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Abstract

Background: Horizontal gene transfer (HGT) is a process that facilitates the transfer of genetic material between
organisms that are not directly related, and thus can affect both the rate of evolution and emergence of traits.
Recent phylogenetic studies reveal HGT events are likely ubiquitous in the Tree of Life. However, our knowledge of
HGT’s role in evolution and biological organization is very limited, mainly due to the lack of ancestral evolutionary
signatures and the difficulty to observe complex evolutionary dynamics in a laboratory setting. Here, we utilize a
multi-scale microbial evolution model to comprehensively study the effect of HGT on the evolution of complex
traits and organization of gene regulatory networks.

Results: Large-scale simulations reveal a distinct signature of the Distribution of Fitness Effect (DFE) for HGT events:
during evolution, while mutation fitness effects become more negative and neutral, HGT events result in a
balanced effect distribution. In either case, lethal events are significantly decreased during evolution (33.0% to
3.2%), a clear indication of mutational robustness. Interestingly, evolution was accelerated when populations were
exposed to correlated environments of increasing complexity, especially in the presence of HGT, a phenomenon
that warrants further investigation. High HGT rates were found to be disruptive, while the average transferred
fragment size was linked to functional module size in the underlying biological network. Network analysis reveals
that HGT results in larger regulatory networks, but with the same sparsity level as those evolved in its absence.
Observed phenotypic variability and co-existing solutions were traced to individual gain/loss of function events,
while subsequent re-wiring after fragment integration was necessary for complex traits to emerge.

Background
Horizontal Gene Transfer (HGT) is the transport of
genetic material within and across species. It is a
mechanism of genetic exchange complementary to verti-
cal transfer, which occurs through cell division and
results in the transfer of genetic information from an
ancestor to its offspring cells. Although largely ignored in
the past, recent phylogenetic evidence suggests that its
impact on bacterial evolution is significant and should be
investigated more thoroughly [1,2]. For instance, it has
been estimated that up to a 32% of the bacterial genome

is acquired by HGT [3]. However, even this number is a
lower bound of the HGT events that take place through
bacterial evolution, since only a small fraction of trans-
ferred material is positively selected, fixed, and conse-
quently, observable through phylogenetic analysis [4].
The current belief is that fixation is more probable for
auxiliary genes which encode specific functions [5], and
that horizontally transferred genes are integrated at the
periphery of the network while core network parts
remain evolutionarily stable [6].
Due to our limited ability to observe HGT dynamics

in an experimental setting, theoretical models have been
traditionally employed to elucidate the impact of HGT
on evolution. Continuous [7,8] and stochastic [9-11]
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models were developed to analyze the interplay between
rates of HGT and selection pressure parameters. In
these models, organisms are often viewed as having only
two states, depending on whether they carry a specific
allele [9]. As such, these models may provide an insight
into the fixation dynamics for different alleles, but can-
not describe the emergence of new functions and evolu-
tion of the regulatory networks after gene transfer.
Kinetic models [7,11] are used to study the short-term
dynamics of the vertical and the horizontal “flow” of
genes between the organisms, but since they ignore
selection pressure, they cannot properly describe the
effect of the horizontal gene transfer on evolution.
Furthermore, it was theoretically shown that transferred
genes can be successfully fixed in a population when the
HGT rate is comparable to the mutation inactivation
rate [9], and a simple population model was used to
show that high rates of HGT may affect the evolution
rate [10].
A general problem in the studies that combine HGT

and evolution is that selection and fitness have been
modeled as an arbitrarily-assigned function of allelic or
genotypic frequency, without the presence of an inte-
grated gene regulatory or environmental model. Previous
models, although insightful, have a limited scope as they
lack any notion of gene regulation, cellular networks and
processes, multi-scale structures, and temporal expres-
sion dynamics. As such, the distribution of fitness effects
for HGT, and its impact to the organization, topology,
and kinetics of the underlying biological networks was
never investigated until now. To address this questions,
we extended our previous work [12] to develop a multi-
scale simulation framework that is capable of simulating
the evolution of unicellular organisms in the presence of
HGT. As in the original model, each in silico organism
encompass functions and parameters that model basic
biological phenomena, while its core consists of a gene
regulatory and biochemical network with abstract mole-
cular representations. Instead of imposing an arbitrary,
artificial selection function (correlation, calculation, etc.)
as in previous studies, we instead created an environmen-
tal model that includes nutrients. The model has been
extended to incorporate the Horizontal Gene Transfer in
addition to other cellular (transcription, translation, mod-
ification, growth, and death) and evolutionary (mutation
and natural selection) processes previously included in
the model (see Methods and [13]). Additionally, to
achieve higher population sizes, we extended the hybrid
openMP/MPI model [14] to handle HGT events through
message passing communication between cells that run
in different processors. In a simulation, a fixed-size popu-
lation of cells mutates, competes and evolves in well-
defined, temporal, multivariate environments. Each cell
comprises three types of nodes: Gene/mRNA, Protein,

and Modified Protein (Figure 1A). The Promoter/Gene/
RNA node captures gene regulation and transcription,
while the Protein and Modified Protein nodes capture
translation and post-translational modification (acetyla-
tion, phosphorylation, etc.), respectively. A “triplet” con-
sists of a specific gene node and its products, i.e. the
corresponding protein and modified protein node, and
generally captures the “central dogma” of molecular biol-
ogy (Figure 1A). Each organism has its own distinct gene
regulatory and biochemical network (i.e. a collection of
various triplets and weighted regulatory edges) that can
be depicted as a directed weighted graph (see Figure 1B).
There exists a set of “special triplets”, which are common
in all cells, and encode physiological responses. Muta-
tions can change any node or link parameter, and triplet
duplications or deletions, allow the network to grow or
shrink in size, respectively. It is important to note that
we do not impose any objective function or arbitrary
selection. Instead, we model the environment in which
synthetic organisms live and evolve, which consists of sig-
nals, nutrients and other chemicals (e.g. toxic com-
pounds), with concentrations that can fluctuate over
time. In this work, every environment has only one nutri-
ent type and each organism possesses one special triplet,
T0, whose expression allows the organism to metabolize
the nutrients that are present. Since nutrients are present
for a short duration, organisms that evolve the capacity
to infer their presence and be prepared (e.g. express the
metabolic triplet) have a selective advantage, in analogy
to real microbial systems. We utilize this framework to
address questions regarding the impact of HGT on trait
evolution, fixation, and gene regulatory network
organization.
An overview of the simulation setting discussed in this

