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Abstract
Psychiatric and neurological disorders (PNDs) affect millions worldwide and only a few drugs achieve complete
therapeutic success in the treatment of these disorders. Due to the high cost of developing novel drugs, drug
repositioning represents a promising alternative method of treatment. In this manuscript, we used a network medicine
approach to investigate the molecular characteristics of PNDs and identify novel drug candidates for repositioning.
Using IBM Watson for Drug Discovery, a powerful machine learning text-mining application, we built knowledge
networks containing connections between PNDs and genes or drugs mentioned in the scientific literature published
in the past 50 years. This approach revealed several drugs that target key PND-related genes, which have never been
used to treat these disorders to date. We validate our framework by detecting drugs that have been undergoing
clinical trial for treating some of the PNDs, but have no published results in their support. Our data provides
comprehensive insights into the molecular pathology of PNDs and offers promising drug repositioning candidates for
follow-up trials.

Introduction
Psychiatric and neurological disorders (PNDs) represent

a burden for public health. The World Health Organiza-
tion estimates that at least 450 million people suffer from
PNDs (ref. 1). Depression (322 million affected)2, bipolar
disorder (60 million)1, schizophrenia (23 million)3,
dementia and Alzheimer’s disease (50 million)1, and
anxiety (260 million)2 are the most prevalent PNDs in the
world. Autism spectrum disorders (1 in 59 children)4 and
PNDs, such as Huntington’s disease (5–7 in 100,000
affected)1, and Parkinson’s disease (1–4% of all elderly
people)1 are also of great concern.
Five major classes of drugs are used to treat PNDs:

antidepressants, antipsychotics, anxiolytics, mood stabi-
lizers, and stimulants. However, disease remission is not

always achieved5,6. This stems from an incomplete knowl-
edge of the molecular mechanisms of both PNDs (ref. 7)
and the psychiatric drugs8. In addition, PNDs share several
clinical and genetic components9, which makes the precise
treatment and a subsequent targeted drug development
more challenging10. Specifically, drug repositioning, which
relies on testing drugs already in use for a disease to treat
another illness based on the shared molecular pathology of
both11, may be applied to treat PNDs (ref. 12).
Network medicine13 is an emerging field that combines

systems biology and network science to understand how
genes interact in disease and health. For PNDs, co-
expression networks14–16 and genome-wide association
studies9,17,18 have unraveled molecular mechanisms and
genomic variations related to these disorders. Many more
small-scale studies have investigated the roles of specific
genes in PNDs. The daunting task, now, is to make sense
of all the published data, stored in millions of research
papers, that describe the interplay among genes, drugs,
and other variables in the development and outcomes
of PNDs.
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Here, we used a network medicine approach to dissect
the molecular mechanisms of PNDs and identify novel
drug candidates for repositioning. Using IBM Watson for
Drug Discovery (WDD), a machine learning text-mining
application, we built knowledge networks containing
connections between PNDs and genes or drugs men-
tioned in the published scientific literature in the past 50
years. We found classic and potentially unexplored
pathways associated to PNDs. We also identified several
drugs that target key PND-related genes that have never
been used to treat these disorders previously. Validating
our approach, some of these drugs are currently being
tested to treat PNDs in clinical trials, with no previously
published results. Our data provides comprehensive
insight into the molecular pathology of PNDs and offers
promising drug repositioning candidates for follow-up
trials.

Materials and methods
Construction of the knowledge networks
We used the IBM WDD, an online tool, to perform

queries for major PNDs: Alzheimer’s disease, dementia,
anxiety, depression, Huntington’s disease, Parkinson’s
disease, schizophrenia, bipolar disorder, and autism. We
performed two independent searches using WDD: one for
genes associated with PNDs (gene–PND) and another for
drugs associated with PNDs (drug–PND). WDD detects
associations in original papers and reviews from PMC
Open Access (full text), Pubmed (abstracts), and patents.
Relationships are detected by a natural language-
processing algorithm when two entities of interest (gene,
disease, or drug) are present in the same sentence of a
document and are connected through a verb or preposi-
tion. WDD gives relationships a confidence score
(0–100%) based on the number of documents supporting
the connection and on link meaningfulness. Only rela-
tions with at least two documents of evidence and a
confidence score >50% were maintained in our study.
Searches were performed from July to August of the
year 2018.

