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Abstract

Background: Capnography is commonly used for nurse-administered procedural sedation. Distinguishing between capnography
waveform abnormalities that signal the need for clinical intervention for an event and those that do not indicate the need for
intervention is essential for the successful implementation of this technology into practice. It is possible that capnography alarm
management may be improved by using machine learning to create a “smart alarm” that can alert clinicians to apneic events that
are predicted to be prolonged.

Objective: To determine the accuracy of machine learning models for predicting at the 15-second time point if apnea will be
prolonged (ie, apnea that persists for >30 seconds).

Methods: A secondary analysis of an observational study was conducted. We selected several candidate models to evaluate,
including a random forest model, generalized linear model (logistic regression), least absolute shrinkage and selection operator
regression, ridge regression, and the XGBoost model. Out-of-sample accuracy of the models was calculated using 10-fold
cross-validation. The net benefit decision analytic measure was used to assist with deciding whether using the models in practice
would lead to better outcomes on average than using the current default capnography alarm management strategies. The default
strategies are the aggressive approach, in which an alarm is triggered after brief periods of apnea (typically 15 seconds) and the
conservative approach, in which an alarm is triggered for only prolonged periods of apnea (typically >30 seconds).

Results: A total of 384 apneic events longer than 15 seconds were observed in 61 of the 102 patients (59.8%) who participated
in the observational study. Nearly half of the apneic events (180/384, 46.9%) were prolonged. The random forest model performed
the best in terms of discrimination (area under the receiver operating characteristic curve 0.66) and calibration. The net benefit
associated with the random forest model exceeded that associated with the aggressive strategy but was lower than that associated
with the conservative strategy.

Conclusions: Decision curve analysis indicated that using a random forest model would lead to a better outcome for capnography
alarm management than using an aggressive strategy in which alarms are triggered after 15 seconds of apnea. The model would
not be superior to the conservative strategy in which alarms are only triggered after 30 seconds.
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Introduction

With the recent increase in the use of electronic monitoring
devices in the hospital setting, alarm fatigue has become a
serious problem that impacts patient safety and nursing care
[1]. Alarm fatigue is caused by exposure to excessive and
frequent device alarms and leads to desensitization to alarms.
Alarm fatigue has been linked to patient deaths resulting from
delayed responses to clinical deterioration by clinicians who
have become desensitized to alarms [2]. One of the sources of
alarms is the capnography device that is used to measure and
monitor ventilation in patients. A capnography waveform
displays the level of expired carbon dioxide (CO2) over time to
show changes in concentrations throughout the respiratory cycle.
Capnography waveform abnormalities assist in detecting and
diagnosing specific conditions such as partial airway obstruction
and apnea. For this reason, the implementation of capnography
into practice for respiratory monitoring is considered a high
priority to improve patient safety by leading authorities,
including national and international professional organizations
for anesthesiology in Canada, the United States, and Europe
[3-5]. Capnography is commonly used for nurse-administered
procedural sedation [6-8], including in the interventional
radiology setting [9-13].

Distinguishing between the capnography waveform
abnormalities that signal the need for clinical intervention for
an event and those waveform abnormalities that do not indicate
the need for intervention is essential to the successful
implementation of this technology into practice. For example,
alarms triggered after short periods of apnea lead to frequent
interruptions and potentially increase the risk of alarm fatigue.
Conversely, intervention provided only when an apneic event
reaches a longer threshold negates the potential benefits that
capnography can have on patient safety through improved
ventilation. In practice, two alternative strategies for
capnography alarm management are typically used. The
aggressive strategy involves alarms triggered after short periods
of apnea (typically 15 seconds). The conservative approach
involves alarms triggered only when an apneic event is
prolonged (typically >30 seconds). Preferences for the
aggressive or conservative alarm threshold are influenced by
many factors, including the rate of oxygen supplementation.
The duration of time between the onset of apnea to hypoxemia
increases with higher oxygen flow [14].

Capnography alarm management may be improved by using
machine learning to create a “smart alarm” that can alert
clinicians to apneic events that are predicted to be prolonged.
Such an approach aligns with a call from The Society for Critical
Care Medicine Alarm and Alert Fatigue Task Force that machine
learning techniques should be used to advance the quality of
alerts that clinicians receive and to individualize alert delivery

based on clinician response characteristics such as alert
frequency and event severity [15].