paper is illustrated in Figure 2. We start with a random
initial population of cells and three dynamic environments,
namely A, B and AB, where the latter is the combination
of the first two and of higher complexity. The un-evolved
initial population is either placed directly into environ-
ment AB, or it is first evolved in the intermediate environ-
ments A and B, which leads to two distinct populations.
These two populations are subsequently randomly
sampled (keeping the same effective size) to form a final
population that is then placed in the environment AB with
and without HGT. This setting allows us to introduce
complementary, but sub-optimal, phenotypes (as it is the
case of clonal interference in homogenous populations),
and to address questions regarding evolution in correlated
environments of increasing complexity.
In the setting discussed here, two signals s1 and s2

carry information regarding the presence of nutrients in
the environment (Figure 3). The input/output correla-
tion of the AB environment is a delayed XOR: Nutrients
Presence [XOR] = Delayed (s1 XOR s2). Similarly, the
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Figure 1 Basic cellular modeling in our simulation framework. (A) A “triplet": capturing the processes of transcription, translation, and post-
translational modification. (B) Example of a gene regulatory and biochemical network in an organism where environmental signals (e.g. oxygen,
temperature, etc.) regulate the expression of certain genes/proteins. The value at each node of the graph corresponds to the number of
molecules of a given molecular species. Red/blue arrows denote positive/negative regulation and their corresponding weights.
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correlation-structure of environments A and B is Nutri-
ents Presence [A] = Delayed (s1 AND NOT(s2)) and
Nutrients Presence [B] = Delayed (NOT(s1) AND s2),
respectively. The introduction of a delay in the signal/
nutrient correlation further increases the evolutionary
complexity of the environment, as organisms now have
to account for it, through the underlying network topol-
ogy and dynamics. In the absence of delays between
nutrient-signal occurrences, we obtained the same

observations, but evolution took place faster, and net-
works tended to be less complex. The three environ-
ments were not randomly selected: despite the fact that
the combined AB environment (delayed XOR) is a sim-
ple combination of the A and B environments, its com-
plexity is significantly higher when compared to the
other two (A and B). The main reason behind the
increased complexity of environment AB is the fact that
is not linearly separable [15], in contrast to both A and

Figure 2 General overview of the simulated ecological setting. Microbial population evolves under a complex environment AB ("single-step”
adaptation) either directly (i), or through a first step of evolution in less convoluted, but still related, environments A and B with (ii) or without
(iii) the presence of HGT events.

Figure 3 Environmental signals and nutrient abundance. Environmental signals (green) and nutrient abundance (red, blue and grey) for the
three environments (A, B, and AB (XOR) respectively) shown as a function of time steps within one epoch. Nutrient presence is a delayed
function of the two signals. The same signals and nutrients are present in all environments (i.e. all cells have the same special triplet function),
but with different temporal dynamics. One epoch is shown in each plot, which consists of 4,500 time units total.
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B environments that can be separated linearly. As such,
a solution is easier to evolve in the latter, which is also
evident by the corresponding evolution rates (Table 1).
To assess the fitness level of each organism, we report
the Pearson correlation between nutrient abundance
and response protein (T0 triplet) expression level over a
predefined interval of time, which we call an “epoch”
(4,500 time units in our simulations). We stress that this
similarity measure is used for visualization purposes as a
proxy to each organism’s fitness, and at no point partici-
pates or interferes with the selection or evolutionary tra-
jectory of cells during the simulation. High correlation
between nutrients and response protein concentration
implies an efficient mechanism to metabolize nutrients,
as activation of the costly metabolic pathway takes place
only when needed.

Methods
Simulation framework
A population of organisms in our simulations is com-
posed of a fixed number of organisms with the distinct
gene regulatory and biochemical networks. Networks
are composed of “triplets” (Figure 1A): mRNA, protein
and modified protein nodes. Each node can associate
and regulate any other node (although frequencies of
certain interactions can be restricted), which represents
regulation of translation, transcription and modification
of the nodes within the network. Kinetics of expression
is parameterized by several continuous variables which
map to biological properties such as basal expression,
degradation probability and regulatory strength. Overall,
the network of each organism is represented as a
weighted directed graph, with weights describing the
strength of regulation (activation or inhibition) and
node values being the number of molecules of each par-
ticular type. Node values are updated at each time step

of simulation according to the expression model
described in the next section in more details.
Two environmental signals vary over a period of 4,500

time steps, which is the length of one epoch (Figure 3).
Full simulation length of simulations was 2,000 to 4,000
epochs depending on the speed of adaptation to a parti-
cular environment. All organisms in the population are
regulated by (i.e. “connected to”) the environmental sig-
nals in a probabilistic way: some nodes in the regulatory
network can be regulated by one of the external signals,
rather than by the nodes within the network. In addition
to its regulatory network, each organism has a unique
metabolic pathway (represented as the “RP0“ pathway of
triplet T0, see for example Figure 4B) which, when
expressed, can metabolize available resources in the
environment.
Nutrients availability correlates with the environmen-

tal signals (e.g. a delayed XOR function in Figure 3).
Organisms cannot directly sense the presence of
resources; however they can potentially infer their future
presence, if they are evolved to process information
from various environmental signals through biochemical
and regulatory interactions. Energy can be acquired by
the organism at any time point if both conditions are
satisfied: (i) nutrients are present in the environment,
and (ii) the response pathway (RP0), which is part of the
metabolic pathway, is being expressed. The high cost of
metabolic protein production favors organisms that can
time the production of RP0 with the presence of nutri-
ents in the environment. Expression of the molecules
and mutation events have an energy cost, as does the
maintenance of molecular species (nodes). Costs per
one time step of RP0 and any other node maintenance
is 1 and 10 energy units respectively; energy gain per
expressed RP0 per time step when nutrients are present
is 50 energy units.

