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Abstract: Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disease thought to be
principally caused by mutations in sarcomeric proteins. Despite extensive genetic analysis, there
are no comprehensive molecular frameworks for how single mutations in contractile proteins re-
sult in the diverse assortment of cellular, phenotypic, and pathobiological cascades seen in HCM.
Molecular profiling and system biology approaches are powerful tools for elucidating, quantifying,
and interpreting dynamic signaling pathways and differential macromolecule expression profiles
for a wide range of sample types, including cardiomyopathy. Cutting-edge approaches combine
high-performance analytical instrumentation (e.g., mass spectrometry) with computational methods
(e.g., bioinformatics) to study the comparative activity of biochemical pathways based on relative
abundances of functionally linked proteins of interest. Cardiac research is poised to benefit enor-
mously from the application of this toolkit to cardiac tissue models, which recapitulate key aspects
of pathogenesis. In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic
and phosphoproteomic technologies and their application to in vitro and ex vivo models of HCM
for global mapping of macromolecular alterations driving disease progression, emphasizing their
potential for defining the components of basic biological systems, the fundamental mechanistic
basis of HCM pathogenesis, and treating the ensuing varied clinical outcomes seen among affected
patient cohorts.

Keywords: functional proteomics; mass spectrometry; cardiac disease modeling; hypertrophic
cardiomyopathy

1. Introduction

Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy,
affecting up to 1 in 500 people [1]. HCM is an autosomal dominant, monogenic disease,
thought to be principally caused by mutations in sarcomeric proteins. Roughly 60% of
patients have a defined genetic disease, with the majority of mutations lying in thick and
thin myofilaments proteins [2,3]. These mutations include singly substituted residues
(such as in myosin-7, MYH7), as well as truncated proteins (myosin-binding protein C,
MYBPC3) [2]. Despite well-defined mutations, a high degree of variation is observed in
clinical phenotypes. MYH7 and MYBPC3 patients often develop left ventricular hypertro-
phy, fibrosis, and microvascular occlusion, though patients harboring other mutations are
observed to have low to no cardiac remodeling [2]. While this may be explained by envi-
ronmental differences and pleiotropic manifestations of the same mutation, low correlation
between mutation and clinical prognosis suggests these mutations are not the sole source of
clinical phenotypes [4]. It is plausible that a combination of molecular cascades secondary
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to these genetic perturbations, as well as compensatory mechanisms, drive the cellular and
clinical phenotypes observed. The challenge of mapping such cascades is amplified when
considering the complexity of molecular functions performed by cardiomyocytes (CM),
the stroma, and other associated cardiac cells.

Molecular profiling and system biology approaches are powerful tools for elucidating
and quantifying dynamic signaling pathways and differential expression profiles for a wide
range of sample types. There are now high-throughput omics technologies for quantifying
nearly all macromolecules, including RNA and proteins, as well those for capturing physi-
cal interactions among biomolecules (e.g., protein–protein and protein–DNA interactions).
The application of these tools in cardiac research increasingly combines high-performance
analytical instrumentation (e.g., mass spectrometry) with computational methods (e.g.,
bioinformatics) to measure relative molecule abundance and infer the comparative activity
of molecular pathways based on coordinated changes in functionally linked molecules [5].
Mass-spectrometry-based methods can also measure post-translational modifications, such
as phosphorylation of proteins, which are important signaling processes in cardiovascular
disease. [6]. These data can be subject to statistical enrichment analyses and be used to
determine the differential activity of phospho-signaling transduction pathways for a given
condition or treatment.

Concurrently, cardiac research is benefiting enormously from advancements in in vitro
and ex vivo cardiac tissue modeling that recapitulate key aspects of pathogenesis (Figure 1A).
Researchers now have an assortment of sources for cardiac cells, each with its own benefits
and challenges for modeling cardiac disease progression. For example, differentiation
of human-induced pluripotent stem cells into CMs (hiPSC-CMs) provides an abundant
source of cells for functional studies, but these cells typically display an immature fetal-like
cellular phenotype. Conversely, primary CMs (both human and murine) better reflect adult
CM function but are more challenging to obtain in large numbers for experimentation.
Undoubtedly, coupling cardiac tissue modeling techniques with quantitative functional
proteomic profiling technology offers the potential to generate high-throughput platforms
for dissecting, and potentially reversing, the complex signaling cascades altered in HCM.

In this review, we evaluate state-of-the-art mass-spectrometry-based proteomic and
phosphoproteomic technology and their application for the analysis of in vitro and ex vivo
HCM models, emphasizing their potential role in understanding the fundamental basis of
HCM pathogenesis and the ensuing varied clinical outcomes.
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Figure 1. In vitro and ex vivo models of hypertrophic cardiomyopathy (HCM) and phosphoproteomic workflow: (A) 
cardiac cells are obtained from ex vivo (human or murine) or in vitro (human-induced pluripotent stem cells, (hiPSCs)) 
sources prior to phosphoproteomic analysis. In vitro cardiomyocytes, differentiated from a patient harboring an associated 
HCM mutation, or cells that have been CRISPR/Cas9 edited prior to differentiation; (B) once harvested, proteins are iso-
lated from total cell lysate (homogenate) via a bottom-up phosphoproteomic method. Extracted proteins are proteolyti-
cally cleaved with a site-specific protease (e.g., trypsin) into peptides, purified by hydrophobic (reversed-phase) resin, and 
subject to high-performance liquid chromatography for fractionation. Phosphopeptides are then enriched by immobilized 
metal affinity chromatography. The total peptides and enriched phosphopeptides are then analyzed, separately, by liquid 
chromatography–mass spectrometry (LC–MS/MS), either by data-dependent or data-independent analysis (DDA and 
DIA, respectively). In DDA, high abundant peptides are selected individually during ion accumulation and fragmented 
separately, while in DIA, multiple co-eluting peptides are co-fragmented in a time window resulting in more complex 
(mixed) fragmentation spectra; (C) the resulting spectra are analyzed computationally to identify the corresponding pro-
teins and to make functional insights into up- and downregulated proteins, phosphoproteins, and the likely activity 
changes in their corresponding biochemical pathways. Analyses include univariate and multivariate statistical tests. Fi-
nally, exploratory findings from phosphoproteomics are validated, typically by small-molecule inhibition, both with high-
throughput monoculture and novel engineered heart tissue platforms. 

