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Abstract: Owing to the toxicity of polycyclic aromatic (PCA) oils, much attention has been paid to the
replacement of PCA oils by other nontoxic oils. This paper reports comparative study of the effects of
new vegetable oils, i.e., Moringa oil (MO) and Niger oil (NO), on rheological, physical and dynamic
properties of silica–filled natural rubber composite (NRC), in comparison with petroleum–based
naphthenic oil (NTO). The results reveal that MO and NO exhibit higher thermal stability and better
processability than NTO. Cure characteristics of the rubber compounds are not significantly affected
by the oil type. It is also found that the NRCs containing MO or NO have better tensile strength
and lower dynamic energy loss than the NRCs containing NTO. This may be because both MO and
NO improve filler dispersion to a greater extent than NTO as supported by storage modulus and
scanning electron microscopy results. Consequently, the present study suggests that MO and NO
could be used as the alternative non–toxic oils for NRC without any loss of the properties evaluated.

Keywords: vegetable oil; fatty acid; natural rubber composite

1. Introduction

Natural rubber composite (NRC) was prepared by mixing natural rubber (NR) with
reinforcing filler such as silica and/or carbon black to improve physical properties and
dynamic properties of NR. However, the incorporation of high filler loading simultaneously
requires the addition of plasticizers or oils such as petroleum–based oils to improve filler
dispersion and reduce compound viscosity for easier processing. Plasticizers soften the
compound by lubricating between rubber molecules and, thus, promote filler incorporation
and dispersion during mixing. The presence of plasticizer therefore improves physical and
dynamic properties of the NRC [1]. Among petroleum oils, distillate aromatic extract (DAE)
oils have been commonly used as oils for rubber compounding in the tire industry [2].
However, it has been reported that DAE oils contain relatively high content of polycyclic
aromatic hydrocarbons (PAHs). It is well known that many of these PAHs are identified
or suspected as carcinogens having toxic effects on organisms of human [3]. Low-PAHs
petroleum–based oils such as naphthenic oil (NTO) and treated distillate aromatic extract
(TDAE) oil are recommended for DAE oil substitution. However, it is currently revealed
that some petroleum–based clean oils may contain carcinogens [4]. Consequently, many
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attempts have been made to use various vegetable oils including their derivatives such
as castor oil (CAO) [5], citrus oil (CIO) [6], coconut oil (CO) [7], linseed oil (LO) [8,9], rice
bran oil (RBO) [10,11], rubber seed oil (RSO) [12,13], palm oil (PO) [14,15] and soybean oil
(SO) [2] as plasticizers in carbon black–filled rubbers. Additionally, most research dealing
with the utilization of green oils has been carried out in carbon black filled rubbers. Little
attention is given to silica–filled NR compound, despite the great difference in surface
activity of these fillers. Recently, it has been reported that Moringa oil (MO) and Niger oil
(NO) contain relatively high oleic acid content (>70%) and linoleic acid content (>70%),
respectively, which is interesting for many applications such as cosmetic, food, medicine,
biopesticide and biodiesel [16–18]. However, there are no previous works reporting the
effect of MO and NO on physical and dynamic properties of NRC. Since there is a trend in
the application of green and nontoxic oils, it is of interest to carry out research investigating
the potential use of new vegetable oils for rubber processing applications.

This research aims to study physical and dynamic properties of silica–filled NRC
mixed with two vegetable oils (MO and NO) compared to petroleum–based oil (NTO).
Morphology of the NRCs comprising various oils was also investigated and compared.

2. Materials and Methods
2.1. Materials

Natural rubber (STR 5L) used in this study was purchased from Thai Rubber Latex
Corporation (Thailand) Public Co., Ltd. (Chonburi, Thailand). Bis–(3–triethoxysilylpropyl)
tetrasulfide (TESPT) and precipitated silica (Tokusil–URT, average particle size of 30 nm
and BET specific surface area of 170 m2/g) were supplied by JJ Degussa Co., Ltd. (Bangkok,
Thailand) and Tokuyama Siam Silica Co., Ltd. (Rayong, Thailand), respectively. Zinc
oxide and stearic acid were obtained from Chemmin Co., Ltd. (Samuthprakarn, Thailand).
N–tert–butyl–2–benzothiazolesulfenamide (Santocure TBBS) was purchased from Reliance
Technochem Co., Ltd. (Bangkok, Thailand) sulfur (S8) was supplied by Siam Chemical
Public Co., Ltd. (Bangkok, Thailand). Lowinox© CPL, a butylated reaction product of
p-cresol and dicyclopentadiene, was obtained from Lucky Four Co., Ltd. (Nonthaburi,
Thailand). NTO, comprising 47% aliphatic content; 42% naphthenic content and 11%
aromatic content, was obtained from Nynas Pte. Ltd., Singapore. MO and NO were
supplied by Tea Oil and Plant Oils Development Center (Chiang Rai, Thailand). The
fatty acid compositions of these vegetable oils are given in Table 1. Thermal stability of
the oils used in this study was studied by thermogravimetric analyzer TGA, SDTA 851,
Mettler Toledo, Columbus, Ohio, USA) using a heating rate of 20 ◦C/min under nitrogen
atmosphere.