Table 1 Rate of adaptation to single environments A and B, and a complex XOR environment in different
experimental scenarios

Emergence of the organism with fitness w

w > 0.75 w >0.90

Success rate Average speed, epochs Success rate Average speed, epochs

Un-evolved ® XORa 18/32 2485 15/32 2489

Un-evolved ® Aa 30/32 1043 29/32 1067

Un-evolved ® Ba 31/32 1217 31/32 1319

{A &B} ® XORb 58/64 234 47/64 448

{A &B} ® XOR + HGT b 64/64 138 48/64 406

Acceleration of adaptation by HGT 1.7 1.1

The probability and the speed of XOR phenotype emergence are shown for two fitness thresholds 0.75 (evolved organism) and 0.90 (refined evolved organism).
Probability is calculated as the ratio between the number of experiments with the maximum fitness above the threshold in the end of the run, to the total
number of experiments. Average speed is the average epoch number at which maximum fitness surpasses the threshold (the speed calculated only for
successful experiments, therefore it is overestimated for cases with a low adaptation probability).
a 32 experiments; 4,000 epochs each.
b 64 experiments; 2,000 epochs each.
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Once an organism reaches a certain energy level
(1,600,000 energy units), it undergoes a division, increas-
ing its genotype representation in the population, while
its progeny replaces an existing organism with the low
energy so that the fixed size of the population is pre-
served (probability of an organism being replaced is
inversely proportional to its energy level). To assess the
level of fitness of each organism, we report the Pearson
correlation between nutrient abundance and RP0 expres-
sion level over one epoch, a predefined interval of time
(4,500 time units in our simulations). We use fitness
only to screen the degree of adaptation and fitness is
not a parameter of the simulation. Fitness correlates

with the division rates, since fitness is a measure of the
organism’s efficiency of metabolizing the nutrients.
Mutation events (e.g. transcription rate changes, node

duplications, node deletions, signal connection etc.)
occur stochastically at any time point and on any node,
thus changing its internal network and potentially its
phenotype, which in this context is synonymous to the
regulatory and metabolic pathway expression.

Mutation rates
Mutation rates in wild strain E. coli are estimated to be
2·10-8 per generation, per base pair. DNA repair drops
this by another 10-2 [16], which results in 2·10-10 error

Figure 4 Combined XOR phenotype is formed by HGT between cells evolved in single A and B environments. (A) Microarray-like
expression levels with one epoch (4500 time steps) for three cells from left to right: donor cell for the HGT transfer evolved in the B
environment (highlighted triplets T0, T4-T6 form a minimal network), recipient cell evolved in the A environment (triplets T0-T3 is the minimal
network), and a final combined cell with a minimal network T0-T6. Shaded expression levels are for triplets outside the minimal functional
network. Environmental signals and the nutrient abundance as a function of time are shown at the top in green and grey, respectively. The
Pearson correlation between expression levels of the modified protein from the metabolic pathway RP0 (bottom row in metabolic pathway T0)
and nutrient abundance is the fitness of the cell w. (B) Corresponding gene regulatory and biochemical networks (only minimal networks are
shown). Network for cell of type A (recipient cell) is shown on the solid yellow background. Triplets transferred in HGT fragment from the cell of
type B are enclosed in the dashed segment on the right. Each triplet (T1-T6, and the metabolic triplet T0 on the left) consists of three nodes
from bottom to top: mRNA, protein, and modified protein. Red and blue arrows show activation and inhibition (strength of regulation is not
shown). Regulation by two external signals S1 and S2 is shown with green arrows.
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rate and consistent with other estimations [17,18]. With
approximately 103 base pairs per gene in E. coli’s gen-
ome, the mutation rate per gene is about 3·10-7. How-
ever, a recent experimental study has found that these
measurements are for large population sizes, where clo-
nal interference plays a major role, and experimentation
with population sizes closer to those encountered in our
simulations (104) showed that mutation rates are 1000
times higher than those measured previously [19]. In
addition, in laboratory experiments under stress or with
chemical mutagens, mutation rate increases another 102

up to 104 per gene, per generation. Similar results have
been obtained in other microbes, such as yeast, where
the mutation rate was estimated at 3·10-10 per base pair,
per generation, and therefore is about 10-6 per gene
[20]. To account for all these factors, we used here the
following mutation rates: probabilities of weak (a change
of a parameter within a Gaussian distribution of prede-
fined width from the original value) and strong (a new
value is drown for the parameter) mutations equal to
10-5 and 4·10-6 per triplet, per time step, respectively;
probabilities of triplet creation and destruction are 10-6

per triplet, per time step.
Although we used fixed size populations of 256 organ-

isms in all experiments, evolution rate (measured as a
slope of the maximum fitness function of time) scales
linearly up to populations of at least 4096 cells as it is
shown in Additional file 1. Evolution rate does not slow
down below the linear dependence for larger popula-
tions: mutation events are still rare and sequential muta-
tions do not occur before the previous ones are fixed. At
the lower limit of plotted population sizes scaling is also
linear, which suggests that genetic drift and random
fixation of deleterious mutations dos not interfere with
the evolution (in populations smaller than 32 organisms
genetic drift become a major obstacle for adaptation).
Therefore we assume that in our model neither clonal
interference nor genetic drift is the major driving force
of the evolution for the populations in the range of 256
to 4096 organisms, and the lower number was used to
minimize the computational cost of simulations.

Expression model
The expression model is described in detail in [12].
Briefly, the probability of molecule creation at each
node and at each time step is a function of the regula-
tory effect of other nodes on that specific node, and the
availability of substrate molecules. We model the mole-
cule production probability as a two-level sigmoid func-
tion that captures activation thresholds and saturation
effects for any given regulator and for the expression of
any given node. As such, the molecule production prob-
ability of node i is given by:

Gi = basali + (1 − basali) · tanh

(∑n
j=1

(
wij · fij

(
vj, m̃ij, s̃ij

))− mi

si

)

where the sigmoid function fij describes the regulatory
effect of node j on node i:

fij
(
vj, m̃ij, s̃ij

)
=

1
2

·
[

1 + tanh
(

vj − m̃ij

s̃ij

)]

where wij is the regulatory matrix element (i.e. the
strength and direction that exerts node j to node i), vj is
the value of node j, mi and si the midpoint and slope of
the target-specific sigmoid function, m̃ij and s̃ij the mid-
point and slope of the regulator specific sigmoid func-
tion, n is number of regulating nodes, basali is the basal
expression parameter.
Initial unevolved populations are composed from ran-

domly generated cells with the following parameters: wij

is drawn from the double sided power law distribution
with 1.5 exponent (therefore 10% of weights have an
absolute value > 4); m̃ij ∈ [0, 10]; s̃ij ∈ [1, 4];mi Î[-1, 1];
si Î [1-4]; basali is Î[0, 0.5]; initial sparsity of the regu-
latory network is (0, ..., 0.2); connection to the input sig-
nals of each additional node is proportional to exp(-n),
where n is the number of nodes already regulated by
input signals; initial energy of the organism 800,000
energy units; size of the initial random network can be
up to 15 triplets.

