24.12 2013–2014 Uncertain PAD GWAB, DEPICT

25 CABIN1 22q11.23 – – – Sherlock, DEPICT

26 CETP 16q13 2017–2018 LDL cholesterol and lipoprotein (a) HDL, LDL, TC, TG, alcohol
drinking. BMI

DEPICT, DAPPLE

27 CXCL12 10q11.21 2011 Inflammation White blood cell count,
eosinophil count, erythrocyte
count, schizophrenia

DEPICT, DAPPLE

28 EDNRA 4q31.22 2015 Vascular tone and nitric oxide
signaling

Large artery stroke, pancreatic
carcinoma, PAD, SBP, PP

DEPICT, DAPPLE

29 EPOR 19p13.2 – – Erythropoietin TWAS, DEPICT

30 FURIN 15q26.1 2017–2018 Uncertain SBP, DBP, ischemic stroke,
schizophrenia

DEPICT, DAPPLE

31 GGCX 2p11.2 2015 Cellular proliferation and vascular
remodeling

Eosinophil count Sherlock, DAPPLE

(Continued)
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TABLE 1 | Continued

No. Gene Locus First identified
by GWAS

Potential biological function Other related traits* Methods

32 GIGYF2 2q37.1 2017–2018 Uncertain Schizophrenia DEPICT, DAPPLE

33 HNRNPUL1 19q13.2 – – Heel bone mineral density NetWAS, DEPICT

34 ITGB5 3q21.2 2017–2018 Uncertain SBP DEPICT, DAPPLE

35 LDLR 19p13.2 2011 LDL cholesterol and lipoprotein (a) LDL, TC, abdominal aortic
aneurysm

DEPICT, DAPPLE

36 LIPA 10q23.31 2011 LDL cholesterol and lipoprotein (a) – Sherlock, SMR

37 MAP3K4 6q26 – – Blood protein DEPICT, prix fixe

38 MRAS 3q22.3 2009–2010 Inflammation BMI, SBP TWAS, DAPPLE

39 NOS3 7q36.1 2015 Vascular tone and nitric oxide
signaling

SBP, DBP, stroke DEPICT, DAPPLE

40 NRP1 10p11.22 2017–2018 Uncertain Migraine NetWAS, DEPICT

41 NT5C2 10q24.33 2011 Uncertain SBP, DBP, PP, BMI,
schizophrenia, smoking
behavior

Sherlock, SMR

42 PEMT 17p11.2 2011 Uncertain BMI, WHR DEPICT, DAPPLE

43 PPAP2B 1p32.2 2011 LDL cholesterol and lipoprotein (a) Reticulocyte count, heel
bone mineral density

DEPICT, DAPPLE

44 PTPN11 12q24.13 2013–2014 Uncertain Eosinophil count, SBP,
DBP, platelet count,
reticulocyte count, smoking

GWAB, DEPICT

45 REST 4q12 2017–2018 Uncertain Risk-taking behavior DEPICT, DAPPLE

46 RHOA 3p21.31 2017–2018 Uncertain Cognitive function,
self-reported educational
attainment, intelligence

DEPICT, DAPPLE

47 RRBP1 20p12.1 2017–2018 Uncertain Migraine, height NetWAS, DEPICT

48 SH2B3 12q24.12 2015 Inflammation SBP, DBP, BMI, LDL, HDL,
alcohol consumption,
autoimmune disease,
colorectal cancer,
endometrial carcinoma,
eosinophil count, eosinophil
count, fibrinogen,
hemoglobin, Ischemic
stroke, leukocyte,
lymphocyte, platelet,
rheumatoid arthritis, type I
diabetes mellitus

DEPICT, DAPPLE

49 SMG6 17p13.3 2011 Uncertain BMI, bone density,
schizophrenia, platelet,
smoking

DEPICT, DAPPLE

50 SOD2 6q25.3 – – Self-reported educational
attainment, age at
menopause

DEPICT, prix fixe

51 SVEP1 9q31.3 2017–2018 Uncertain Bipolar disorder, SBP DEPICT, DAPPLE

52 TGFB1 19q13.2 2017–2018 Uncertain T2D DEPICT, DAPPLE

53 TRIB1 8q24.13 2017–2018 Triglyceride-rich lipoproteins HDL, LDL, TG, glomerular
filtration rate

DEPICT, DAPPLE

54 UBE2Z 17q21.32 2011 Uncertain Educational attainment,
T2D

DEPICT, DAPPLE

55 ZEB2 2q22.3 2015 Uncertain Renal cell carcinoma,
schizophrenia, self-reported
educational attainment

DEPICT, DAPPLE

*The association with other traits or diseases was identified from the National Human Genome Research Institute-European Bioinformatics Institute GWAS catalog. LDL,
low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; DBP, diastolic blood pressure; SBP, systolic blood pressure; TC, total cholesterol; PAD, peripheral
arterial disease; PP, pulse pressure; BMI, body mass index; WHR, waist–hip ratio; T2D, type 2 diabetes.
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FIGURE 2 | Top causal genes identified in this study.

et al., 2019) about the candidate genes to assess their potential
pleiotropic effects. Notably, many of these genes provided
evidence of pleiotropic effect of lipid traits, which confirmed the
significant role of lipid metabolism in CAD.