In the aggressive alarm management strategy, if an alarm is
only triggered for apneic events predicted to be prolonged, it
would reduce the total alarm burden and potentially reduce the
risk of alarm fatigue. The downside of applying a machine
learning approach to the aggressive strategy would be that some
patients with prolonged apnea may not receive early intervention
if the model incorrectly predicts that the apneic event will not
last for >30 seconds (ie, false negatives). In the conservative
alarm management strategy, if an alarm is triggered at the
15-second timepoint for apneic events predicted to be prolonged,
it could reduce the total time of the apneic event because
treatment could be initiated earlier. The downside of applying
a machine learning approach to the conservative strategy would
be the potential increase in the total alarm burden if the ratio of
false positives (apnea incorrectly predicted to last for >30
seconds) to true positives (apnea correctly predicted at the
15-second time point to last for >30 seconds) is high. This study
aimed to determine the accuracy of machine learning models
for predicting at the 15-second timepoint if an apneic event will
persist for >30 seconds. This information would help determine
whether operationalizing these predictions into practice as alarm
triggers would be beneficial.

Methods

We performed a secondary analysis of a prospective
observational study. The primary aim of the observational study
was to identify common patterns in capnography waveform
abnormalities and factors that influence these patterns [16]. All
participants provided written informed consent and the study
was approved by human research ethics committees (UCH
HREC 1614; SVHAC HREC 16/26; QUT 1600000641).

Prediction Goal
The prediction goal was to classify apneic events at the
15-second timepoint as either short (ie, terminated before 30
seconds) or prolonged (persisted for >30 seconds). The
prediction algorithm was compared against typical default alarm
settings for capnography monitors.

Participants
Participants in the observational study were consecutive adult
patients who were scheduled to undergo an elective procedure
in the cardiac catheterization laboratory with moderate sedation.
Patients with severe cognitive impairment who could not provide
informed consent and those unable to understand and speak
English (in the absence of an interpreter) were excluded. Data
collection was performed at two urban private hospitals in
Australia.
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Sedation and Monitoring
The sedation regimen used for patients included in this study
comprised bolus doses of intravenous midazolam and fentanyl.
Sedation was performed by nurses who were trained in advanced
life support. Routine clinical monitoring included continuous
cardiac rhythm and oxygen saturation monitoring as well as
noninvasive blood pressure measurements every 5-10 minutes.
The Respironics LoFlo Sidestream etCO2 sensor was used for
capnography monitoring. A CO2 sampling cannula was inserted
into the side port of an oxygen face mask or was integrated as
a separate line for nasal cannulas. The capnography waveform
was displayed on the main physiological monitoring screen. A
default “No breaths detected” alert was triggered for apnea, but
no other audible or visual alarms were set for the capnography
monitor. No restrictions or specific instructions regarding the
detection of capnography waveform abnormalities were
provided to clinicians as part of the research protocol because
the study used an observational design.

Data Collection
Data were collected from August 2016 to May 2018.
Demographic data and clinical characteristics were collected
from medical records or directly from participants prior to
procedures. Intraprocedural data were collected in real time by
the researcher present in the procedure room. Direct observation
of the participant was required to record the timing of sedation
administration and any interventions by sedation providers.

Predictor Variables
Several raw demographic (age, sex) and clinical (American
Society of Anesthesiology physical status classification,
diagnosis of sleep apnea, BMI, dose and type of sedative and
analgesic administered) variables were used as predictors.
Features related to sedation regimen dosing used as predictors
in the model were the total sedative dose and number of sedative
doses administered, time since first sedation, and time since the
previous sedative dose. Other features were extracted from the
capnography waveform for use as predictors, such as the
previous respiratory state (normal or abnormal breathing),
duration of the previous apneic event, time since the previous
apneic event, and total number of apneic events. A total of 18
predictor variables were used.

Statistical Analysis
Analyses were performed using R version 4.0.3 [17]. Data as
well as details about how to access the code and a reproducible
computing environment to verify the results were available
[18,19].

Modeling
We selected several candidate models to evaluate, including a
random forest model, generalized linear model (logistic
regression), least absolute shrinkage and selection operator
regression, ridge regression, and the XGBoost model.
Out-of-sample accuracy of the models was calculated using
10-fold cross-validation. Many participants in the study
contributed multiple apneic events to the dataset used for
modeling. To take this dependency into account, we ensured
that apneic events from individual participants were not included

in both the training and testing partitions of the 10-fold
cross-validation process. Preprocessing steps included
normalizing numeric predictors and using an interaction term
for the duration of the previous respiratory state and the total
number of apneic events. The discriminatory ability of the
models was compared using the area under the receiver
operating characteristic curve (AUROC) as well as by plotting
sensitivity, specificity, positive predictive values, and negative
predictive values (termed a threshold performance plot). A
calibration plot with locally estimated scatterplot smoothing
was used to assess calibration [20]. The runway package was
used to create the plots [21].