2. Mass-Spectrometry-Based Proteomics and Phosphoproteomic Technologies 
2.1. Fundamentals of Mass Spectrometry 

LC–MS/MS offers a flexible set of strategies for detecting, quantifying, and identify-
ing diverse macromolecules (e.g., proteins) based on differences in their biophysical prop-
erties. In the most basic iteration, a typical LC–MS/MS experiment encompasses four com-
ponents: sample isolation (e.g., biochemical purification/fractionation), ionization, mass 

Figure 1. In vitro and ex vivo models of hypertrophic cardiomyopathy (HCM) and phosphoproteomic workflow: (A) cardiac
cells are obtained from ex vivo (human or murine) or in vitro (human-induced pluripotent stem cells, (hiPSCs)) sources
prior to phosphoproteomic analysis. In vitro cardiomyocytes, differentiated from a patient harboring an associated HCM
mutation, or cells that have been CRISPR/Cas9 edited prior to differentiation; (B) once harvested, proteins are isolated
from total cell lysate (homogenate) via a bottom-up phosphoproteomic method. Extracted proteins are proteolytically
cleaved with a site-specific protease (e.g., trypsin) into peptides, purified by hydrophobic (reversed-phase) resin, and
subject to high-performance liquid chromatography for fractionation. Phosphopeptides are then enriched by immobilized
metal affinity chromatography. The total peptides and enriched phosphopeptides are then analyzed, separately, by liquid
chromatography–mass spectrometry (LC–MS/MS), either by data-dependent or data-independent analysis (DDA and
DIA, respectively). In DDA, high abundant peptides are selected individually during ion accumulation and fragmented
separately, while in DIA, multiple co-eluting peptides are co-fragmented in a time window resulting in more complex
(mixed) fragmentation spectra; (C) the resulting spectra are analyzed computationally to identify the corresponding
proteins and to make functional insights into up- and downregulated proteins, phosphoproteins, and the likely activity
changes in their corresponding biochemical pathways. Analyses include univariate and multivariate statistical tests.
Finally, exploratory findings from phosphoproteomics are validated, typically by small-molecule inhibition, both with
high-throughput monoculture and novel engineered heart tissue platforms.

2. Mass-Spectrometry-Based Proteomics and Phosphoproteomic Technologies
2.1. Fundamentals of Mass Spectrometry

LC–MS/MS offers a flexible set of strategies for detecting, quantifying, and identi-
fying diverse macromolecules (e.g., proteins) based on differences in their biophysical



Int. J. Mol. Sci. 2021, 22, 13644 4 of 17

properties. In the most basic iteration, a typical LC–MS/MS experiment encompasses four
components: sample isolation (e.g., biochemical purification/fractionation), ionization,
mass measurement, and bioinformatic analysis (Figure 1B,C). An analogy for this process
is using a prism to resolve different wavelengths of light. White light is composed of
numerous photon wavelengths (mixed spectrum), and by applying a filter (the prism),
each packet of wavelengths can be deconvoluted and individually observed as a band of a
specific color [7]. During mass spectrometry (MS) analysis, an individual signal of sample
components (e.g., distinct peptides) is deconvoluted from others in complex mixtures
(e.g., cell lysate) with a mass filter, such as an electromagnetic field to separate ionized
components based on differences in their mass to charge ratio (m/z).

Sample preparation prior to the LC–MS/MS analysis is dependent on the type of
molecule class measured [8]. Proteins are usually processed via bottom-up proteomics,
in which they are proteolytically digested with a protease prior to the LC–MS/MS anal-
ysis (Figure 1B). Among other possible methods, they are extracted by lysing cells with
a denaturant, shearing DNA and other macromolecules by sonication, and isolating pep-
tides by reversed-phase resins. Once isolated, complex sample mixtures are subject to
chromatographic fractionation. This fractionation further deconvolutes mixtures based on
differences in component column retention time (e.g., size or biochemical properties), sim-
plifying the complexity of the specimen and allowing the mass spectrometer to view fewer
overlapping molecules at any one time. These simplified components are then injected into
the MS instrument, in which mass analysis is completed using either a data-dependent or
a data-independent data acquisition procedure (DDA and DIA, respectively) (Figure 1B).

With DDA analysis, ions entering the instrument are accumulated within a mass
analyzer and quickly scanned (profiled collectively), and then a subset is selected for
analysis based on their relative intensity (e.g., top 10 most intense peptide peaks). The
instrument is usually programmed to automatically select the highest intensity ions (or
precursors) inside a pre-selected m/z range, measuring their mass precisely in the first
round of a tandem MS analysis. The machine then isolates and energetically fragments
individual molecules in a second round of analysis (Figure 1B) [9].