Network analysis
The Louvain19 method was used to detect modules of

highly connected genes or drugs. For each pair of PNDs in
the gene and drug networks, we performed Fisher’s exact
test to calculate the significance of the overlap of genes or
drugs in PNDs. Fisher’s exact test p-values (<0.01) were
considered significant. Results were presented as −log10p-
value.

Functional gene enrichment
Genes from modules in the gene–PND network and

those exclusively associated with each PND were sub-
mitted for functional gene enrichment using enrichR

(ref. 20). Enrichment was performed against the Gene
Ontology Biological Process and the KEGG databases.
The enriched terms with an enrichR combined score of at
least 20 and p < 0.01 were retained, and the most enriched
terms were used to describe the results.

Drug repositioning
Gene co-expression modules of PNDs were obtained

from the Supplementary material of Gandal15. Co-
expression modules were detected and the first principal
component of the module’s expression (eigengene) was
used to determine module–disease association. Module
membership (kME) was calculated for each gene. The
kME is equal to the Pearson’s correlation R between the
expression of the gene and the eigengene of the module.
Module hubs are those that have kME > 0.5 in their
module.
The repositioning with Open Targets21 database was

performed using a custom R code. This script, which is
available on GitHub (https://github.com/csbl-usp/
OpenTargets_drug_repositioning), accesses the plat-
form API client of Open Targets database and performs
the same steps done for the drug repositioning with
WDD. Only relationships with an overall association
score >0.5 were utilized.

Results
Molecular characterization of PNDs using the scientific
knowledge
IBM WDD is a cognitive computing, artificial intelli-

gence platform that was used to extract existing connec-
tions between genes, diseases, and drugs from millions of
published documents related to the medical sciences22.
WDD uses a dictionary created by artificial intelligence to
group terms that are used conversely in the literature (e.g.,
gene IDs from distinct databases). It identifies relations
between the searched term and other terms of interest in
the literature. A natural language-processing algorithm
detects these relations. We used WDD to investigate the
genes and drugs that were shared among different PNDs.
A total of 1588 genes and 722 drugs was identified as
associated with PNDs. The network constructed with the
genes associated with PNDs separated the diseases into
two groups: neurodegenerative disorders (Alzheimer’s,
Parkinson’s and Huntington’s diseases, and dementia) and
psychiatric disorders (depression, anxiety, bipolar dis-
order, schizophrenia, and autism; Fig. 1a). The gene net-
work identified five clusters of disorders with similar
clinical characteristics: Alzheimer’s disease and dementia,
cognition hindering neurodegenerative illnesses (Fig. 1a—
purple color); Huntington’s disease and Parkinson’s dis-
ease, disorders that affect movement due to basal ganglia
degeneration23 (Fig. 1a—light blue color); depression and
anxiety, fear/threat-related disorders24 (Fig. 1a—red
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color); and schizophrenia and bipolar disorder, which
share a spectrum of psychotic symptoms25 (Fig. 1a—
brown-yellow color). Autism (Fig. 1a—green color), the
only developmental PND analyzed, did not cluster with
any other disease. Fisher’s exact test confirmed the divi-
sion between neurodegenerative and psychiatric disorders
and the associations between clinically similar disorders
(Fig. 1b). The highest similarity was observed between
disorders of the same group (neurodegenerative or psy-
chiatric) and between PNDs clustered within the same
modules (Fig. 1b). However, the separation between
neurodegenerative and psychiatric disorders was not as
evident in the PND-drug network (Supplementary Fig. 1).