To identify the biological roles of the 55 potential causal genes,
we performed GO enrichment analysis using DAVID. We found
that candidate genes were significantly enriched in the GO term

such as cholesterol homeostasis (corrected P < 9.6 × 10−7),
lipoprotein metabolic process (corrected P < 5.1 × 10−5),
receptor complex (corrected P < 2.5 × 10−4), cholesterol
transporter activity (corrected P < 2.6 × 10−5), extracellular
region (corrected P < 6.8 × 10−3), and apolipoprotein binding
(corrected P < 1.2 × 10−3) (Figure 3). These results indicated
that lipid metabolic and extracellular region might play a critical
role in the pathophysiology of CAD.

We then examined the most relevant tissue of CAD potential
causal genes using tissue-specific enrichment analysis. As shown
in Figure 4, these genes tended to be significantly overexpressed
in liver (P = 2.2 × 10−6) and adipose tissue (P = 2.8 × 10−7).
Considering genes are usually act synergistically to exert their
biological function, also called as “guilt by association” principle,
we further performed network analysis using PPI and expression
data. As shown in Figure 5, genes in the PPI network (Figure 5A)
and co-expression network (Figure 5B) demonstrated more
interaction among themselves than what would be expected for
a random set of genes of the same size (P < 1.0 × 10−16).
Dysregulation of any gene in this highly interconnected network
will affect the function of the network, which eventually lead to
pathogenesis of CAD.

Kyoto Encyclopedia of Genes and
Genomes Enrichment Analysis and
Pathway Crosstalk Analysis
Identifying KEGG pathways enriched in the candidate genes
may provide further insight of the molecular mechanisms related
to CAD. Table 2 shows the 24 significant enriched pathways.
Among these, the top five pathways are fat digestion and
absorption (PBH = 6.63 × 10−5), AGE-RAGE signaling pathway

FIGURE 3 | Gene Ontology enrichment analysis of the prioritized causal genes of CAD.
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FIGURE 4 | Tissue-specific expression enrichment of CAD potential causal
genes. The 53 tissues in GTEx were grouped into 25 broad tissue types. The
size of the hexagon was scaled to the number of genes meeting the pSI
threshold, and its color indicates results of Fisher’s exact test.

in diabetic complications (PBH = 1.92 × 10−4), pathways in
cancer (PBH = 1.12 × 10−3), PI3K-Akt signaling pathway
(PBH = 1.90× 10−3), and focal adhesion (PBH = 3.96× 10−3).

In order to gain deep understanding of how these pathways
are related, we further performed a pathway crosstalk analysis.
There were 22 pathways containing at least three candidate genes
and met the inclusion criteria for crosstalk analysis. A total of
73 edges connected between any two of these pathways, and these
edges represented the overlapping level, which was measured
according to the average score of JC and OC. As shown in
Figure 6, the largest crosstalk module comprised 20 pathways.
By considering the topological characteristics, we identified
five key pathways (pathways in cancer, AGE-RAGE signaling
pathway in diabetic complications, proteoglycans in cancer,
endocytosis, and PI3K-Akt signaling pathway), which had the
highest betweenness centrality and degree value (Supplementary
Table S12). Previous studies had provided some clues about their
role in pathogenesis of CAD (Chen et al., 2016; Kay et al., 2016;
Koene et al., 2016).

DISCUSSION

Although 163 loci have now been associated with CAD at
a genome-wide level of significance (Erdmann et al., 2018),
the reported loci usually span a large chromosomal region
and contain many genes. Thus, it is difficult to pinpoint
the causal gene. Besides, owing to the complexity of gene
regulatory and LD pattern, this problem becomes even more
complicated. Consequently, incorporating other source of prior

FIGURE 5 | Top causal genes encoded a densely interconnected PPI (A) and
co-expression (B) network.

knowledge is necessary to narrow down the CAD candidate
genes. In this study, we conducted a comprehensive integrative
analysis and prioritized the potential causal genes for CAD
using the latest GWAS and other omics data from different
layers. A total of 55 plausible causal genes were identified,
among which 15 genes ranked the highest priority because of
their consistent evidence from different data-driven approaches.
Many of these genes were involved in in lipid metabolic
and extracellular related BP. Moreover, they were enriched
in liver and adipose tissue. Further, KEGG and crosstalk
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TABLE 2 | KEGG enrichment analysis in CAD prioritized causal genes.