In contrast, DIA can provide more comprehensive analyses since all ions that ac-
cumulate in the mass analyzer within a pre-selected m/z range are selected jointly for
fragmentation [10]. While the accurate masses of the precursor ions and their fragmenta-
tion patterns are used for the identification of the original precursor, a challenge arises from
the sheer complexity of the mixed MS2 spectra, since many ions of diverse origin are ob-
served at once. DIA spectral deconvolution requires special and increasingly sophisticated
computational methods, which are still being optimized [11].

2.2. Proteomics and Phosphoproteomics

Proteins are ubiquitous actors of normal and pathological cardiac physiology. Cardiac
excitation–contraction is mediated by channels and myofilament proteins that facilitate
depolarization and filament sliding. Moreover, cellular cascades such as adrenergic sig-
naling cause rapid changes in the phospho-signaling process [12]. Given the myriad of
cellular processes that occur in a cardiac cell, identifying these regulatory relationships
and their respective role in the aberrant phenotype in cardiomyopathies is a significant
challenge. Historically, such molecules were identified and analyzed via targeted biochem-
ical assays, such as Western blot analysis, which can be hard to scale up for discovery
purposes [13]. In contrast, MS-based proteomics and phosphoproteomics (herein, both
will be referred to together as proteomics) serve as a powerful platform for comprehensive
identification and quantification of thousands of proteins and post-translational modifi-
cations (PTM) (Figure 1A,B). For example, LC–MS/MS-based methods are able to map
reversible phosphorylation of serine, threonine, and tyrosine residues that serve as es-
sential toggle switches regulating signal transduction pathways, such as those driving
fibrotic remodeling [6]. Indeed, this technology is now used to routinely monitor thousands
of molecules per experiment while maintaining highly specific and sensitive molecular
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measurements, owing to advancements in quantitative mass analysis and highly reliable,
peptide-matching algorithms [14]. Modern MS instruments (e.g., Orbitraps) have sensi-
tivity levels approaching attomoles, which allow them to distinguish proteins present in
part per million within complex biomolecular mixtures such as total cellular lysates from
cultured CMs [15,16].

The relative expression (recorded intensity values) of biomolecules detected by LC–
MS/MS is usually normalized and organized into data sets, which are then analyzed with
statistical tools to identify the most significantly changed proteins/phosphorylation sites
between conditions, such as HCM samples versus healthy tissue. Univariate statistical
hypothesis testing (e.g., Student’s t-test of means and ANOVA), coupled with a precise
measure of abundance (e.g., log2 fold change), are simple methods for ranking and visual-
izing differential expression (Figure 1C). From these data processing methods, inferences at
the single protein/phosphoprotein are made, such as upregulation of a particular growth
factor or increased phosphorylation of an activation site on an important kinase or down-
stream substrate. Multivariate methods can be used to define a subset of features that best
differentiate one group from another, revealing expression patterns (i.e., markers) within
disease groups. For example, one can identify biomarker signatures by taking the most
differential features (by statistical significance, biological plausibility, or both) via super-
vised or unsupervised clustering methods, and test if their relative expression can separate
healthy and disease samples. For HCM, this was demonstrated in a recent proteomics study
with plasma samples [17]. Sparse partial least squares discriminant analysis, a multivariate
tool for collapsing high dimensional data into a lower-dimensional space, was used to
find a subset of 50 proteins that best-distinguished HCM from case–controls. A smaller
subset of these proteins correlated with known plasma indicators of advanced heart disease
(e.g., troponin I), thus demonstrating the value of this exploratory analysis for expanding
prognostic markers. In another analogous study, Sonnenschein et al. identified a set of four
proteins downregulated in HCM based on known pathobiological function [18]. One of
these downregulated proteins in HCM samples, c-kit (a tyrosine kinase), was singled out
based on a hypothesized role in cardiac fibrosis and hypertrophy. When the corresponding
gene was silenced in cardiac fibroblasts, researchers found marked upregulation of genes
related to TGF-β signaling, a known mediator of cardiac fibrosis.

While automation of sample preparation and stable isotope labeling is ameliorating
throughput, the shortcomings of proteomics are centered around relatively low sample ca-
pacity, high instrumentation cost and complexity, and lack of robust methods for single-cell
assessment. Moreover, current “bulk” proteomic methods take an average measurement
across all sampled cell populations, which muddles signals from distinct cell types. In the
case of whole heart preparations, the proportion of CMs to specialized conduction cells
can greatly influence the average protein signal measured. Emerging single-cell proteomic
methods aim to add granularity to analysis and quantify cell population heterogeneity.
Currently, single-cell analysis has been achieved by optimizing the efficiency of sample
preparation, improving instrumentation sensitivity, and utilizing an isotopically distinct
carrier protein “channel” to increase the detection of low-abundant proteins [19]. These
aim to maximize the protein coverage from each cell in both DDA and DIA and maximize
the number of protein matches between single-cell data to avoid zero values [20]. The latter
aids differential analysis, while improved coverage provides better results for enrichment
analysis. Strikingly, Brunner et al. were able to identify more than 800 proteins, from as low
as 0.8 ng of cell extract, and indeed were able to quantify hundreds of differential proteins
from even single cells transitioning through the cell cycle [21].