Functional gene analysis: insights into PND molecular
pathology
We performed functional enrichment analyses with the

genes in each module and with those unique to each PND
(Fig. 2a). For all the modules, we found well-known,
hallmark molecular characteristics of PNDs (Fig. 2, Sup-
plementary results). We also had potentially novel insights
into the PNDs. The genes in the Alzheimer’s disease/
dementia module (Fig. 2b) were strongly enriched for
neutrophil degranulation (33 genes) and microRNAs in
cancer (21 genes; Fig. 2b). Neutrophil phenotype altera-
tions in Alzheimer’s disease correlate with disease pro-
gression26, and neutrophil depletion improves memory
and slows disease progression in mice27. One miRNA

involved in cancer and Alzheimer’s disease, miR-146a,
regulates innate immune response through inflammation
in both diseases28. Conversely, many miRNAs that sti-
mulate proliferation in cancer seem to favor apoptosis in
Alzheimer’s disease28. A better comprehension of how
miRNAs regulate the cell cycle and the immune system
can open new therapeutic opportunities for treating both
cancer and Alzheimer’s disease.
Huntington’s disease and Parkinson’s disease present

severe neuronal loss in the basal ganglia23. In this light,
genes involved in insulin resistance were enriched in this
module (Fig. 2c). A recent study showed that over 60% of
nondiabetic Parkinson’s disease patients had insulin
resistance29. Genes unique to Huntington’s disease were
enriched for the regulation of microtubule-based move-
ment (Fig. 2c). The huntingtin protein interacts with
several cell motility proteins, including HAP1 (ref. 30) and
HDAC6 (ref. 31). These interactions mediate organelle
trafficking32, and energy production and consumption via
the axonal bounding of GAPDH to synaptic vesicles33.
The inflammatory response was enriched in the

depression/anxiety module (Fig. 2d): c-reactive protein
levels have been known to predict the outcome of anti-
depressant treatment34,35 and disease severity36. In addi-
tion, immunomodulatory proteins were found to be
altered in the postmortem brain37, blood, and plasma38 of
depression patients. Genes uniquely connected to
depression were enriched for striated and cardiac muscle

Fig. 1 Genes shared between PNDs. a A knowledge network for genes colored according to Louvain-defined modules: Alzheimer’s disease (AD)
and dementia (DM) (purple), Huntington’s disease (HD) and Parkinson’s disease (PKD; light blue), depression (MDD) and anxiety (AX; red),
schizophrenia (SCZ) and bipolar disorder (BD; green-yellow), and autism (ASD; green). The dashed line in a separates neurodegenerative disorders
from psychiatric disorders in the network. b The significance of the gene overlap between PNDs. Larger nodes represent PNDs with more genes and
thicker edges represent a more significant overlap between PNDs (proportional to −log10p-value of Fisher’s exact test).
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hypertrophy (HTR2B, TCAP, and TTN; Fig. 2d). Anxiety
shares most of its genes with depression and has only
eight unique genes (Fig. 2d). Two of these, HCN4 and
ADCY8, have also been associated with obsessive-
compulsive disorder39. Activated cyclic nucleotide-gated
channels (HCNs) have been investigated as targets for
novel antidepressants40, although HCN4 was not one of
these cases.
Genes in the bipolar disorder and schizophrenia module

(Fig. 2e) were enriched for long-term potentiation (LTP)
and circadian entrainment (Fig. 2e). Those unique to
bipolar disorder were also enriched for circadian rhythm
(PER3 and RORB; Fig. 2e). Insomnia and sleep disorders
affect the majority of schizophrenia patients41, and are
also present in both depressive and manic phases of
bipolar disorder42. Bipolar disorder patients even show
symptoms that are synchronized with the circadian
rhythm43. Furthermore, genes uniquely connected to