HGT model
There are three mechanisms for HGT by which bacteria
can acquire external DNA: transformation, conjugation
and transduction (e.g. review [21]), which we capture
through a probabilistic pair-wise model, where an HGT
event between any two organisms in the population, or
one organism and a genomic “fragment” (e.g. naked
DNA present in the solution) occurs with a fixed
probability.
Experimentally observed HGT rates between bacteria

in natural environments vary between 10-7 and 10-11 per
generation, per cell [22-24], while in some cases the rate
reaches 10-3 to 10-1 [24,25]. In our model a gene and its
products are represented by triplets, and therefore HGT
can be treated as inter-cellular transfer of one or more
triplets. For every HGT event a random subset of tri-
plets (sub-network) is copied from the donor cell and
inserted into the regulatory network of the recipient
cell. A model where the introduced genes had random
dependencies yielded similar results. Original regulation
of the metabolic pathway RP0 and triplet T0 by the
transferred sub-network is preserved (Additional file 2).
Parameter sweep for HGT frequency from fully evolved
XOR networks to non-evolved organisms is shown in
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Figure 5. The observed optimal frequency of 5·10-5 (per
cell, per time step) of HGT events is in the upper range
of the experimentally observed values, and consistent
with the rest biological and evolutionary model.
Distribution of the fragment sizes in HGT events may
vary greatly in the bacterial world and depends on the
type of the transfer and experimental conditions. How-
ever in all three types of HGT the maximum size of the
transferred DNA is limited by different parameters: in
transduction by the capacity of the viral capsid, in con-
jugation by the time two organisms stay connected by a
pilus, and in transformation by the stability of the naked
DNA in the environment. In general the probability of
transfer small fragments of meaningful DNA is higher
than of larger ones. In our model triplets with preserved
regulatory network are transferred from one organism
to another, and the fragment size for an established
HGT event is chosen using a probability density func-
tion as a normalized sigmoid function:

P (n) =
1 − tanh

(
n − m

s

)

m ·
⎛
⎝2 + ln(e

−
2m
s + 1)

⎞
⎠

where n is the fragment size in triplets, m and s are the
middle point and slope of the probability density func-
tion, respectively; the denominator is a normalization
coefficient. In most cases s = m was used throughout the
paper, and therefore 67% of all transferred fragments
were not larger than m triplets (Additional file 2). One

exception is “exactly one triplet” plot in Figure 5B, which
was obtained with a sharp step size distribution function
so that exclusively single triplet fragments were trans-
ferred (m = 1.5 and s = 0.1). Unless otherwise mentioned,
the default parameters for HGT in environments tested
in our paper were set to (s = m = 5) which results in the
expectation value for the size of HGT fragments equal to
4 triplets and slightly smaller than the average size of the
minimal network (5 to 7 triplets, see Table 2).

Algorithm overview
The code is based on a stochastic simulation algorithm
where mutation events occur randomly based on prede-
fined probability distributions. We use an MPI model to
distribute a population of cells to a set of computational
nodes. Cells are distributed between MPI processes.
Weak and strong scaling shows good scalability up to
1024 computational cores (NCSA Blue Print P5 system
and preliminary tests on P7 drawer) with a near-linear
speedup for a load of 8 cells per core. At every time step
organisms mutate with predefined probabilities and node
values are updated using the stochastic expression model
described above; cells which exhausted their energy are
removed from the population and replaced with new ran-
dom cells (to start from a new point on the fitness land-
scape); cells which reach an energy above the division
threshold are duplicated, and daughter cells replace cell
with low energies to maintain a constant population size.

Network reduction
To elucidate the modus operandi of each evolved net-
work, which may have hundreds of nodes and links, we

Figure 5 Effect of HGT as a function of transferred fragment size and HGT rate. (A) Emergence of fit phenotypes is accelerated with
increasing average fragment length and saturates after the latter has reached the effective minimal network size; m denotes the middle-point of
the fragment size probability density function (see methods), (B) evolutionary trajectories for different HGT rates, averaged over 32 simulations.

Mozhayskiy and Tagkopoulos BMC Bioinformatics 2012, 13(Suppl 10):S13
http://www.biomedcentral.com/1471-2105/13/S10/S13

Page 8 of 17



developed the following heuristic to reduce the network
to its “minimal” form, in which only essential nodes and
links remain. In this iterative procedure, the fitness
effect of a link is assessed after its severance. The link is
permanently removed if it is deemed non-essential (less
than 5% fitness change). The procedure is repeated until
the network cannot be reduced any further. Due to the
stochastic nature of the expression model, fitness of a
cell can vary as much as 30% between sequential
epochs. For that reason the average fitness is evaluated
over 10 epochs to reduce that variation to 2%. Multiples
iterations over all edges with a tight removal threshold
ensure gradual and stable reduction on the network to a
near-optimal minimal sub-network.

Distribution of fitness effect
Mean, variation, skewness and kurtosis for several experi-
mentally measured DFEs are summarized in Table 3.

Fitness effect (or selection coefficient) is usually defined
as [w(z0+dz)/w(z0)]-1, where w(z0) and w(z0+dz) are the
fitness of an organism before and after a mutation event,
respectively. We use the same definition for the fitness
effect of HGT events. Mean of DFE is the average dele-
terious effect of mutations or HGT; skewness is the mea-
sure of asymmetry (for a symmetric distribution it is zero
and skewness is negative if the distribution is skewed to
the left and vice versa); kurtosis is the measure of ‘peak-
edness’ (positive if distribution is ‘sharper’ then a Gaus-
sian distribution).