2.3. Pathway-Level Data Analysis and Functional Inference

While biosignatures have their particular role in research, a shared challenge for LC–
MS/MS–omics is ascertaining the functional role of individual molecules in the complex
signaling pathways of cells or their causal significance to disease progression. To address
this issue, powerful systems using biology-based methods have been developed to identify
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higher-level biological pathways and cellular processes that are altered in a disease state
from lists of differential biomolecules (Figure 1C). The most common statistical method for
this is overrepresentation (enrichment) analysis, which tests if lists of differential features
are overrepresented for a curated gene set. These sets are constructed from published data
and comprise lists of proteins and genes (e.g., functionally coupled protein kinases and
their downstream substrates implicated in a signal transduction cascade) [22,23]. There are
annotated gene sets for nearly all well-known biological pathways and their corresponding
phenotypic impact and can include proteins associated with diseases, interacting proteins,
and putative kinase phosphorylation motifs. For instance, when Sonnenschein et al.
measured differential protein expression following targeted inhibition of c-kit in cardiac
fibroblasts, they performed gene set enrichment analysis to document downregulation
of a novel extracellular matrix (ECM)–receptor interaction axis [18]. When combined
with enrichment analysis, quantitative proteomics is exceptional for producing functional
insights from global protein profiles, particularly when coupled with graphical software for
organizing and navigating biomolecular networks, such as the Cytoscape data visualization
environment [24] (Box 1).

Graphical analysis based on protein–protein interaction (PPI) networks offer an alter-
nate framework for interpreting differential HCM expression data. As with other diseases,
an initial genetic mutation may lead to a multitude of compensatory mechanisms and
protein-level interactions that impact cellular phenotypes [25,26]. In this context, PPI net-
works can be instrumental for connecting a seemingly disparate array of disease-specific
cardiac proteins to their respective topological relationships (e.g., components within a sar-
comeric scaffold), ultimately elucidating their functional dependencies and explaining their
impact on the pathobiological process. Direct PPI mapping studies can be performed in
either a targeted or global manner, providing both qualitative and quantitative information
(e.g., comparing association subnetworks altered between conditions).

One of the greatest challenges following this type of analysis is inferring pathophysio-
logical relevance. While gene set annotations are useful for identifying differentially active
biological pathways, enrichment of a pathway is not sufficient to establish mechanistic
causality. For example, enriching the glycolysis pathway in HCM samples provides one
line of evidence of increased glycolysis, but further validation is required to both measure
activity of the pathway and determine its role in pathology. Moreover, these annotations
may imperfectly cover components of these pathways, and one must carefully assess the
differential features that cause the pathway to be enriched. Thus, candidate prioritization
for validation must be carefully balanced between proposed biological relevance, statistical
significance, and availability of selective validation tools (e.g., antibodies and targeted
kinase inhibitors).

Given the depth of protein identifications achieved by modern LC–MS/MS systems
and the public availability of well-established tools for bioinformatics analysis, it is no
surprise that proteomics has emerged as an integral tool for understanding functional
changes driving HCM. For example, in a recent proteomic profiling study of fibrotic remod-
eling in HCM, Kuzmanov et al. were able to quantify hundreds of differentially expressed
phosphoproteins/kinases between affected and control samples, whose dysregulation was
functionally validated to drive fibrosis [5]. Hierarchical clustering, principal component
analysis (multivariate statistical analysis), and enrichment for curated kinase–substrate
consensus sequences identified universal dysregulation of signaling by the protein kinase
GSK3. This pattern was seen across organ-on-a-chip, septal myectomy, and murine samples.
To validate the function of this protein kinase in fibrotic remodeling, targeted inhibitors
of GSK3 were applied to organ-on-a-chip samples, resulting in a significant reduction in
collagen deposition and myofibroblast activity. Overall, the application of quantitative
proteomic profiling as a cross-platform approach proved a powerful strategy for generating
functional insights, drug target selection, and compound screening.
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Box 1. Brief overview on reducing Type 1 error in proteomics.

“Minimizing type I error in proteomics”
Sample numbers are often low in proteomic studies, due to limitations in multiplexing and cost

of scaling up throughput. Thus, it is essential to apply stringent multiple testing corrections to
statistical tests in order to mitigate the issue of multiple comparisons. For example, let’s say we
quantified 1000 proteins between treatment and control samples, the probability of at least one gene
set or pathway being deemed significant at a defined p < 0.05 threshold due to chance (noisy data)
alone is:

P (making an error) = 0.05
P (not making an error) = 1 − P (making an error) = 1 − 0.05 = 0.95
P (making at least one error) = 1 − P (not making an error)
P (making at least one error with a thousand tests ) = 1 − P (1 − 0.05)1000 ∼= 1

In other words, since there are many comparisons made in a proteomics experiment (both at
the pathway and molecule level), it’s necessary to apply methods that decrease the Type 1 (false
positive) error rate, which increases when many tests (e.g. student t-tests or gene set comparisons)
are completed simultaneously. The most commonly used methods include Benjamini-Hochberg
and Bonferroni corrections. Suitability and limitations of multiple comparison correction tests are
extensively reviewed in Lualdi et al. [24].

3. Murine and Human Ex Vivo and In Vitro Models of HCM

As recently documented in Kuzmanov et al., omics analysis of HCM models have
their own strengthens and weaknesses in terms of pathobiological relevance and ease of
experimental implementation [5]. These systems can provide faithful representations of
CM morphology and dysfunction in response to mutations in sarcomeric proteins and
other molecular perturbations associated with HCM. Given the increasing adoption and
relevance of cardiac models, it is evident that novel disease pathways and therapeutic leads
can be discovered when in vitro and ex vivo systems are coupled with the omics profiling
technologies highlighted in Section 2 of this review. While this section delves deeper into
the recent developments in cardiac modeling, it is not exhaustive. For example, purified
and synthetic filaments are indispensable for the biophysical characterization of subcellular
changes in sarcomeres. However, since the focus of this paper is to review models that
are most amenable to discovery science through high-throughput omics technologies,
simplified biophysical systems are excluded from this article (Box 2).