Decision Curve Analysis
We used the net benefit decision analytic measure to assist with
deciding whether using the models in practice would lead to
better outcomes on average than using the current default
capnography alarm management strategies. The default
strategies are the aggressive approach, in which an alarm is
triggered after brief apneic events (typically 15 seconds), and
the conservative approach, in which an alarm is triggered for
only prolonged apneic events (typically >30 seconds).
Calculation of the net benefit essentially transforms the total
number of true positives (apneic event predicted to be prolonged
at 15 seconds and correctly persisted for >30 seconds) and false
positives (apneic events predicted to be prolonged at 15 seconds
but did not persist for >30 seconds) into a standardized scale,
weighted by the relative harm of a false-positive result [22].
For example, a net benefit of 0.07 means that the net benefit of
using the model would be 7 true positives from every 100
predictions from the model. This net benefit can result from
any combination of true positives and false positives [23]. A
probability threshold of 0.5 indicates that avoiding a false
positive is as important to a clinician as identifying a true
positive. Preferences for probability thresholds below 0.5 are
weighted such that identifying a true positive is more valuable
than avoiding a false positive. Preferences for probability
thresholds above 0.5 are weighted such that avoiding a false
positive is more valuable than identifying a true positive. For
example, for a probability threshold of 0.75, the value of a false
positive is 3 true positives (0.75/0.25). In other words, to create
a net benefit from using the model at this probability threshold,
there must be more than 3 true positives for every false positive
prediction made from the model. Conversely, for a probability
threshold of 0.25, the value of a false positive is weighted far
lower, at only one-third of a true positive (0.25/0.75). This
means that a net benefit would be achieved if there were more
than 1 true positive for every 3 false positives. Decision curves
can be interpreted such that the strategy with the highest net
benefit at each probability threshold has the highest clinical
value [23].

We created a decision curve to plot net benefits across a range
of probability thresholds for the aggressive strategy (alarm
triggered at 15 seconds of apnea) and the conservative alarm
management strategy (alarm triggered at 30 seconds of apnea).
The decision curve takes into account the full range of
reasonable clinician preferences for the point at which an alarm
should be triggered to signal an apneic event in a patient. We
tested thresholds in the range of 0.3-0.5 for the aggressive
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strategy. In the practical sense, this means that we decided that
all clinicians who usually use the aggressive strategy would not
accept a probability of prolonged apnea lower than 0.3 as a
useful alarm trigger because there would be little difference
between this strategy and simply setting the alarm for all apneic
events. We also decided that all clinicians would always
consider that an alarm is triggered for the aggressive strategy
if the probability of prolonged apnea was higher than 0.5. A
range of values was used because these probability thresholds
can be interpreted as value preferences that individual clinicians
may reasonably choose in clinical practice. For example, a
clinician who is more risk-averse may select a more conservative
probability threshold (closer to 0.3). Individual participant
characteristics will also influence clinicians’ decisions about
probability thresholds. A clinician may elect to intervene when
the probability of prolonged apnea is 0.3 for an older patient

with multiple comorbidities but not for a young patient who
may more likely be able to tolerate longer periods of apnea. For
the conservative strategy, we chose to plot the range of
probability thresholds from 0.7 to 0.8. Higher values were
chosen because the number of false positives would be an
important consideration for clinicians already using a
conservative alarm management approach.

Results

A total of 384 apneic events of at least 15 seconds duration from
61 of the 102 patients (59.8%) who participated in this
observational study were included in the present analysis. A
summary of participant characteristics is presented in Table 1.
Nearly half of the apneic events (180/384, 46.9%) were
prolonged (ie, >30 seconds).

Table 1. Participant characteristics (N=61).