schizophrenia were enriched for glutamate receptor
transmission and ErbB signaling pathways (Fig. 2e).
Neural dysconnectivity, a hallmark of schizophrenia, likely
stems from aberrant synaptic plasticity and the incorrect
developmental wiring of neurons due to oligodendrocyte
malfunction44. These processes likely depend most pro-
minently on glutamatergic transmission, neuregulin1
(NRG1)-ErbB signaling, and LTP (refs. 45,46). Three
schizophrenia-unique genes related to glial cell differ-
entiation were identified (Fig. 2e): ERBB3, PTPRZ1, and
SOX10. Indeed, schizophrenia patients present an altered
co-expression of genes associated with NFκB signaling
along with genes co-expressed in oligodendrocytes,
astrocytes, and microglia16,47.
The genes in the autism module (Fig. 2f) were enriched

for the KEGG term “Inflammatory Bowel Disease (IBD)”.
Autism patients have high comorbidity with IBD along
with Crohn’s disease48. A fecal transplant from healthy

Fig. 2 Functional analysis of genes unique to each PND and network modules. a A summary of genes connected to PNDs enriched for relevant
biological processes (GO) and pathways (KEGG). b–f The most significant gene enrichment categories for genes in the modules: Alzheimer’s and
dementia (b), Huntington’s disease and Parkinson’s disease (c), depression and anxiety (d), schizophrenia and bipolar disorder (e), and autism (f).
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subjects, a prospective therapy for IBD (ref. 49), has been
suggested to alleviate digestive symptoms, and aggressive
or repetitive behaviors in some autism patients50. The
mechanisms behind these effects remain unclear, but the
genes related to autism that were found to overlap with
those of IBD are associated with inflammatory response,
allergy, and the response to helminth parasites (inter-
leukin (IL)6, IL23A, IL13, IL5, HLA-DRB1, HLA-DRB4,
IFNG, and TGFB1). Here, IL13 was found to be targeted
by drugs that have never been tested for autism. The
circadian cycle-related gene RORA, also shared by IBD
and autism, perhaps affects immune function due to the
disruption of daily rhythms51.

Network medicine framework
From the gene–PND network (Fig. 3a), we selected

genes that were exclusively associated to each PND and
that were coexpressed in brain tissue of PND patients
according to Gandal et al.15 (Fig. 3b). Co-expression hubs
are potential drug targets since they may influence the
expression of several other genes52. To select the most
relevant drugs, we kept only those targeting genes that are
co-expressed in brain tissues of PND patients15. These co-

expression networks included patients and healthy sub-
jects from 700 microarray gene expression studies. The
selected genes (Supplementary Table 1) were then sub-
mitted to a new round of WDD searches to find drugs
associated with them (Fig. 3c). This resulted in 1305
drugs. Since our goal was drug repositioning, we removed
from the network 782 drugs known to be associated with
the PNDs or that were associated to more than one gene
(Fig. 3d, Supplementary Table 2). This allowed a sub-
sequent manual curation of 30% of the results (Fig. 3e).
We read each document provided by WDD (Supple-
mentary Table 2) that supports the drug–gene and the
gene–PND relationships, and manually removed errors
and any relationship that was not in fact described in the
documents (examples in Supplementary Table 3). It is
important to note that reviewing these 30% of interactions
did not constitute a WDD performance evaluation, which
was not the goal of our work. With the remaining drugs,
we searched the Drug Bank (https://www.drugbank.ca/)53

for any ongoing or finished clinical trials, involving these
drugs and the PNDs (Fig. 3e). Finally, we performed an
open literature review in Pubmed for selected
drug–gene–PND relationships (Fig. 3e). We aimed at

Fig. 3 Network medicine framework. a WDD searches for gene–PND and drug–PND associations. All WDD results were filtered to keep only
relationships supported by two documents or more and at least 50% confidence. b Selection of exclusive genes of each PND that are coexpressed in
brain tissue according to Gandal et al.15. cWDD searches for drug–gene associations using exclusive coexpressed genes of PNDs. d Removal of drugs
obtained in a and of drugs targeting more than one gene. e Drug prioritization through literature searches and selection of relevant cases.
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explaining how each drug could potentially affect their
target gene and how this effect could impact the disease.
Drugs that presented promising evidence of a viable
mechanism that could potentially promote disease alter-
ing effects were selected for discussion. The scripts used
to perform these steps are available on GitHub (https://
github.com/csbl-usp/WDD_drug_repositioning).