Pathway ID P value PBH value Candidate genes in the pathway

Fat digestion and absorption hsa04975 5.72 × 10−7 6.63 × 10−5 PLPP3, APOA1, APOB, ABCG5, ABCG8

AGE-RAGE signaling pathway in diabetic complications hsa04933 2.60 × 10−6 1.92 × 10−4 TGFB1, COL4A1, COL4A2, FN1, NOS3, SMAD3

Pathways in cancer hsa05200 2.35 × 10−5 1.12 × 10−3 TGFB1, COL4A1, RHOA, COL4A2, CDKN2B, FN1,
CXCL12, EDNRA, SMAD3

PI3K-Akt signaling pathway hsa04151 5.86 × 10−5 1.90 × 10−3 COL4A1, COL4A2, EPOR, FLT1, FN1, ITGB5, NOS3, IL6R

Focal adhesion hsa04510 1.37 × 10−4 3.96 × 10−3 COL4A1, RHOA, COL4A2, FLT1, FN1, ITGB5

Proteoglycans in cancer hsa05205 1.53 × 10−4 4.10 × 10−3 TGFB1, RHOA, PTPN11, MRAS, FN1, ITGB5

ECM-receptor interaction hsa04512 3.20 × 10−4 6.30 × 10−3 COL4A1, COL4A2, FN1, ITGB5

Small cell lung cancer hsa05222 3.51 × 10−4 6.32 × 10−3 COL4A1, COL4A2, CDKN2B, FN1

TGF-beta signaling pathway hsa04350 3.51 × 10−4 6.32 × 10−3 TGFB1, RHOA, CDKN2B, SMAD3

Amebiasis hsa05146 5.83 × 10−4 9.45 × 10−3 TGFB1, COL4A1, COL4A2, FN1

Axon guidance hsa04360 6.58 × 10−4 1.03 × 10−2 RHOA, PTPN11, FES, CXCL12, NRP1

Glycerolipid metabolism hsa00561 1.69 × 10−3 1.99 × 10−2 PLPP3, LPL, ALDH2

Colorectal cancer hsa05210 1.78 × 10−3 2.06 × 10−2 TGFB1, RHOA, SMAD3

FoxO signaling pathway hsa04068 1.91 × 10−3 2.06 × 10−2 TGFB1, CDKN2B, SMAD3, SOD2

Phospholipase D signaling pathway hsa04072 2.75 × 10−3 2.45 × 10−2 RHOA, PTPN11, MRAS, PLPP3

Bile secretion hsa04976 2.88 × 10−3 2.48 × 10−2 LDLR, ABCG5, ABCG8

Chronic myeloid leukemia hsa05220 2.88 × 10−3 2.48 × 10−2 TGFB1, PTPN11, SMAD3

HTLV-I infection hsa05166 3.52 × 10−3 2.80 × 10−2 TGFB1, CDKN2B, MRAS, SMAD3, NRP1

Endocytosis hsa04144 3.76 × 10−3 2.85 × 10−2 TGFB1, RHOA, FLT1, LDLR, SMAD3

phosphatidylcholine (PC) biosynthesis, PE→ PC hsa00091 4.03 × 10−3 2.92 × 10−2 PEMT

Vitamin digestion and absorption hsa04977 4.12 × 10−3 2.93 × 10−2 APOA1, APOB

Cytokine–cytokine receptor interaction hsa04060 4.42 × 10−3 3.11 × 10−2 TGFB1, EPOR, FLT1, IL6R, CXCL12

Rheumatoid arthritis hsa05323 5.60 × 10−3 3.69 × 10−2 TGFB1, FLT1, CXCL12

HIF-1 signaling pathway hsa04066 7.71 × 10−3 4.77 × 10−2 FLT1, NOS3, IL6R

FIGURE 6 | Crosstalk network among CAD prioritized causal genes enriched pathways. In this figure, each node represents a pathway, and each edge represents
crosstalk between pathways. The color of each node is proportional to the adjusted P [Benjamini and Hochberg (BH) method] value. Darker color represents lower
PBH value. The size of each node is proportional to the number of CAD prioritized causal genes in the corresponding pathway. The width of each edge is
proportional to the mean value of the two coefficients (JC and OC). Larger edge width represents higher proportion of overlap between pathways.
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analysis also revealed several key pathways participating in the
pathogenesis of CAD.