Table 1. The fatty acid compositions of MO [19–21], NO [22,23] and NTO [24].

Composition MO NO NTO

Palmitic acid (C16:0), % 7 8 -
Stearic acid (C18:0), % 6 6 -
Oleic acid (C18:1), % 74 16 -

Linoleic acid (C18:2), % 1 70 -
Other fatty acids, % 12 - -

Aromatic content - - 11
Naphthenic content - - 42

Aliphatic content - - 47

2.2. Compound Preparation and Testing

In this study, NRCs were prepared according to the formulations shown in Table 2
using a laboratory internal mixer (ChareonTUT: MX105–D40L50, ChareonTUT, Thailand)
equipped with cam rotor. Mixing was carried out by using a two–step mixing method. In
the first step, the mixing conditions were set as follows: rotor speed at 50 rpm, temperature
at 90 ◦C and fill factor at 0.75. NR was initially masticated for 30 s prior to the addition of
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silane and half of silica. After mixing for 45 s, the residual silica and oil were added. After
the total mixing time of 8 min, the compound masterbatch was obtained. In the second
step, the rotor speed and temperature were set at 30 rpm and 50 ◦C, respectively. The
masterbatch was mixed with TBBS, zinc oxide, stearic acid and sulfur for 3 min and then
sheeted on a laboratory two–roll mill (LRM150 W, Labtech Engineering, Thailand) and
kept at 25 ◦C for 1 day prior to testing.

Table 2. The compound formulations used in the present study.

Ingredients Content, Part per Hundred of Rubber (Phr)

Natural rubber 100
ZnO 5
Stearic acid 3
Silica 43
TESPT 3
TBBS 2
Lowinox© CPL 1.5
Sulfur 2.2
Oil (MO, NO or NTO) 0, 3, 6, 9

After mixing, Mooney viscosity of the rubber compounds was measured by a Mooney
viscometer (Visc–TECH++, Tech Pro, Columbia, Indiana, USA) at 100 ◦C in accordance with
ISO 289-1. Cure characteristics of the rubber compounds were determined via a moving
die rheometer (MDR, rheo TECHMD+, Tech Pro, Columbia, Indiana, USA) at 160 ◦C as per
ISO 6502. Scorch time and cure time are represented by ts2 and tc95, respectively. Torque
difference (Max. torque - Min. torque) was calculated and used to represent indirectly the
crosslink density. Measurement of storage shear modulus (G’) as a function of strain of
the rubber compounds was carried out using a rubber process analyzer (RPA 2000, Alpha
Technology, Hudson, Ohio, USA) at frequency and temperature of 0.5 Hz and 100 ◦C,
respectively. The rubber compounds were vulcanized by compression molding at 160 ◦C
in an electrically–heated hydraulic press (G 30H Wabash Genesis Series Hydraulic Press,
Wabash, Indiana, USA) according to their optimum cure time (tc95) obtained from the
moving die rheometer (MDR). The vulcanized samples were stored at room temperature
for at least 24 h before testing.

Degree of silica dispersion in NR matrix was investigated by using a field emission
scanning electron microscope (FE–SEM, model S–4700, Hitachi, Tokyo, Japan) at 3 kV
electron energy. The newly cryogenic fractured surfaces of the rubber specimens were
coated with Pt–Pd prior to being examined.

Tensile properties were measured using a universal testing machine (model 5566;
Instron corporation, Norwood, Massachusetts, USA) equipped with pneumatic clamp and
extensometer, in accordance with ISO 37. The dumbbell (die Type 1) specimens were cut
from the rubber vulcanized sheets having thickness of approximately 2 mm. The specimens
were tested using a crosshead speed of 500 mm/min and a 1 kN load cell. The reported
values of tensile properties were the average of 5 measurements. Damping factor (tan
δ) was measured as a function of temperature by using a dynamic mechanical thermal
analyzer; DMTA (Explexor TM 25 N, Gabo Qualimeter, Selb, Germany). Tan δ values at
60 ◦C and 0 ◦C which are directly related to rolling resistance and wet grip index of tires
are reported. The test was performed in tension mode at a constant frequency of 10 Hz,
static strain of 1%, and a dynamic strain of 0.1%. The temperature was scanned from –80 to
60 ◦C with a heating rate of 2 ◦C/min.