Results
Effect of HGT on evolution in single and combined
populations
To assess the effect of HGT in originally non-evolved
populations, we placed random populations in all three
environments (A, B, and AB) with and without the pre-
sence of HGT. In the absence of pre-evolved cells or
even partial solutions, the presence of HGT was found
not to significantly alter the fitness trajectories of the
corresponding populations. As shown in Figure 6A, the
fitness trajectories of populations that have been evolved
in the AB environment (delayed XOR) under the pre-
sence (grey) or absence (black) of HGT are very similar.
We expect that in larger population sizes, HGT will be
beneficial to integrate beneficial mutations that emerged
simultaneously in the populations, and would otherwise
compete, although we did not observe such behavior in
our populations of relative small size (up to 16,000
cells).
Interestingly, step-wise adaptation and presence of

HGT greatly accelerated the rate of evolution. Random

Table 3 Proprieties of distribution of fitness effect

Mean fitness change, % Fitness variance Skewness Kurtosis Percent of lethal events

Mutations

Un-evolved populations -6.6% 0.109 -0.014 3.10 33.0%

Evolved populations -4.5% 0.032 -1.028 6.39 3.2%

Horizontal gene transfer

Un-evolved populations -5.1% 0.063 -0.129 4.49 14.4%

Evolved populations -6.6% 0.048 -0.064 4.70 4.6%

Experimental values (mutations)

VSV RNA virusa -6.4% 26.4%

Bacteriophage f1b,d -10.7% 0.037 -1.909 3.16 21.0%

Qb bacteriophagec,d -10.3% 0.018 -1.167 0.24 28.6%

E. coli (insertions)e -3.2% to -1.2% < 0.01 < 5%

DFE for mutation and HGT events in evolved and un-evolved populations. Calculated DFE and an overview of the experimental data for mutation events for
comparison.
a Single nucleotide substitutions in vesicular stomatitis virus [35].
b Single nucleotide substitutions in Bacteriophage f1 [34].
c Mutation accumulation experiment for Qb bacteriophage [33].
d Summary of results for mutation effects in RNA and single stranded DNA viruses [36].
e Mini-Tn10 transposon insertions in E. coli [31].

Table 2 Complete and minimal network statistics for
populations evolved in a XOR phenotype with and
without HGT

Full network Minimal network

No HGT HGT No HGT HGT

Fitness (St. Dev.) 0.81 (0.052) 0.79 (0.044) 0.78 (0.006) 0.75 (0.006)

Triplets 8.8 13.8 5.5 6.7

Links (St. Dev.) 335 (157) 338 (136) 10.6 (0.03) 14.1 (0.03)

Sparsity 0.39 0.22 0.11 0.10

Modularity 3.8 10.1 3.3 3.1

Statistics were calculated over 128 simulation runs, and in populations that
evolved an XOR phenotype (environment AB) with and without HGT (2000
epochs). Only fit cells (fitness > 0.7) were included, resulting on an average
74% representation. Sparsity is calculated as the ratio of the number of edges
to the maximum number of possible edges in a directed graph.

Mozhayskiy and Tagkopoulos BMC Bioinformatics 2012, 13(Suppl 10):S13
http://www.biomedcentral.com/1471-2105/13/S10/S13

Page 9 of 17



populations that were exposed directly to environment
AB, required more than 4,000 epochs to evolve the
delayed XOR function (Figure 6A, black curve). In con-
trast, populations evolve faster in environments of lower
complexity, such as the environments A and B (Figure
6A, red/blue lines). Remarkably, if we sample equal
amounts of cells from A and B, and expose the new
population in the complex environment AB with all
other parameters being equal (size of population, average
nutrient concentration, etc.), XOR phenotypes of high fit-
ness appear surprisingly fast (Figure 6B). This result com-
plements well recent theoretical predictions [26,27]
which suggest that evolution generalizes to new environ-
ments through facilitated variation, a process in which
genetic changes are channeled in useful phenotypic
directions. Our results show that evolution can be accel-
erated by exposing evolving populations in similar, corre-
lated environments of increasing complexity, and that
this effect is even more pronounced in the presence of
HGT. Indeed, when HGT is present, the fittest pheno-
type arises twice as fast as in the absence of HGT events
(Figure 6B).
To further investigate whether this result can be

obtained by a simple superposition of the underlying
mechanisms, we created a population with organisms
whose biological network is the union of networks that
belong to organisms evolved in environments A and B,

respectively. Contrary to expectations, only 4 out of 800
cells exhibited a fitness increase, while in most cases the
network combination resulted to lower fitness when
compared to either of the donor cells (Figure 7). Analysis
of the mutation/HGT record shows that subsequent fine-
tuning mutations after an HGT event are incremental,
and often imperative, to its positive fitness effect.
Detailed statistics of the evolution success rate and

speed are shown in Tables 1 and 4. During ab initio evo-
lution in the AB environment (un-evolved ® XOR), only
18 of 32 (56%) experiments were successful and termi-
nated with an evolved XOR population (after 4,000
epochs). In contrast, in the case of dual-step adaptation
process, where populations where first introduced to
environment A or B and then to the AB environment,
the success rate was considerably higher to 94% and 85%,
with and without HGT, respectively. In addition, HGT
accelerates by a factor of 1.7 the emergence of the
delayed XOR phenotype in {A, B} mixed populations
(measured at 0.75 Pearson Correlation between response
protein and nutrient occurrence, which is sufficient and
necessary for the XOR I/O characteristic). This HGT
effect is less pronounced, however, at the stage of pheno-
typic refinement (i.e. fitness levels above 0.9) as it is
mutations, rather than the integration of new functional
fragments (i.e. newly-transferred sets of triplets), that are
responsible for fine-tuning of the expression dynamics.

Figure 6 Fitness trajectories in partial A, B, and full AB (XOR) environments. (A) Evolution of random populations of cells in A, B and XOR
environments shown in red, blue, and black respectively. Grey curve shows the averaged fitness trajectory for evolution in a XOR environment
with the presence of HGT. Maximum fitness is averaged over 64 simulations for evolution in A and B environments, and over 32 simulations for
evolution in a XOR environment. HGT rate here is at 5·10-5 and average fragment size is 4 triplets. (B) Evolutionary trajectory under “dual-step”
evolution, where population of evolved cells in A and B environments show remarkably fast adaptation to environment AB (64 simulations). HGT
confers an additional acceleration of adaptation to new settings. (B, inserts) Maximum fitness curves for 8 out of 64 individual simulations with
(B, left insert) and without (B, left insert) HGT are shown in grey. One curve is highlighted with dark grey for clarity.
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Optimal range for HGT rate and transferred fragment size
We investigated the effect of the fragment size to the
fitness trajectory, in the presence of HGT. Towards this
goal, we placed initially non-evolved populations in an
AB environment that included network fragments taken
from already evolved cells. During an HGT event, a cell
would have the capacity to probabilistically integrate
one of these fragments, as it is in the case of transfor-
mation or naked DNA uptake. In the absence of HGT,
the averaged final maximum fitness of 32 populations
after 4,000 epochs approaches 0.8. Rates of evolution
were studied as a function of the average fragment size