3.1. Ex Vivo Models of HCM
3.1.1. Murine Models

Murine models of HCM have existed for decades, utilizing a myriad of pioneering
gene-editing technologies and surgical interventions to recapitulate the disease. One of the
earliest models involved gene targeting, introducing a missense residue into the α-isoform
cardiac myosin heavy chain (MHC, arginine substitution for glutamine, MHCR403Q)
protein via a hit-and-run and recombineering method [27]. In mice, the α-isoform MHC
protein (myosin-6, MYH6, gene) is homologous to human β-isoform MHC (MYH7 gene).
While the predominant isoform expressed in fetal murine hearts is MYH7 and switches to
MYH6 in adults, human hearts show the opposite trend [28,29]. Nevertheless, these mutant
mice display many of the hallmarks of HCM, which, as in human patients, developed
gradually. Young MHCR403Q mutant mice were comparable to wild type, but by 30 weeks,
they showed atrial remodeling, myocyte disarray with enlarged hyperchromatic nuclei,
and moderate fibrotic development. Moreover, the mutant hearts show altered physiologi-
cal function, exhibiting discontinuous ventricular relaxation and decreased cardiac output,
consistent with the diastolic dysfunction seen in HCM patients [2]. Early molecular studies
leveraging the MHCR403Q mice to study the development of hypertrophy found an aber-
rant calcium-dependent mechanism, similar to the one driving pressure-overload induced
hypertrophy [30]. These findings support current pharmacological paradigms, particularly
the use of Ca2+ antagonists to mitigate diastolic dysfunction and arrhythmogenesis [31,32].
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Other relevant mutations have been introduced into mouse strains by more tradi-
tional approaches, such as knock-out mutations of MYBPC3 and cardiac troponin [33,34].
Ferrantini et al. utilized such a transgenic model to make functional insights into con-
tractile and calcium handling mechanisms in troponin mutants [33]. Moreover, rodents
are amenable to viral transduction for delivery of CRISPR/Cas9 (and related technology)
mediated gene editing for more targeted point mutations and the development of new ge-
netic models [35]. Given the flexibility in creating murine models, these studies have been
instrumental in mapping malignant mechanisms of HCM, especially when coupled with
omics profiling approaches. In a recent proteomics study, Hu et al. analyzed the myocar-
dia of obscurin-mutant mice to characterize the proteins driving an observed arrhythmic
phenotype [36]. Their analysis revealed a mutation-specific upregulation of protein kinase
cGMP-dependent type 1, a protein that modulates cardiac contraction via phosphorylation
of cardiac ion channels. Furthermore, they found residue-specific increased phosphory-
lation of sarcoplasmic reticulum-associated proteins that facilitate excitation–contraction
coupling.

Such murine models provide many advantages that can be exploited for omics discov-
ery platforms. Principally, rodents have short gestation periods (approximately 20–30 days),
well-established colony management methods, and defined genetic backgrounds (unlike
an outbred patient population) [37]. Due to this fact, essential phenotypes such as hyper-
trophy can be exacerbated with chemical and physical treatments at the convenience of the
researcher [38]. For example, transverse aortic constriction (a common surgical interven-
tion for inducing hypertrophy) was adopted to expedite the development of hypertrophy
in HCM mice [39]. Moreover, ease of handling allows researchers to harvest samples at
various pathobiological and development stages. This is in contrast with patient samples.
Despite human CMs having the highest clinical value, it is difficult to differentiate signal
that is causative of the molecular HCM phenotype versus compensatory, since the natural
history of HCM cannot be followed [38,40]. Patient biopsies are typically provided in
the advanced stages of the disease, which is significant considering that many important
clinical manifestations are not universally present in healthy HCM patients [1].

Another key benefit of murine models over other systems is that they provide ma-
ture primary CMs. Mature CMs are biologically complex, dynamic cells that execute a
number of tasks beyond their primary contractile function, including peptide synthesis
and extra-cellular communication [41]. As early as the perinatal stage, CMs are terminally
differentiated and have undergone a number of ultra-structure morphologic and functional
developments that make them distinct from the fetal versions [42]. For example, in a study
measuring fetal murine heart maturation, Liu et al. combined RNA and protein profiling
with electrophysiological recordings to demonstrate a shift in potassium channel subtype
expression and density [43]. This developmental change in electrophysiology, a crucial
component for stabilizing the resting membrane potential during the final stage of cardiac
action potentials, resulted in increased activation kinetics and inward rectifying potassium
current with respect to early development stages. Other parameters observed include
changes in myofibril assembly (such as isoform switching in sarcomeric proteins), Ca2+

handling (maturation of the sarcoplasmic reticulum and expression of calcium channels),
and metabolism [42]. Such differences result in separate phenotypes, which is important to
consider when selecting an appropriate model, such as in the case of the more fetal-like
hiPSC-CMs.