3. Results and Discussion
3.1. Thermal Stability of MO, NO and NTO

The thermal stability of vegetable oils and NTO was evaluated by TGA. The resulting
TGA thermograms and decomposition temperatures are shown in Figure 1 and Table 3, re-
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spectively. It can be seen that NTO shows relatively poor thermal stability as proved by the
lowest values of maximum decomposition rate temperature (Tmax) and onset temperature
(Tonset) among the oils studied. The decomposition temperature range is also broader than
those of the vegetable oils. This might be due to the mixed composition of aromatic carbon,
naphthenic carbon and paraffinic carbon in NTO. The vegetable oils, in contrast, display
higher Tmax and Tonset with narrower ranges of decomposition temperature than NTO.
Tmax values are found at 444 ◦C, 422 ◦C and 355 ◦C for MO, NO and NTO, respectively.
NO has slightly lower Tmax than MO due to the difference in fatty acid type.

Figure 1. TGA curves of different oils.

Table 3. The decomposition temperatures of different oils studied.

Oil Type
Onset

Temperature
(Tonset, ◦C)

Maximum
Decomposition

Rate Temperature
(Tmax, ◦C)

Final
Decomposition

Temperature
(Tfinal, ◦C)

Decomposition
Temperature
Range (◦C)

Residue at
700 ◦C (%)

MO 401 444 480 79 0.0
NO 402 422 485 83 0.0

NTO 251 355 371 120 0.0

3.2. Effect of Oils on Viscosity and Cure Characteristics

Figure 2 shows scorch time (ts2) and cure time (tc95) of the rubber compounds com-
prising different oil types and contents. The results show that both scorch time and cure
time tend to increase with increasing oil content regardless of the oil type. This can be
described by the dilution effect as oil could also consume the curatives. It is suggested
that some portion of curatives might dissolve in oil phase and react with the unsaturated
hydrocarbons in long hydrocarbon chains of the vegetable oils, which is analogous to the
reduction in vulcanization efficiency. Moreover, as reported elsewhere, the oil can hinder
the vulcanization reaction and reduce the crosslink density [25,26]. Therefore, the increases
of scorch time and cure time with increasing oil content could be explained. Results also
reveal that scorch time and cure time are independent of the oil type despite the differences
in oil structures.
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Figure 2. (a) Scorch time and (b) cure time of the rubber compounds comprising different oil types
and contents.

Figure 3a shows the torque difference (Max. torque-Min. torque) which could be used
to indicate indirectly the crosslink density of the rubber compounds comprising different
oil types and contents. The crosslink density slightly decreases with increasing oil content
regardless of the oil type. This could be explained by the curatives consumption of oils as
previously mentioned. At a given oil content, the rubber compounds comprising vegetable
oils exhibit slightly higher crosslink density than those comprising NTO. This cannot
be readily explained at present. One of the possibilities is that NTO contains aromatic
groups which can interfere with free radical reactions of vulcanization reaction while these
aromatic groups are absent in the vegetable oils.

Mooney viscosities of the rubber compounds comprising different oil types and
contents are displayed in Figure 3b. With increasing oil content, the compound viscosity
continuously decreases. This might be due to the improved plasticization effect of oils used
in this work as evidenced by the continuous reduction of glass transition temperature (Tg)
with the increase of oil content as shown in Table 4.

Table 4. Glass transition temperature (Tg) of the rubber compounds plasticized with different oil
types and contents.

Oil Type
Tg (◦C)

0 phr 3 phr 6 phr 9 phr

MO −43.8 −45.5 −46.0 −47.5
NO −43.8 −45.4 −46.5 −47.3

NTO −43.8 −45.2 −45.9 −46.3



Polymers 2021, 13, 1108 6 of 12

Figure 3. (a) Torque difference and (b) Mooney viscosities of the rubber compounds comprising
different oil types and contents.

3.3. Effect of Oils on Morphology and Storage Modulus

From the FE-SEM micrographs (Figure 4), it is found that all vegetable oils used in
this work give similar degree of filler dispersion. Compared with NTO, both MO and NO
give smaller size of silica agglomerates and, thus, provide better silica dispersion which
leads to the significant improvements in the mechanical and dynamic properties [27–30].

The proposed model representing the interaction between the vegetable oils and
silica is shown in Figure 5. The vegetable oils consist of polar ester groups which might
interact with silanol groups on silica surfaces via hydrogen bond [31–33]. Thus, rubber-
filler interaction is enhanced which would facilitate the dispersion of silica and reduce
the filler–filler interaction [34]. Conversely, NTO comprises no polar group which can
improve rubber-filler interaction. Hence, the poorer silica dispersion could be expected in
the NTO-containing compounds [33].