(Figure 5A) with a fixed HGT rate of 5·10-5 (per cell,
per time step). The rate of evolution steadily increases
with the increase of the average fragment size trans-
ferred by HGT, and saturates at approximately 5 triplets.
A closer look at the underlying networks provides the
reason behind this saturation limit. In the AB environ-
ment the average network size of the evolved organism
is 9 triplets, however the average network size that is
essential to exhibit the delayed XOR phenotype is only
5.5 triplets (see Table 2). Therefore network fragments
with 5 triplets or more may contain the full mechanism
necessary for a cell to exhibit the XOR phenotype, and
thus it can be acquired in a single HGT event, if such
fragment size is allowed. A similar effect was observed
for environments A and B, as well as dynamic AND and
OR gates, although the triplet thresholds were lesser
due to smaller underlying mechanisms necessary to
exhibit the corresponding phenotypes. Hence, the effec-
tive fragment size has a saturation limit that depends on
the environmental and phenotypic complexity. Notice-
ably, even HGT of single triplet fragments (orange curve

Figure 7 Fitness probability distribution functions in a XOR environment. Direct combination of cells evolved in A and B environments
does not exhibit a combined XOR phenotype. Red and blue lines: cells evolved in A and B environments, respectively. Grey bars: cells
constructed by a combination of networks from cells evolved in A and B environments. Majority of combinations have fitness equal or a lower
than either of the combined fragments. Few events (4/800) result in a combined fitness higher than 0.6 (1600 cells were randomly selected from
16 populations fully evolved A and B environments, 800 random combined cells were tested for the combined fitness in a XOR environment).
Green bars show the fitness distribution of 800 hundred cells collected from the same populations after adaptation to a XOR environment with
a presence of HGT.

Table 4 Probability of the complex XOR phenotype
emergence in different experimental scenarios.

w > 0.75 w >0.90

Unevolved ® XOR 0.56 0.47

Unevolved ® {A, B} ® XOR 0.85 0.67

Unevolved ® {A, B} ® XOR + HGT 0.94 0.68

Organisms with fitness w > 0.75 considered to be evolved, further refinement
of the phenotype is required to surpass w > 0.90 threshold.
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in Figure 5A) significantly accelerates the evolution rate.
Even though a single triplet cannot contain a meaning-
ful network, it inherits metabolic triplet regulation, cou-
pling to external signals, basal levels of expression, etc.,
from the evolved network. Such triplets differ in
dynamics from triplets that arise by triplet duplication
within the network, and provide a stepping stone for
relevant mechanisms to evolve.
Next, we investigated the effect of the HGT rate on the

evolutionary trajectory of our populations. For an average
fragment size of 4 triplets, we found that there is an opti-
mal dynamic range in which HGT accelerates the emer-
gence of fit phenotypes: rates below 10-6 have little effect
on the evolution speed, while rates higher than 10-3 HGT
become disruptive to an organism’s evolution. Subse-
quent analysis of the HGT event record and underlying
networks revealed that the latter is due to the lack of
fixation of advantageous sub-networks/mutations, as the
high frequency of HGT events introduces many neutral
and deleterious changes that interfere with networks
dynamics and operation.

Phenotypic variability
In the presence of HGT and in combined populations, the
XOR phenotype propagates through the population at a
significantly faster rate (750 vs. 1400 epochs, Figure 6B). In
the absence of HGT, the fittest phenotype in the popula-
tion alternates between those of environment A and B
(orange and green curves, Figure 8A) until new “hybrid”
phenotypes emerge (black curves) that eventually give rise
to highly fit, XOR phenotypes (red curves). The presence
of HGT clearly leads to a faster emergence of fit pheno-
types (30 epochs vs. 150 epochs). In addition, we looked at
how the rate of evolution scales as a function of the popu-
lation size. It is believed that evolution speed increases lin-
early with population size N for small populations, and
with ln(N) for intermediate population sizes [28], while it
approaches a saturation limit for large populations (> 109)
[29]. In our simulations, we observed a linear dependence
of evolution rate to population size in accordance to theo-
retical predictions (Additional file 1).
To examine the phenotypic variability and substitution

rates in our experiments, we created a temporal profile of
relative phenotypic frequencies during the course of 64
simulations. All initial organisms in the population that
exhibited phenotype A and B, along with their offspring,
were found to be replaced within 50 epochs by the
evolved AB (XOR) phenotype, once the latter arises.
However, both phenotypes A and B persisted until the
end of the simulation runs and at relatively high percen-
tages (10% to 18% of total population size, Figure 8B).
Analysis of the fossil mutation record of these cells
revealed that this is due to reversing mutations of the AB
phenotype to either A or B, which is what we would

expect from mutation-selection balance theory. Interest-
ingly though, we observed multiple solutions (i.e. meth-
ods of regulation and pathways) for the same phenotype
that co-existed in the population, in agreement with the
quasi-species theory [30], which provides its first compu-
tational example in the context of gene regulatory and
biochemical networks.

Distribution of fitness effect of mutation and HGT events
Mutations and LGT events differ in magnitude and direc-
tion when it comes to their fitness effect. Traditionally,
models rely on theoretical or experimentally constructed
distributions of fitness effect (DFE) when introducing
mutations in a population. These distributions have been
measured experimentally for viruses and bacteria [31-37]
and have also been obtained theoretically (e.g. [38] and
references therein). Briefly, experimental methods rely on
analysis of genomic data, where the assumption is that
mutation fixation probability is analogous to the benefit it
confers [39], or engineered single-nucleotide substitutions
in bacteria [31,32] and viruses [33-36] with small genome
size. In general, it is assumed that most mutations have a
neutral or nearly neutral effect and the vast majority of
mutations have a negative fitness effect [38]. In bacter-
iophage F1, 20% of single point mutations were found to
be lethal, while the mean fitness decrease was around 11%
[34]. In E. coli, the average effect of spontaneous deleter-
ious mutations and random insertions is less than 1% and
3%, respectively [31,32].
Theoretical approximations of the DFE are usually based