Murine models provide harvestable primary CMs, which can be directly measured
by omics platforms (bulk tissue or sorted cells) or placed in tissue culture for further ex-
perimentation. An adult mouse heart can provide several milligrams of material, which is
sufficient for LC–MS/MS-based identification and quantification of thousands of phospho-
proteins and for performing rigorous differential analysis to investigate signaling cascades
and other molecular alterations associated with cardiomyopathy [44]. Importantly, unlike
hiPSC-CMs, these models provide whole heart preparations which capture data of the
hemodynamic and multi-cell communication occurring in cardiac tissue that is missed by
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studying CMs in isolation. This is particularly the case for cardiac fibrosis, an insidious
process observed in HCM patients. Non-CM cells play important roles in this process, from
interactions with the ECM to paracrine signaling, which must be accounted for to holis-
tically assess pathogenesis. Such mechanisms can be investigated in the ex vivo context
via murine cm microtissue platforms composed of harvested cardiac cells. Alternatively,
this process can be assessed via bulk tissue LC–MS/MS quantification, though individual
cellular information cannot be distinguished from each other. Recent developments in
single-cell proteomics technology and metabolomic cell profiles could further capture the
crosstalk and response of individual cell types to their multicellular environment to create
a more comprehensive profile of altered tissue systems in HCM.

Differences between murine and human hearts are well documented and include
calcium handling, contractile protein isoform expression, and action potential kinetics [45].
Vakrou et al. further investigated this heterogeneity by quantifying HCM specific differ-
ences between the species [46]. This comprehensive molecular profiling included mea-
surements of macromolecules and mitochondrial metabolism and found poor agreement
between the tissue types. Differences in gene expression resulted in only two genes with
similar expression values and no overlap in predicted signal pathways and transcription
factors. These molecular differences were hypothesized to have profound effects on the car-
diac phenotype. Thus, when utilizing murine models for discovery, additional experiments
with human samples are recommended for follow-up validation.

3.1.2. Primary Human Tissue

Explant human CMs are inarguably the gold standard for studying cardiomyopathy,
given their biological relevance and physiological maturity. As discussed with murine
models, there are numerous differences between mature and fetal CMs [47]. These include
electrophysiological, morphological, and molecular expression differences, which result in
distinct cellular phenotypes [48]. These differences are even more pronounced between
species. Therefore, human CMs provide the nearest assessment of HCM while maintaining
the advantages of an ex vivo system.

Innovative cardiac tissue dissection, CM isolation methods, and defined culture
conditions have led to improvements in the quality and reliability of proteomic data
generation. Although the availability of healthy human hearts is scarce, primary cells are
usually procured from cryopreserved or fresh tissue donations, which allows for direct
omics analysis or ex vitro culturing. Omics tools are apt for direct analysis of precious
myomectomies since they require very small amounts of tissue. Advancements in tissue-
harvesting protocols take advantage of this fact [49]. Grankvist et al. leveraged this by
generating a novel instrument harvesting less than 1 mm of tissue [49]. Here, they found
comparable RNA expression profiles between samples isolated using their submillimeter
endovascular biopsy device and a conventional, larger-sized device. Moreover, they found
decreased trauma to tissue, mitigating experimental artifacts while minimizing risk to
patients as an added benefit. After collection, cardiac cells are either directly processed
for the LC–MS/MS analysis or further purified to isolate and characterize CMs and other
cardiac cells. The latter procedure has clear advantages since bulk tissue analyses contain
mixtures of non-CM cells. Wojtkiewicz et al. described a primary CM isolation method
for proteomic analysis, and quantitatively assessed CM purity before LC–MS/MS [50].
To ensure homogeneity, they coupled magnetic bead-based negative selection against
contaminating immune and endothelial cells (CD45 and CD31, respectively) and flow
cytometry to isolate CMs from stromal cells. This resulted in enrichment for greater than
80% titin-positive cells. Moreover, the isolated CM samples yielded 800 micrograms of
protein starting from 250–500 milligrams of tissue, which is a respectable amount for
phosphoproteomics, as well as 203 unique cardiac proteins not seen in the bulk analysis.

Despite limitations, functional information can be leveraged from bulk tissue measure-
ments. For example, when analyzing clinical HCM tissue samples, Coats et al. identified
downregulation of key cardiac metabolism pathways, particularly those involved with
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mitochondrial energy production [51]. These perturbations included downregulation of
oxidative phosphorylation and lipid catabolic proteins, supporting the hypothesis of HCM
pathology stemming from impaired energy production. Furthermore, when observing
differential proteins, they identified an ECM proteoglycan, lumican, as significantly up-
regulated in HCM. Lumican modulates collagen assembly and is implicated in tissue
fibrosis via TGF-β interaction [52]. In a similar experiment, Pei et al. applied proteomics,
chromatin sequencing, and RNA sequencing to HCM and control tissue [53]. As with Coats
et al., they found decreased enrichment of fatty acid metabolism via their proteomic data,
which was corroborated by decreased RNA expression and hypoacetylation of key genes.
Additionally, they observed an increased enrichment of an ECM modulation pathway. This
agreement between these studies suggests that even without analyzing a purified CM
population, there are consistent findings between studies.

CMs are available for culturing prior to the LC–MS/MS analysis, which is useful for
functional and overexpression studies. CMs can be purchased commercially, and there are
publicly available protocols for isolating CMs from tissue [54]. Although terminally differ-
entiated, human CM cells can be passaged and are viable in culture for days. Nevertheless,
CMs experience morphological and electrophysiological changes after prolonged culture
which can impact functional studies. For instance, Li et al. observed a near loss of sar-
comeres in adult CMs by day 10 in culture [55]. Timing is thus imperative for minimizing
adaptions to culture.