Our comprehensive analysis predicted 55 CAD causal genes.
Many of these genes are well-known CAD driver genes and
participant in lipid metabolic process (LPL, LPA, PCSK9, APOA1,
APOB, CETP, LDLR, and LIPA). Some of them have been
translated into the targets of commercialized drugs (APOB and
PCSK9). Besides, GO enrichment analysis also highlight the
importance of lipid involved in CAD pathogenesis. However,
targeting novel pathways instead of established CAD risk factors,
such as lipid levels, may facilitate the drug development and
catalyze novel CAD therapeutic options. Our GO analysis
also pinpointed that the identified potential causal genes were
enriched in extracellular region apart from lipid metabolic.
Extracellular matrix has a critical role in cell adhesion, integrity,
and communication. Changes in the extracellular space have been
implicated in the pathogenesis of atherosclerosis and restenosis
(Chistiakov et al., 2013). Previous network analysis also revealed
the key role of extracellular region involved in CAD development
and the relationship between other molecular mechanisms, such
as inflammatory response and complement and coagulation
(Zhao et al., 2016).

In addition to identifying the well-known CAD driver
genes, our comprehensive analysis also detected novel or less
well-studied plausible causal genes for CAD. For example,
MAP3K4 encodes Mitogen-Activated Protein Kinase 4, which
is the central core of each mitogen-activated protein (MAP)
kinase pathway. Four well-characterized MAP kinase pathways,
including ERK1/2, JNK, p38, and ERK5, have been reported their
role in different aspects of cardiac regulation, from development
to pathological remodeling (Wang, 2007). In line with our
study, Ballouz et al. (2014) analyzed CARDIoGRAMplusC4D
GWAS data by Gentrepid and found that MAP3K4 was one
of the possible causal genes of CAD. Another candidate,
CABIN1, plays a pivotal role in the T cell receptor-mediated
signal transduction pathway and inhibits calcineurin-mediated
signal transduction. Calcineurin lies at the intersection of
protein phosphorylation and calcium signaling cascades and
contributes to pathological hypertrophic remodeling (Letavernier
et al., 2012; Parra and Rothermel, 2017). Another identified
gene, EPOR, encodes erythropoietin (EPO) receptor. EPO has
shown its effect beyond hematopoiesis, such as suppression of
atherosclerosis (Ueba et al., 2013) and prevention of cardiac
apoptosis (Nakamura et al., 2009). In addition, although EpoR
agonists drugs are initially aimed at treating anemia, it is
starting to demonstrate the sign of pleiotropic effects for
treating a wide range of complex disorders, including CVD,
neurodegenerative disorders, spinal cord injury, and diabetic
retinopathy (Sanchis-Gomar et al., 2013). HNRNPUL1 encodes
a nuclear RNA-binding protein and involved in mRNA splicing
pathway. LeBlanc et al. (2016) integrated GWAS data of CAD
and several CVD risk factors and used a shared polygenic
signal-informed statistical framework to discover novel CAD
genes. Totally, they identified 67 novel loci associated with
CAD. Among these novel loci, rs12459996 near CYP2F1 also
showed eQTL effect on HNRNPUL1 gene expression in blood
tissue (P = 3.86 × 10−16), which indicated that this locus may

exert its effect on CAD susceptibility through regulation of
HNRNPUL1 expression. Superoxide Dismutase 2 (SOD2) is a
well-known marker of endothelial dysfunction. Several candidate
gene studies have revealed that mutations or polymorphisms
of SOD2 gene are associated with CAD risk (Mollsten et al.,
2009; Tian et al., 2012). Moreover, studies on Sod2-deficient mice
demonstrated accelerated atherosclerosis (Zhou et al., 2012) and
atherosclerotic plaque instability (Vendrov et al., 2017). These
lines of evidence suggested that SOD2 might act an important
role in CAD pathogenesis by regulating atherosclerosis and
endothelial function.