Drug repositioning for PNDs
Our network medicine framework with WDD was

applied to find suitable candidates for drug repositioning
for PNDs (Fig. 4, Supplementary Fig. 2). We manually
curated the resulting list and selected those drugs with
potential for follow-up testing. We prioritized 63 drugs
targeting 31 genes and eight PNDs that showed potential
for follow-up testing (Supplementary Table 4). Literature
search revealed that 18 of those drugs had already been
associated with a PND, suggesting that our criteria for
initial screening was stringent.
We also used Open Targets21 to demonstrate that the

drug repositioning framework proposed here can be
successfully applied to any drug–gene–disease interaction
database (see “Methods”). Applying the same framework
described in Fig. 3a–d, we obtained 4670 drugs (Supple-
mentary Table 2). Due to drug name synonyms (which
were consolidated in WDD), Open Targets associations
include many redundant drug–gene interactions. Never-
theless, we were able to detect 91 drugs in common
between WDD and Open Targets (Supplementary Table
5). Promising cases of drugs that target genes connected
to Alzheimer’s disease, schizophrenia, bipolar disorder,
and autism are depicted in Fig. 4 and described below.
Two anti-CD33 monoclonal antibodies, Gemtuzumab

Ozogamicin and Lintuzumab, were identified as promis-
ing repositioning candidates concerning Alzheimer’s dis-
ease (Fig. 4a). Lintuzumab (also found in Open Targets—
Supplementary Table 5) has been reported to reduce the

microglial cell surface CD33 by 80% (refs. 54,55). CD33 is
involved in the inflammatory response related to the
amyloid cascade in Alzheimer’s disease54. The CD33 gene
harbors a single-nucleotide polymorphism (SNP) that
protects against Alzheimer’s disease (rs12459419T). This
SNP leads to the production of a nonfunctional splicing
isoform of CD33, lacking exon 2 (refs. 54,55). Treatment
with anti-CD33 antibodies might replicate this effect by
reducing the CD33 protein levels and reduce microglia-
associated neuroinflammation. Drugs targeting the colony
stimulation factor 1 receptor (CSF1R) present similar
potential (Fig. 4a). This particular gene is essential for
microglia survival in the brain56. Also, the treatment with
CSF1R inhibitors in mice leads to a reduced microglia-
mediated accumulation of amyloid plaques56 and prevents
the development of Alzheimer’s disease-like symptoms
due to the anti-inflammatory effect of halting microglia
proliferation57. We found two drugs, JNJ-40346527
(CSF1R inhibitor) and Emactuzumab (anti-CSF1R
monoclonal antibody; Fig. 4a), which have been exten-
sively used in oncology58 but never to treat Alzheimer’s
disease. Ronacaleret, a calcium-sensing receptor (CASR)
inhibitor, could also mitigate the deleterious effects of the
amyloid cascade. CASR is expressed by astrocytes and is
responsible for detecting synaptic cleft Ca2+ concentra-
tions. Extracellular amyloid-β oligomers activate CASR,
which induces the accumulation and secretion of more
oligomers, nitric oxide release, and VEGF-A expression59.
This leads to neuronal death, sparing the astrocytes,
which continue the amyloid cascade60. Halting this
pathway early could reduce neuronal death and slow
down the progression of Alzheimer’s.
Some schizophrenia-related genes were also promising

drug targets (Fig. 4b) found both in WDD and Open
Targets (Supplementary Table 5). ERBB2, an essential
gene in the NRG1/ErbB signaling pathway, is targeted by
six drugs—three inhibitors (AC-480, Mubritinib, and CP