Regardless of the methods used prior to the LC–MS/MS analysis, this model has the
advantage of capturing the dynamic signaling events of the cardiac microenvironment. As
with murine models, these interactions can be captured from whole heart extracts as well as
isolated cells, allowing one to detect modulations to CMs that are missed by monoculture.
Pathway and PPI network analysis offer a causal framework for mapping changes in
these signaling axes, particularly the discovery of signaling proteins such as cytokines
destined for secretion. Maron et al. demonstrated the power of these computational tools
by generating individualized PPI networks from HCM patient myectomy samples [56].
Their analysis identified that a significant portion of HCM patients enriched for fibrosis
pathways, compared with controls, which was validated by increased interstitial collagen
in these samples. Using this pathway information, they identified a patient-specific subset
of interacting genes (from the top differential HCM features) that predicted extreme fibrotic
phenotypes in a group of patients. Overall, such tools can be used to identify networks
of interactors which can help inform clinical decisions such as patient outcomes and
eventually lead to functional insight.

Box 2. Current advancements in integrated proteomics and metabolomics.

“Emerging Integrative Omics: Spotlight on metabolomics”
Metabolomics aims to quantify low molecular weight molecule substrates and products involved

in metabolic processes . These metabolites are the end-products and mediators of protein expression,
such as inositol trisphosphate and lactate, which are essential regulators of signal transduction and
metabolism in CMs. As with proteomics, LC/MS is a technology platform of choice to measure
metabolites on a large-scale.

Proteomics and metabolomics can act synergistically for to making make functional insights
through joint pathway analysis [52]. First, there are robust experimental methods for extracting
metabolites and protein/phosphoproteins from specimens simultaneously with minimal losses. For
example, liquid-liquid extraction (LLE) procedures can be used to selectively separate metabolites
and proteins by differences in solubility, with subsequent solid-phase microextraction (SPME) al-
lowing for purification of metabolites with minimal matrix interferences that confound LC/MS [53].

Once metabolites are identified and quantified, specific metabolic enrichment analyses allow
researchers to interrogate changes in metabolic pathway activity via annotated enzyme-metabolite
interaction networks [54]. Recent advancements in database searching also allows metabolism-
specific searches with proteomics data [55–60]. This way, complementary iterations of metabolism-
related enrichment analysis (one for metabolites, one for enzymes/proteins, and one combining
both data) that directly link alterations in enzyme levels or PTMs in reaction-driven biochemical
pathways to changes in metabolite levels.
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3.2. In Vitro Models of HCM

Primary cardiac cells are minimally proliferative once harvested. In contrast, hiPSCs
offer near-unlimited and relatively consistent sources of human CMs for disease mod-
eling and have been used extensively for proteomic research [61]. These hiPSC-derived
CMs are differentiated by manipulating key signaling pathways implicated in cardiac
development, resulting in immature but functional fetal CMs with hallmarks of adult
CMs [62]. In the case of HCM, hiPSCs harboring site-specific alleles of nearly all major
disease-associated mutations have been created, primarily generated from HCM patient-
derived stromal cells (typically reprogrammed dermal fibroblasts) or, more recently, by
introducing locus-specific HCM mutations into hiPSC lines using CRISPR/Cas9 editing
technology [63,64]. Both routes provide a unique opportunity for global omics profiling of
maladaptive mutation-associated pathway alterations, and subsequent drug screening to
modulate patient/mutation-specific phenotypes.

Before reviewing published research, it is essential to address the clear limitations of
these models. In many respects, such cells are equivalent to fetal stage CMs and lack many
of the (electro)physiological and cellular functions of their mature, adult counterpart [62].
For instance, the relevant ultra-structures for regulating Ca2+ (e.g., the T tubules and the
sarcoplasmic reticulum), are absent or underdeveloped in hiPSC-CMs [62]. This is reflected
by lower transcription of genes encoding the functional protein components belonging
to these structures [65,66]. Other deficiencies, such as fetal-like metabolism, have been
described extensively [62,67]. Despite limitations, these cells are inarguably valuable for
cardiac modeling given their accessibility and relevance to human biology. Moreover,
incremental advancements toward cardiac cell maturation have been described, such as in-
creased culture time, in vivo maturation, and biophysical/hormonal stimulation [62,68,69].
Chemical stimulation can enhance the development of functional T-tubule networks, alle-
viating issues of excitation–contraction coupling [70]. Furthermore, innovative 3D tissue
reconstitution and in vivo maturation (hiPSC transplantation) hold great promise toward
elevating maturation deficiencies [62,71].

Mutant hiPSC cm exhibit many of the cellular hallmarks of HCM, particularly when en-
gineered into a cardiac microtissue context, making them excellent models for investigating
pathophysiology via exploratory omics analysis. Myofibrillary disarray and hypertrophy,
two key phenotypes, were reported in a number of studies modeling different contrac-
tile protein mutations [63,72–74]. When evaluating a novel nanopatterning approach for
producing adult-like CMs, Pioner et al. measured both increased cell area/perimeter
and myofiber disarray in engineered CMs expressing myosin heavy chain mutations [75].
Similarly, Tanaka et al. saw a modest but significant increase in surface area and ultra-
structure disarray [74]. Other important physiological changes, such as aberrant Ca2+

handling (hypothesized to play a role in diastolic dysfunction), increased mitochondrial
metabolic activity, and mutation-specific hypo- and hypercontractile force have been docu-
mented [63,73,76,77].