ValueCharacteristic

76 (68-80)Age, median (IQR)

26.4 (24.6-29.8)Body mass index, median (IQR)

Sex, n (%)

22 (36)Female

39 (64)Male

Obstructive sleep apnea, n (%)

46 (75)No

15 (25)Yes

American Society of Anesthesiology physical status classification, n (%)

37 (61)I or II

24 (39)III or IV

Discrimination
A plot of the AUROC for the models using predictions from
the 10-fold cross-validation is presented in Figure 1. The random
forest model had the best discriminatory power of the models,

with a mean AUROC score of 0.66 (SE 0.03). A threshold
performance plot, which summarizes the discriminatory power
for the models, including values for sensitivity, specificity,
positive predictive value, and negative predictive value across
all probability thresholds, is presented in Figure 2.
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Figure 1. Area under the receiver operating characteristics curve. LASSO, least absolute shrinkage and selection operator.
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Figure 2. Threshold performance plot for all models evaluated. LASSO, least absolute shrinkage and selection operator; PPV, positive predictive value;
NPV, negative predictive value.

Calibration
The random forest model had the best calibration. It
approximated observed risk at moderate (0.5) to high (0.8)
thresholds (Figure 3), although the risk was overestimated at

very low thresholds and slightly underestimated between 0.4
and 0.5. Other models severely overestimated risk at low
probability thresholds and underestimated risk at high
probability thresholds.
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Figure 3. Calibration plot for all models evaluated. LASSO, least absolute shrinkage and selection operator.

Decision Curve Analysis
As the random forest model performed the best in terms of
discrimination and calibration, we chose this model for
evaluation using decision curve analysis. The net benefit
associated with the random forest model exceeded that
associated with the aggressive strategy across all probability
thresholds in the range of 0.3-0.5 (Figure 4). The interpretation
is that the best clinical outcome would be achieved for clinicians

who are willing to initiate intervention for apnea at the
15-second mark if the probability of the event being prolonged
was more than 40% by using the random forest model. The net
benefit associated with the random forest model was lower than
that associated with the conservative strategy across all
probability thresholds in the range of 0.7-0.8 (Figure 4). Figure
4A is the comparison of the model with the aggressive strategy
and Figure 4B is the comparison of the model with the
conservative strategy.
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Figure 4. Decision curve analysis plots.

Discussion

In this study, we found that the random forest model had the
best discriminative ability and calibration for predicting if an
apneic event would be prolonged during nurse-administered
procedural sedation. However, it should be noted that the
accuracy of this random forest model was still quite low
(AUROC 0.66). Additional research is needed with larger
sample sizes to validate our initially promising findings.

Results from prior studies indicated that the use of information
about the history of previous respiratory states may be a
promising approach for predicting the duration of apneic events.
A study of capnography waveform abnormalities during
nurse-administered sedation found a two-fold increase in the
risk of apnea (hazard ratio [HR] 2.14; 95% CI 1.75-2.62) when
a patient was in a state of hypoventilation (defined as >10%
reduction in end-tidal CO2 from baseline) [24]. The risk of apnea
also increased with each additional sedative dose (HR 2.86;

95% CI 2.15-3.81) [24]. Results from an earlier study in a
different population also supported the observations that the
onset of apneic periods during sedation is associated with a
previous history of abnormal respiratory state. Krauss and
colleagues [25] used survival analysis to model the time to first
apneic events in a sample of 312 patients undergoing procedural
sedation with propofol or ketamine in the emergency
department. They found that the risk of apnea increased with
an abnormal end-tidal CO2 measurement 30 seconds (HR 2.45;
95% CI 1.63-3.69), 60 seconds (HR 1.88; 95% CI 1.21-2.92),
and 90 seconds (HR 2.06; 95% CI 1.36-3.11) prior to an apneic
event. In our study, we leveraged information about the
associations between apneic events and the history of previous
respiratory states by building a predictive model using a machine
learning approach. Features included in the models we tested
were the previous respiratory state, duration of time in the
previous respiratory state, number of previous apneic events,
and duration of the previous apneic event.
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Many prediction modeling studies focused on predicting clinical
outcomes have yielded similarly low AUROC scores. For
example, a recent study of the predictive ability of vital sign
parameters for clinical deterioration in subacute care patients
reported an AUROC score of 0.57 [26]. Decision curve analysis
can help elicit whether a model with low AUROC scores is
“good enough” to use in practice. Our results indicated that
nurses currently using the conservative strategy who are willing
to value a false positive about 2-3 times more than a true positive
would not derive an overall net benefit from using the random
forest model as a trigger for apnea alarms. This is because the
random forest model would produce a worse outcome than the
default strategy of waiting for an alarm to be triggered at the
30-second threshold in terms of the balance between true
positives and false positives for determining if an apneic event
will be prolonged.