Fig. 4 Drugs with high repositioning potential for PNDs. a–c The most promising repositioning drug candidates (blue) that target the genes (red)
unique to Alzheimer’s disease (a), schizophrenia (b), and autism and bipolar disorder (c). The drugs discussed in the main text are highlighted here:
monoclonal antibodies (green), inhibitors (magenta), and anticonvulsants (cyan).
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724714) and three monoclonal antibodies (Trastuzumab,
Ertumaxomab, and MM-302; Fig. 4b). This pathway is
involved in schizophrenia due to its relevance to synaptic
transmission and plasticity45. Moreover, it is known that
NRG1/ErbB signaling triggers myelination in oligoden-
drocytes61. ErbB1 inhibition has been proposed as a
potential antipsychotic approach62, and the anti-ErB2
monoclonal antibody Trastuzumab has been suggested as
a possible treatment tool for schizophrenia63. We also
found SLC6A9 (glycine transporter 1—GlyT1) inhibitors
(Fig. 4b). Bitopertin (NCT01116830) and PF-03463275
(NCT01911676) are actually going through clinical trials
for schizophrenia64,65 (Fig. 4b). Two anticonvulsant drugs
(Levetiracetam and Brivaracetam) targeting the synaptic
vesicle glycoprotein 2A are also promising in this respect
(Fig. 4b). Levetiracetam (Fig. 4b) was found to improve
cognition in a rat model for schizophrenia66. Brivaracetam
(Fig. 4b) has never been used to treat schizophrenia,
which makes it an attractive drug repositioning candidate.
Among the drugs connected to the remaining PND-

related genes (Fig. 4c, Supplementary Fig. 2), we highlight
those that act upon IL13 for autism and CEACAM5 for
bipolar disorder (Fig. 4c). Drugs that affect genes con-
nected to depression, dementia, and Parkinson’s disease
are depicted in Supplementary Fig. 2, and discussed in the
Supplementary results section. IL13 has increased
expression in the T lymphocytes of autism patients67 and
exerts its inflammatory effects through the acidic mam-
malian chitinase (AMCase)68. In this research, we found
two anti-IL13 monoclonal antibodies (Lebrikizumab and
Tralokinumab) and an AMCase inhibitor (allosamidin;
Fig. 4c). Neither drugs have been tested for autism.
CEACAM5 (carcinoembryonic antigen-related cell adhe-
sion molecule 5, OMIM 114890) has been reported to be
a potential biomarker for bipolar disorder69. CEACAM5
levels are higher in the manic phase69, and lithium
reduces its levels70. Two CEACAM5-specific antibodies
and one bi-specific CEA/CD33 antibody with no prior
connections to bipolar disorder were also identified using
WDD and Open Targets (Fig. 4c, Supplementary Table 5).
Although it is unclear whether alterations in CEA serum
levels cause or arise due to bipolar disorder, reducing the
CEACAM5 serum levels might be a promising approach.

Discussion
Our results provide robust evidence in favor of Bar-

abási’s shared components hypothesis13, which states that
“[…]diseases that share disease-associated cellular com-
ponents (genes, proteins, metabolites, and miRNAs) show
phenotypic similarity and comorbidity”. Since we used
data obtained entirely from previously published works,
none of the individual relationships between genes and
drugs, and genes and PNDs, by definition, are novel.
Nonetheless, the network medicine framework presented

here was able to integrate this accumulated knowledge
from the scientific literature to obtain several previously
unknown associations between drugs and PNDs. We also
showed that this framework can be applied with success
to different drug–gene–diseases interaction databases.
PNDs are dimensional conditions with multiple over-

lapping layers of complexity71. We saw that PNDs that
share more symptoms, also share more genes. These
findings support the idea that PND-related genes are
associated with brain networks involved in shared beha-
vioral manifestations, such as cognition and fear-
threatening reactions72. Our results also confirm the
genetic separation between neurological and psychiatric
disorders, seen recently using GWAS results9.
We were able to break down the inherent character-