Despite the successful application of proteomics with a number of different cardiomy-
opathy models, there are surprisingly few studies utilizing hiPSC-CMs for in-depth func-
tional proteomic assessment of HCM. Omics technology can be applied to such models to
investigate the exact molecular perturbations that drive observed functional changes. For
example, proteomics can reveal the signal transduction cascades and regulatory proteins
that cause abnormal intracellular Ca2+ concentrations, such as the specific phosphosites
on effector protein targets downstream of calcium–calmodulin-dependent protein kinase
II [78,79]. Equally, a combined proteomics and metabolomics analysis could be used to
elucidate the mechanisms driving increased mitochondrial respiration, such as metabolites
and protein pathways involved in ATP production [63]. For example, Hellen et al. found
temporal metabolic protein expression patterns when measuring hiPSC-CM development
via proteomics [80]. These included an increase in oxidative phosphorylation-related
proteins over culturing time.
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hiPSC-CMs avoid many of the disadvantages of in vitro culturing of primary CMs,
which makes them excellent for high-throughput omics analysis. hiPSCs are viable in cell
culture for long periods as undifferentiated cells and can be differentiated into CMs as
needed [81]. As discussed in the primary CM section, adult CMs have limited proliferation
and exhibit a number of changes with prolonged culture. These changes are noted at
the superstructure level which will unquestionably affect the proteome and metabolome
measured. Due to their defined culturing advantages, hiPSC-CMs have greater flexibility
for experimentation, such as in the case of drug treatment regimens [82]. Moreover,
because the hiPSCs can be expanded prior to differentiation, these cells can yield much
higher amounts of cellular material with respect to primary CMs. This is essential for
phosphoproteomic analysis since phosphorylation sites are often sub-stoichiometric, hence
significantly less abundant than unmodified proteins, and require enrichment for detection.
The enrichment techniques also have varying efficiencies and thus require different starting
peptide concentrations, with the most efficient methods (e.g., immobilized metal affinity
chromatography) requiring several hundred micrograms to milligrams of protein extract
per sample [83,84]. Another strength of hiPSC-CMs for HCM studies is that they provide
plentiful material as isogenic control, which is essential for measuring cellular responses
driven by mutation rather than spurious differences in genetic background. As mentioned
above, hiPSC-CMs can be used to study practically all known HCM-associated mutations,
allowing for personalized pathobiological assessment.

3.3. Future Advancements in Tissue Modeling

Researchers are increasingly pivoting to new 3D systems to better recapitulate im-
portant cell–cell communication, which are likely the major drivers of pathobiology in
cardiomyopathy. These systems, referred to as engineered heart tissue (using scaffold
matrix) or cardiac spheroids (spontaneous assembly), are constructed from cardiac cells
such as CMs, fibroblasts, and endothelial cells [85]. When assembled in appropriate cellular
proportions, they develop similar functional characteristics to cardiac tissue. These include
vascular network formation, spontaneous CM contraction, and ECM assembly [86]. These
platforms have been constructed with hiPSC-CMs and primary murine and human CMs,
with hiPSC-CMs having a distinct advantage since cell death is a major component in
platform fabrication efficiency [86,87]. Interestingly, hiPSC-CMs in 3D co-cultures exhibit
greater maturation with respect to 2D monoculture [71,88]. Polonchuk et al. found struc-
tural and functional similarities between cardiac spheroids of hiPSC and primary CM
origin [86].

The omics data captured from 3D co-culture systems represent the nearest version of
molecular profiling of tissue in a dish. Molecular data from these systems fully integrate
multicellular interactions within the cardiac microenvironment, such as integrin-based
mechanotransduction and paracrine signaling. Here, the HCM-specific mechanisms of
hypertrophy, fibrosis, and microvascular occlusion can be directly quantified for hypothesis
generation, and functionally validated within the same platform (Figure 1C). Moreover,
high-throughput drug interactions can be assessed similar to as reported by Polonchuk
et al. [86]. In their study, they used 3D tissue models for drug toxicity modeling and
screening and discovered a novel, fibroblast-induced toxicity from doxorubicin (a known
cardiotoxic drug). Alternatively, these platforms can be adopted to comparatively study
the consequences of specific sarcomeric protein point mutations and to elucidate the
molecular basis of variable phenotypes in patients (e.g., asymptomatic hypertrophy vs.
fibrotic remodeling). Undoubtedly, these technologies have transformed our approaches
toward studying cardiomyopathy and will serve as important tools for delivering precise,
patient-specific care in HCM.

4. Conclusions

HCM research is poised for comprehensive molecular characterization and high-
throughput drug discovery through the breadth of powerful new quantitative omics
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platforms and cardiac models presented in this review. The emergence of allied com-
putational tools for hypothesis generation, such as pathway analysis and PPI networks,
allows one to distinguish causal mechanisms driving the diversity of clinical phenotypes
observed. Complementing these tools is the breadth of HCM models discussed in this
review. Murine samples are an economic model providing accessible primary mature CMs,
in contrast to clinical specimens, which are hard to access and typically represent end-stage
disease. Yet, there are clear species-specific differences that limit the generalizability of
findings. Currently, hiPSC-CMs are the intermediate between the clinical relevance of
patient samples and the accessibility of murine samples. Ultimately, optimization of novel
3D systems will serve as a bridge between models. These systems promise to advance
bench-to-bedside research by recapitulating important pathobiological features of HCM.

Nevertheless, there still remains a gap between discovery and functional research.
Careful collaboration between bioinformaticians, molecular biologists, and clinicians will
be necessary to address this challenge and create new platforms for deriving meaningful
information from LC–MS/MS data.
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