on the concept that most mutations are “nearly neutral” as
introduced by Kimura [40]. Following this theory, the
shape of DFE is assumed to peak close to zero and skew
towards deleterious mutations. Another common frame-
work is the Fisher’s adaptive landscape model [41,42],
although it is considered to have a heuristic, and not quan-
titative value [43] due to its simplifying assumptions. In
recent studies, application of the extreme value theory
resulted to an exponential distribution of beneficiary
mutations [44], although computational studies of RNA
evolution found to be better described by a Gumbel distri-
bution with an exponential right shoulder only if 99% of
nearly neutral observations are discarded [45]. One simpli-
fying assumption in both theoretical and experimental stu-
dies is that the shape of DFE remains the same during
evolution, which it contradicts our findings. In addition,
both experimental and theoretical work is focused on sta-
tic environments and in already evolved organisms.
Despite the large number of studies on the mutation DFE,
the fitness distribution for Horizontal Gene Transfer
events remains unknown.
Here, we use our in silico simulation framework to

investigate the shape and changes in the DFE for both
mutations and HGT. Since each organism has its own
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regulatory network that results to a distinct phenotypic
behavior, we are able to calculate fitness before and
immediately after any HGT event (correlation between
expression levels of the response pathway and nutrient
presence). This allows us to profile the shape of DFE
along the evolutionary trajectory and to account for
genetic drift, which can be a significant force in small
populations. Figure 9 shows the DFE for eight evolved
and non-evolved populations in the AB environment
(delayed XOR) over the course of 100 epochs. Non-
evolved populations were randomly generated, while
evolved populations were constructed from the high fit-
ness cells (w > 0.75) sampled from populations that had
evolved in an XOR environment for 8,000 epochs. In
both mutation and HGT DFEs, there is a profound
decrease in the number of lethal events (i.e. fitness effect
equal to -1) in evolved populations versus the non-
evolved populations, a clear indication that the latter
become robust to mutations. Table 3 provides a synopsis
of the DFE parameters of the DFE for viable mutations
and HGT events (fitness effect > -0.8), and shows that
the resulting mutation DFE is in good agreement to the
effect of measured single point mutations in viruses and
E. coli. Furthermore, we observe a decrease in variance
and increase in kurtosis (sharpness) of the DFE as popu-
lations evolve, both for HGT and mutations, although
the effect is more profound in the latter case. As

population evolves, mutation DFE becomes more skewed
towards negative fitness effects, which is to be expected
as most mutations in an evolved organism result in a
decreased fitness. Interestingly, the DFE of HGT events
becomes more symmetric (skewness closer to zero) in
evolved populations, as the probability for HGT to trans-
fer a beneficial or disrupting fragment increases (the first
because of the availability of beneficial sub-networks, the
second because of the high ratio of already fine-tuned
cells in the population that can be disrupted by a HGT
event).
To gain more insight on the DFE changes, we traced

the fitness effect of mutations and HGT events along a
single evolutionary trajectory. Figure 10 shows the 500-
epoch fitness trajectory in the AB environment of a
population composed of cells that had been pre-evolved
in either A or B, and subsequently mixed. Initial maxi-
mum fitness in a pre-evolved population is above 0.5 and
reaches 0.85 after 200 epochs. While growth (i.e. number
of divisions, grey line) is nearly exponential for the first
100 epochs, it saturates due to nutrient limitation. The
HGT DFE skewness and kurtosis do not change signifi-
cantly over time, while the DFE for mutations steadily
becomes sharper and skewed to the left (Figure 10C and
10D). In addition, we observe a steady decrease of lethal
mutation and HGT events during the course of evolution
(Figure 10E), with a sharp decrease of lethal HGT events

Figure 8 Metabolic pathway expression and relative phenotypic frequencies during evolution in the AB environment. (A) Emergence of
the XOR phenotype in a mixed (A &B) population evolving in the XOR environment. Phenotypes of the fittest organisms of the population are
shown for the first 500 epochs of simulation. Without HGT (left panel) cells with initial phenotypes A and B (orange and green plots,
respectively) are the fittest for the first 150 epochs; afterwards cells mutate to intermediate phenotypes (black plots) and finally an XOR-like
phenotype emerges (red plots). Emergence of the intermediate and final phenotype occurs sooner if networks of type A and B are combined in
one organism by HGT (right panel). Time profile of nutrient abundance is shown for comparison with phenotype profiles on the top of each
panel in blue. (B) Emergence of an XOR phenotype in a population composed as a 1:1 mixture of cells with A and B phenotype without (left
panel) and with (right panel) HGT in 400 epoch intervals. Frequencies of A, B, and XOR phenotypes are shown in red, blue, and grey respectively;
percentage of cells with no distinct phenotype is shown in black. Statistics is collected over 64 experiments.

Mozhayskiy and Tagkopoulos BMC Bioinformatics 2012, 13(Suppl 10):S13
http://www.biomedcentral.com/1471-2105/13/S10/S13

Page 13 of 17



around 175 epochs, which correlates with the emergence
of the highly fit phenotype in the population.

Network organization
The complete gene regulatory and biochemical network
of an evolved cell is usually too complex to analyze,
while many of its connections are not relevant to the
observed phenotype. To address this issue, we employed
a reduction algorithm (see Methods) to extract the
“minimal” network that encompasses only essential con-
nections. As shown in Table 2 average fitness of reduced
minimal networks is at least 95% of the full network’s
fitness, however the average number of regulatory edges
is significantly reduced: from 338 to 14.1 and from 335
to 10.6 with and without HGT, respectively. Presence of
HGT events results in larger networks that are consider-
ably more sparse (0.39 vs. 0.22), but with the same aver-
age sparsity and reduced network size difference when it
comes to their minimal counterparts.
To elucidate how HGT confers a fitness advantage dur-

ing evolution, we dissect the gene regulatory and bio-
chemical network of a cell before and after an HGT
event. Figure 4 depicts an HGT event that integrates a
network fragment from a cell with phenotype B into a
cell with phenotype A during evolution in the AB envir-
onment. This particular event had occurred at epoch 185
of the evolutional trajectory shown in Figure 10B by a
highlighted red arrow. The resulting cell has a high fit-
ness w = 0.84 in the AB environment (XOR) which is
unusually high for the given timeframe. The expression
profile of the donor, acceptor and final cell is depicted in