istics of PNDs to find particularities. Cornerstone bio-
logical pathways associated with neuropsychiatry were
readily detectable in our data: amyloid beta plaque for-
mation in Alzheimer’s disease and dementia, apoptosis
for Parkinsons’s diseases and Hutington disease, synaptic
transmission for depression, anxiety, bipolar disorder
and schizophrenia, and synaptic organization and
cell–cell adhesion for autism (Supplementary results).
We were also able to detect consistent characteristics
that are just being described in the literature and have
not been fully explored yet, such as the involvement of
cancer-related miRNAs in Alzheimer’s disease28, the
regulation of dopamine transmission by the circadian
cycle73, and the role of subcellular molecular trafficking
in Huntington’s disease32,33. Our results also supported a
genetic relation between depression and heart disease.
Hypertrophic cardiomyopathy (HCM) and depression
are also common comorbidities74, and patients with
HCM are correlated with a higher prevalence of
depression75. Finally, by looking at the complete scope of
the literature published in the past 50 years, we were able
to identify a consistent neuroimmune/inflammatory
genetic signature in all PNDs.
Previous computer-based or experimental drug repo-

sitioning frameworks have relied on gene expression,
drug–trarget binding or phenotypical screenings to find
candidates76,77. WDD does not distinguish associations
between genes and disorders that occur due to SNPs,
epigenetic modifications, or differences in expression. If
two PNDs share a gene, each relation could involve a
different mechanism. No information on drug effect
direction is provided either. Thus, we had to compro-
mise in selecting potential candidates for drug reposi-
tioning; we decided to only keep drugs that were found
to affect one PND gene. This reduced the amount of
collected data, which allowed us to validate several
drug–gene–PND connection individually and prioritize
candidates for discussion. There was a caveat of
increasing specificity and decreasing the potential reach
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of the drugs. Since PNDs are complex, omnigenic dis-
orders71, solutions focused on individual genes may not
be ideal. We selected drugs affecting genes that are
coexpressed in brain tissue from PND patients15. Co-
expressed genes usually play more critical roles in dis-
eases, are more often targeted by drugs, and have
influence over the expression of other genes52. We
predict that the reach of the selected drugs will be broad
due to the coexpressed nature of their targets. Using this
approach, we found monoclonal antibodies with repo-
sitioning potential. Monoclonal antibodies are highly
specific concerning their targets, but they are also large
molecules with low permeability through the
blood–brain barrier. This can be a challenge in the
follow-up validation of the drugs found in this research.
However, some of these antibodies are being discussed
as viable alternatives for treatment of schizophrenia and
Alzheimer’s disease54,63, which indicates that our
approach is efficient in finding potential candidates for
drug repositioning. We also found drugs that could be
used in combination to treat PNDs. Six drugs that could
treat schizophrenia were found to target ERBB2.
Recently, the NRG1-ERBB4 signaling antagonist Spir-
onolactone was identified in a cell-based drug reposi-
tioning screening as a candidate for clinical trials for
schizophrenia77. These drugs have the potential to
reduce dysconnectivity and hallucination by regulating
the NRG1-ErbB signaling. Four drugs could be used
synergistically to reduce microglia-mediated inflamma-
tion in Alzheimer’s disease, through the inhibition of
CSF1R and CD33. Three other drugs were also found to
target IL13, which could be used to reduce the inflam-
matory response in autism.
Our network medicine approach was able to success-

fully integrate the data obtained from millions of scientific
papers using complex networks to generate new insights
about PNDs. The network medicine framework proposed
here can be applied to drug–gene–disease interaction
databases, such as WDD and Open Targets. The drugs we
selected here are highly promising candidates for reposi-
tioning that could be taken into consideration for follow-
up in vitro and in vivo screenings.
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