Figure 6 displays the dynamic mechanical properties of the rubber compounds as
determined by RPA. The results show the decrease of G’ with increasing strain for all
oil types, representing the destruction of silica network with increasing strain [27,35].
Generally, the difference in G´ values at low and high strains (∆G’) is used to indicate the
degree of filler–filler interaction [33,36,37]. Apparently, due to the poorer silica dispersion,
the NTO-containing compound has higher ∆G’ indicating a greater magnitude of filler–
filler interaction.
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Figure 4. FE–SEM micrographs of the NRCs comprising 6 phr of oils (a) MO, (b) NO and (c) NTO.

Figure 5. Proposed model illustration of the imaginable formation of hydrogen bonding between
vegetable oils (MO and NO) and silica.
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Figure 6. Storage modulus (G´) of the rubber compounds as a function of strain at 6 phr of different
oils.

3.4. Effect of Oils on Physical and Dynamic Properties

Elongation at break and 300% modulus of the NRCs are displayed in Figure 7. Ob-
viously, modulus of the NRCs decreases with increasing oil content, while the opposite
trend is found for elongation at break. This can be explained by the plasticization effect of
oils. It is also observed that the modulus and elongation at break of all NRCs are slightly
influenced by the oil type. However, the NRCs comprising NTO possess slightly lower
modulus and elongation at break than the corresponding NRCs having vegetable oils,
possibly due to the poorer filler dispersion [38,39].

Figure 7. Cont.
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Figure 7. (a) 300% modulus and (b) elongation at break (c) tensile strength of the NRCs comprising
different oil types and contents.

Figure 8c presents the variations of tensile strength of the NRCs having different
oil types and contents. Tensile strength increases with increasing oil content up to 6 phr
and then slightly decreases afterwards. The initial improvement is thought to be the
consequence from the improved silica dispersion (as illustrated in Figure 4). At higher oil
contents, the plasticization effect becomes more dominant on the vulcanizate strength. At
any given content, the NRCs containing vegetable oils give slightly greater tensile strength
than those containing NTO, possibly due to the better filler dispersion as supported by the
SEM results (see Figure 4) and ∆G′ results (see Figure 6). Similar observations have been
reported in some published works in which the rubber compound having vegetable oil
showed better tensile strength than that having petroleum–based oil [1,7,13]. Noticeably,
both MO and NO give comparable tensile strength despite the differences in types and
contents of fatty acid in their composition.

It is widely accepted that tan δ at 60 ◦C could be used to indicate the rolling resistance
of tire tread, i.e., the lower the tan δ at 60 ◦C, the better the rolling resistance [34,40]. The
results from Figure 8a reveal that the vegetable oils give better rolling resistance than NTO.
The greater plasticization effect and the improved filler dispersion are used to explain such
findings. Apart from the tan δ at 60 ◦C, tan δ at 0 ◦C is also used to indicate the wet grip
index of tire tread, i.e., the higher the tan δ at 0 ◦C, the greater the wet grip index. The
results in Figure 8b show that, at any given oil content, NTO gives higher value of tan δ at
0 ◦C than MO and NO indicating the superior wet grip index of NTO. This is not beyond
expectation because both MO and NO have a greater plasticization effect and a greater
ability to shift the glass transition temperature of the rubber towards lower temperatures.
They therefore give lower values of tan δ at 0 ◦C. Taken as a whole, both Mo and No give a
slight benefit on rolling resistance with a slight impairment of wet grip index when used
in tire tread application, compared to NTO. The results reveal the potential application of
these vegetable oils in the manufacturing of pneumatic tires when lower rolling resistance
is required [41,42].
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Figure 8. (a) tan δ at 0 ◦C and (b) tan δ at 60 ◦C of the NRCs comprising different oil types and
contents.

4. Conclusions

This study reveals that vegetable oils (MO and NO) provide many advantages over
NTO in silica-filled NRCs. Cure characteristics of the NRCs are not significantly impacted
by the oil type. Both vegetable oils give greater plasticization effect and better mechanical
properties than NTO. This is because the vegetable oils provide better filler dispersion as
supported by the ∆G’ and SEM results. In this study, tensile strength is found to reach a
maximum at 6 phr of oil content. Dynamic properties are also improved as can be seen
from the reduction of tan δ at 60 ◦C and, thus, rolling resistance when NTO is replaced by
the vegetable oils. MO and NO give comparable NRCs properties despite the differences
in types and contents of fatty acid in their composition.
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