Figure 4A. As shown, the acceptor and donor cells
respond well to the presence of the first and second
occurrence of nutrients, respectively. The HGT event
introduces a fragment that incorporates vital components
of the mechanism employed by the donor cell to infer the
presence of the second nutrient pulse, which does so by
processing information carried by signal S1. The resulting
cell is able to metabolize the nutrients during both
pulses, and its response expression profile correlates well
with the nutrient presence. Subsequent mutations result
in the fine-tuning of the timing for the expression of the
response pathway, which then correlates better to the
second nutrient pulse (data not shown).
Figure 4B shows the minimal network of the resulting

cell, with the minimal network of the acceptor cell with
A phenotype (Delayed (s1 AND NOT(s2))) being in a
solid yellow background. Activation of the metabolic
(response) pathway RP0 of triplet T0 is regulated by the
protein from the triplet T2: signal S1 activates transcrip-
tion of T3, protein T3 controls translation of T1, which
in turn regulates the transcription of T2. The delay is
introduced by activation of the protein modification in
T2 by the same signal S1, which decreases concentration
of un-modified protein T2 while signal S1 is present.
Once signal S1 is off, modified proteins T2 gradually
return to the un-modified state and metabolic pathway
RP0 becomes activated. Signal S2 regulates protein modi-
fication in T3, which blocks metabolic pathway RP0

expression when both signals S1 and S2 are present, and
therefore satisfies NOT(s2) part of the environment. The
HGT event introduces three extra triplets that add the

Figure 9 Distribution of fitness effect (DFE) in unevolved (black) and evolved (red) populations. Effect of (A) mutation and (B) HGT
events. As populations evolve, frequency of neutral mutations increases, but frequency of neutral HGT events stays almost unaffected; in both
cases frequency of lethal events is decreased in the evolved populations. Skewness and kurtosis of the distributions is shown on the top; more
details can be found in Table 3. For each of four plots, statistics is collected over 8 populations evolved for 100 epochs in a XOR environment.
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Figure 10 A population composed of cells evolved in partial A and B environments evolving in a combined XOR environment. (A)
maximum fitness trajectory (wine) and number of divisions per epoch (grey); additional details for this evolutional trajectory are shown in the
following panels: (B) HGT events with strong positive (increase in fitness Δw > +0.3) and very strong negative (decrease in fitness Δw < -0.4)
fitness effects are shown with red and blue arrows, respectively; origins and heads of arrows represent fitness before and after HGT event,
respectively; red arrow highlighted with the grey oval represents the HGT event, which resulted in the emergence of a fully evolved cell in this
population (this event is described in detail in Fig. 4) (C) skewness and kurtosis of DFE for non-lethal mutation events calculated for every 50
epochs; (D) same as above, DFE of non-lethal HGT events; (E) frequency of lethal (deleterious) mutation and HGT events as a function of
evolutionary time.
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additional functionality as follows: signal S2 activates
transcription of T5, which in turn activates the metabolic
pathway RP0. Signal S1 activates transcription of T4 and
T6, which inhibit translation of T5. Triplet T6 has para-
meters almost identical to T4, since it was created by tri-
plet duplication earlier during the evolution. However in
this cell, both T4 and T6 are present in the minimal net-
work to maintain a required level of inhibition.

Conclusions
Horizontal gene transfer is a phenomenon that inarguably
affects the evolution and emergence of complex traits. To
what extent it does so, its impact to the underlying net-
works and population dynamics, however, is still to be
determined. Our multi-scale models and simulations
allow, for the first time, to address questions related to
HGT that transcend three levels of organization (microbial
populations, organism, and regulatory networks), shedding
light on its effect during evolution and providing concrete
examples of network integration and operation. Our
results show that the effect of HGT is very much depen-
dent on the environmental context which includes, but is
not limited to, the genotypic and phenotypic variability of
the existing populations. The observation that HGT can
accelerate the rate of evolution of heterogeneous popula-
tions is intriguing: can we experimentally manipulate the
rate of evolution by sequentially exposing a population to
fluctuating environments in the presence of HGT? What
are the principles and rules that optimize this effect? Our
computational results show that adaptation to correlated
environments of increasing complexity can accelerate the
rate of evolution, especially in the presence of HGT, a
hypothesis that remains to be tested in a laboratory set-
ting. HGT events show a distinct spectrum in respect to
their fitness effect. The HGT-derived fitness effect distri-
bution was found to increase its symmetry during evolu-
tion, in contrast to the fitness effect distribution of
mutations, which becomes more skewed towards deleter-
ious mutations. Our distributions of mutation effects are
in complete agreement with experimental observations so
far, while our predictions regarding the reported DFE bias
remain to be tested experimentally.
There are many future directions to explore in order to

increase the scope of the methods presented here. In
respect to the models, the current framework will benefit
from the addition of a spatial component, since in the
current setting we assumed a well-mixed, homogeneous
environment which doesn’t allow the investigation of
individual HGT mechanisms (transduction, conjugation,
transformation), as their effect varies greatly with the
spatial landscape of the environment and population
structure. Moreover, the same simulations can be per-
formed with a model of adaptively growing populations
which are only nutrient-limited instead of having a fixed-

size population, although the latter is easier to analyze
and balance in simulations. A larger population size is
always desired as small effective population size renders
results prone to undesired artifacts, such as random drift,
although this is less of a concern here as we can a poster-
iori analyze the effect of every and each mutation event
during the evolution. The proposed framework can serve
as a predictive and testing tool for evolutionary hypoth-
eses that would be difficult to evaluate experimentally,
while at the same time can drive laboratory experimenta-
tion by providing scenarios that are likely to occur in spe-
cific environmental contexts.

Additional material

Additional file 1: Evolution rate as a function of the population size.
Rate is calculated as an average slope of the maximum fitness increase
averaged over 8 independent experiments for each population size of
256, 512, 1024, 2048, 3072 and 4096. Initial random populations evolved
in the XOR environment until the maximum fitness is stabilized.

Additional file 2: HGT fragment transfer probability and genome
integration. (A) Probability density function profile used to select HGT
fragment sizes. (B) Incorporation of the HGT-transferred fragment (triplets
TN+1 to TN+k) in the regulatory matrix, where only the response pathway
(triplet T0) regulation is conserved. The newly acquired fragment can
over time rewire and couple to other nodes in the network. Simulations
where the imported fragment was randomly rewired to the host
genome yielded similar results.

List of abbreviations used
DFE: distribution of fitness effect; HGT: horizontal gene transfer.
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