Conversely, nurses currently using the aggressive strategy who
are willing to value a false positive about 2-3 times more than
a true positive would derive an overall net benefit from using
the random forest model as a trigger for apnea alarms. Using
the random forest model as an additional input for an alarm
trigger would reduce the total alarm burden and could be
considered an option for implementation into practice. To
operationalize these predictions into capnography monitors,
partnerships with industry would be required because monitor
functionality would need to be adapted to facilitate input of the
data required to calculate the predictions [27]. These data would
include patient characteristics and sedative dosing. Integrating
predictive models into alarm management strategies for
respiratory monitoring devices is also indicated in other contexts.
For example, a recent study found that opioid-induced
respiratory depression during recovery from anesthesia can be
accurately predicted using a machine learning approach [28].
In addition, user-centered design considerations, such as how
the predictions should be communicated to nurses responsible
for decision-making, are important avenues for further research
prior to implementation [29].

This study used decision curve analysis to evaluate the potential
clinical impact that using the model as input for capnography
alarm management would have on the number of alarms
triggered (ie, false positives and false negatives). However, as
with any intervention in health care, the efficacy of the model
needs to be assessed prior to broader implementation. The
indicator for efficacy in this context would be the improvement
in patient safety using this model as input for capnography alarm
management. The gold standard approach for such an evaluation
is a randomized controlled trial. Randomized controlled trials
testing alarm conditions that have integrated predictions from
machine learning models have been conducted previously in
similar contexts such as intraoperative blood pressure
management [30,31].

A noteworthy finding is that the model produced an overall net
benefit that was higher than that of the aggressive strategy but
not higher than that of the conservative strategy. Further research
with larger sample sizes is needed to increase the predictive
power of models aimed at predicting the duration of apneic
events. Such research is warranted because triggering an alarm
after 30 seconds of apnea that would turn off without clinical

intervention only 5 seconds later is just as clinically
inconsequential as triggering an alert after 5 seconds of apnea
that would similarly turn off after a short time. In both these
circumstances, there would not be enough time for the
clinician’s intervention to take effect. However, presumably in
an attempt to reduce alarm burden, the default settings for many
capnography monitoring devices are for the alarm to be triggered
after 30 seconds of apnea. An ideal alternative to the
conservative strategy would be for capnography monitor alarms
to be triggered as early as possible during an apneic event, but
only if the event will be prolonged enough to necessitate clinical
intervention and for this intervention to take effect—a goal that
we did not achieve in this study. However, previous research
indicates that it would be worthwhile to find such a solution.
An analysis of half a million patients found that respiratory
compromise during interventional radiology procedures
performed with moderate sedation led to worse clinical
outcomes and higher costs than those observed in normal
respiratory states [32].

Limitations
Although the number of apneic events included in the models
was relatively high, this was seen in a small number of patients.
We used cross-validation to minimize the possibility of
overfitting. This analysis used data from an observational study
conducted at two hospitals that used a convenience sampling
approach; therefore, selection bias was possible. The context
in which the study was conducted should also be considered in
terms of external validity. Participants were patients undergoing
procedures in a cardiac catheterization laboratory where small
bolus doses of midazolam and fentanyl were used for sedation.
Other procedural sedation contexts may involve the use of
different sedative doses and types of medications, so the results
of this study might not be generalizable to these contexts. A
further limitation is that clinicians were not blinded to
capnography measurements because of the observational nature
of the study design. It is possible that interventions used by
clinicians during the 0- to 30-second apneic period influenced
the duration of the apneic event. However, this mimics
real-world practice in that interventions may be implemented
at clinicians’ discretion where no alarm conditions have been
met. Additionally, 25% of the study population had sleep apnea,
which was one of the predictors included in the model. Due to
the small sample size, the dataset used to train the model would
have contained only a small proportion of patients with sleep
apnea and therefore it may not be generalizable to the larger
population of individuals with sleep apnea. Further research
with larger sample sizes is required to confirm our findings.

Conclusion
We evaluated several candidate models to determine their
accuracy in predicting at the 15-second timepoint if an apneic
event would prolong for >30 seconds. The random forest model
performed the best in terms of discrimination and calibration.
Decision curve analysis indicated that using the random forest
model for capnography alarm management would lead to a
better outcome than using an aggressive strategy in which alarms
are triggered after 15 seconds of apnea. The model would not
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be superior to the conservative strategy in which alarms are only triggered after 30 seconds.
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