Pathway enrichment analysis of the prioritized genes further
confirmed some results of previous studies. Some key drivers
of CAD identified by previous network analysis were cancer-
related genes (Zhao et al., 2016). Although recognized as two
separate diseases, CAD and cancer possess various similarities,
from common risk factors to shared BP (Koene et al.,
2016). The oxidative stress and chronic inflammation underlie
both of the diseases. In addition, a growing number of
evidence support a role for statins, angiotensin-converting
enzyme inhibitor/angiotensin receptor blockers (ACEIs/ARBs),
and aspirin in cancer prevention (Masoudkabir et al., 2017).
Anti-CD47 antibody treatment may become a novel therapeutic
strategy for CAD by promoting efferocytosis (Kojima et al.,
2016). This convergent evidence indicated that pathways of
cancer might take part in the pathogenesis of CAD. AGE-RAGE
signaling pathway actively participates in inflammation and
immune response. Miao et al. (2019) identified 413 differential
expressed genes from two gene expression datasets of CAD
cases and healthy controls, and they highlighted the role
of AGE-RAGE signaling pathway in CAD pathogenesis.
Extensive evidence is building to implicate AGE-RAGE in
the pathogenesis of vascular perturbation, which stimulate
processes that lead to the development of arterial stiffness
(Senatus and Schmidt, 2017). AGE/RAGE signaling also
demonstrated its role in diabetes-mediated vascular calcification
(Kay et al., 2016). Calcium deposits in coronary arteries
may weaken vasomotor responses and alter atherosclerotic
plaque stability (Liu et al., 2015). Another two well-known
pathways identified in our study were focal adhesion (hsa04510)
and PI3K-Akt signaling pathway (hsa04151). Focal adhesion
has an influence on both leucocyte motility within intima
and interactions between platelets and endothelium through
controlling cytoskeletal or adhesion dynamics (Charchar et al.,
2012). Chan et al. (2014) employed integrative pathway and
network analysis and revealed that focal adhesion was one
of the shared molecular pathways for CAD and diabetes
across diverse ethnicities. The PI3K-Akt pathway has been
reported involved in cell proliferation, survival, and apoptosis.
A two-stage systems genetics analysis of CAD GWAS data
also found convincing association between PI3K-Akt pathway
and CAD (Ghosh et al., 2015). Crosstalk analysis further
demonstrated that these pathways might interconnect through
overlapping genes instead of acting alone. Therefore, disruption
or dysfunction of any key genes in the network may
have cascading effects and result in a series of functional
pathological consequences.
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Our study is different from traditional fine-mapping
approaches, which focus on identifying the causal variants that
affect a trait of interest. Although very important, knowing which
variants are causal does not equal to identifying the downstream
effects of the variant on the trait. Moreover, if the causal genes
affected by a locus are known, this can reduce the credible set
of potential causal variants (Schaid et al., 2018; Broekema et al.,
2020). Therefore, recent efforts in systems biology, integrating
GWAS data and a priori knowledge from other omics, have
focused on identifying such causal genes.

Unlike previous study (Braenne et al., 2015; Miller et al.,
2016), which only focused on genome-wide significant region
to predict causal genes, our study predicted plausible causal
genes for CAD at genome-wide level by using genetic variants
of both strong and subtle effects. Besides, to our knowledge, this
is the first systematic analysis for CAD using comprehensive
data from different layers to prioritize candidate genes. However,
this study has several potential limitations. First, our study
only paid attention to those genes that were prioritized
by at least two computational methods. This strategy may
omit some authentic CAD susceptibility genes. Besides, we
assigned these methods with equal weights when combining
the results. There might exist some discrepancies among the
various methods because of different rationales and datasets.
Further studies are needed to search the optimum weights.
Second, we used eQTL data from peripheral blood samples
when we conduced Sherlock and SMR analyses. Although blood
tissue can be a proxy for eQTL effect in various diseases,
it might be not ideal because we certainly lose power for
eQTLs with tissue-specific effects (Supplementary Table S13).
However, we gain power for genes with consistent effects
across tissues because of the use of a very large sample size
for eQTL analysis in blood. Future studies using large-scale
eQTL data in pathophysiologically relevant tissues are needed
to validate our results. Third, we did not consider other
QTLs from different omic layers, such as DNA methylation
(meQTLs), protein (pQTLs), or metabolites (mQTLs), which
limited our ability to study from multi-omics perspective. In
addition, the statistical methods did not perform causal inference;
therefore, the genes identified in our study were only plausible
candidate causal genes. However, the results still played a pivotal
role in prioritizing genes for experimental follow-up. Further
studies are needed to validate our results and elucidate the
biological mechanisms.

CONCLUSION

In summary, we integrated multi-dimensional data and depicted
the landscape of plausible candidate causal genes for CAD.
GO analysis further showed that these genes were enriched
in lipid metabolism and extracellular region. Tissue-specific
enrichment analysis revealed that these genes were significantly
overexpressed in adipose and liver tissues. Further studies
and experimental validations of these genes may shed light
on mechanistic insights into CAD pathogenesis and provide
potential drug targets for future therapeutics.
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