
Vol.:(0123456789)1 3

Journal of Natural Medicines (2020) 74:501–512 
https://doi.org/10.1007/s11418-020-01393-x

REVIEW

Enzymatic studies on aromatic prenyltransferases

Takahiro Mori1

Received: 15 January 2020 / Accepted: 5 March 2020 / Published online: 17 March 2020 
© The Author(s) 2020, corrected publication 2020

Abstract
Aromatic prenyltransferases (PTases), including ABBA-type and dimethylallyl tryptophan synthase (DMATS)-type enzymes 
from bacteria and fungi, play important role for diversification of the natural products and improvement of the biological 
activities. For a decade, the characterization of enzymes and enzymatic synthesis of prenylated compounds by using ABBA-
type and DMATS-type PTases have been demonstrated. Here, I introduce several examples of the studies on chemoenzymatic 
synthesis of unnatural prenylated compounds and the enzyme engineering of ABBA-type and DMATS-type PTases.
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Introduction

The prenylated indole alkaloids and prenylated aromatic 
compounds isolated from plants and microorganisms show 
broad structural diversity and various biological activities 
[1–6]. The prenylation may increase the lipophilicity and/
or binding ability to target protein that directly influences 
the biological activity [7, 8]. The prenylation to aromatic 
compounds is catalyzed by the several enzyme groups of 
prenyltransferases (PTases), including membrane-embedded 
UbiA-type, bacterial and fungal ABBA-type, and fungal 
dimethylallyl tryptophan synthase (DMATS)-type PTases 
[9–20].

UbiA-type PTases possess a conserved (N/D)DXXD 
motif for binding of Mg2+ ion and diphosphate that is also 
conserved in the isoprenyl diphosphate synthases [9, 10]. 
The enzymes in this group are observed in the ubiquinone 
and menaquinone biosynthesis [10], membrane lipids bio-
synthesis in archaea [21], in the biosynthesis of prenylated 
aromatic secondary metabolites in plants [1], and fungal 
meroterpenoid biosynthesis [22]. On the other hand, ABBA-
type and DMATS-type PTases from microorganisms are 
soluble proteins and do not contain diphosphate and metal 
ion binding motif [11–18, 20]. The soluble aromatic PTases 

are involved in the biosynthesis of secondary metabolites in 
bacteria and fungi.

In the present review, several examples of the recent 
studies on chemoenzymatic synthesis and the enzyme engi-
neering of soluble ABBA-type and DMATS-type PTases 
to generate unnatural prenylated aromatic compounds are 
provided.

Soluble aromatic PTases

ABBA-type and DMATS-type aromatic PTases catalyze 
prenylation of dimethylallyl diphosphate (DMAPP) and/
or geranyl diphosphate (GPP) to aromatic compounds in 
bacteria and fungi. The ABBA-type PTases are identified 
from both of bacteria and fungi, and the CloQ from Strep-
tomyces roseochromogenes var. oscitans is a first character-
ized ABBA-type of PTases in 2003, which is involved in the 
biosynthesis of clorobiocin [23]. Different from membrane-
bound UbiA-type PTases, these enzyme reactions, except for 
NphB, are metal-independent enzymes [14]. The first crystal 
structure of ABBA-type PTase was solved with NphB in 
biosynthesis of the naphterpin derivatives [24]. The X-ray 
crystal structure of NphB showed the characteristic β/α bar-
rel fold with antiparallel strands, which is completely dis-
tinct from UbiA-type PTases [25]. This enzyme group was 
later called as ABBA PTases due to their α-β-β-α PT folds 
(Fig. 1A) [13].

On the other hand, DMATS-type PTases, identified in 
fungi, catalyze the prenylation reactions mainly toward 
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indole derivatives, including tryptophan-containing cyclic 
dipeptides, indole terpenoids, and tryptophan itself [11, 12, 
15, 16, 18]. DMATS PTases are also metal-independent 
enzymes, which do not have aspartate-rich motifs as in the 
case of ABBA PTases. However, in several cases, the addi-
tion of metal ions such as Ca2+ and Mg2+ enhances their 
activities [12]. So far, the DMATS enzymes that catalyzed 
at all positions of the indole ring have been identified (N-1, 
C-2, C-3, C-4, C-5, C-6, and C-7 prenylation DMATS). 
The structural analysis of DMATS enzymes revealed that 
the overall structures share the similar α-β-β-α PT folds as 
in the case of ABBA-type PTases (Fig. 1b) [26]. In many 
cases, both of ABBA-type and DMATS-type show broad 
substrate flexibility towards aromatic substrates [13, 27–41] 
while these enzymes show narrow specificity toward length 
of prenyl donors [11, 13, 14, 26–42].

Chemoenzymatic syntheses of various 
prenylated compounds

Specificity for aromatic compounds

Based on the broad substrate specificity of aromatic pre-
nyltansferases, the chemoenzymatic syntheses of prenylated 
aromatic derivatives have been performed using the soluble 
PTases (Table 1). The 4-hydroxyphenylpyruvic acid (4-HPP) 
derivatives, flavonoids, isoflavonoids, phenylpropanoids, 
dihydronaphthalenes, and stilbenoids were converted to 

corresponding dimethylallyl or geranyl group attached prod-
ucts using ABBA-type PTases such as CloQ, NovQ, NphB, 
SCO7190 and so on [23, 36, 41, 43–46]. The prenylated 
compounds at different position are obtained using enzymes 
with different regiospecificity (Fig. 2).

First characterized CloQ from Streptomyces roseochro-
mogenes was thought to be specific for 4-HPP [23]. How-
ever, recent study on the substrate tolerance of CloQ for 
various phenolic acceptor revealed that the enzyme accepts 
flavonoids; 7,4′-dihydroflavone, luteolin, 4′-hydroxy-
7-methoxyflavone, and 4′-hydroxy-6-methoxyflavone, iso-
flavonoids; equol, daidzein, genisein, 3′-hydroxydaidzein, 
and coumestrol, and stilbenoid; resveratrol to produce cor-
responding dimethylallyl group attached products (less than 
10% yield) [46]. Furthermore, the phenylpropanoids; caffeic 
acid and p-coumaric acid, the (iso)flavonoids; naringenin, 
apigenin, and the dihydronaphthalenes (DHNs); 1,6-DHN 
and 2,7-DHN were prenylated with DMAPP by NovQ from 
Streptomyces spheroids, involved in the biosynthesis of 
novobiocin [45]. Interestingly, the yield of prenylated phe-
nylpropanoids, flavonoids, and DHNs are much better com-
pared to the enzyme reaction of CloQ (15–90% by NovQ). 
Similarly, NphB, which catalyzes geranylation reaction, also 
shows a broad substrate tolerance toward aromatic com-
pounds, and this enzyme accepts 4-HPP, plant polyketides, 
and DHNs, including olivetol, olivetolic acid, resveratrol, 
apigenin, naringenin, genistein, daidzein, 1,6-DHN, and 
2,7-DHN to generate corresponding geranylated products 
[24, 38, 47]. Fnq26 from Streptomyces cinnamonensis DSM 
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Fig. 1   The overall structures of ABBA-type and DMATS-type PTases. The crystal structure and reaction of a NphB and b FgaPT2
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Table 1   Examples of prenyltransferases and their substrates

Enzyme Organism Prenyl acceptor (examples) Prenyl donor References

ABBA-type PTases
 CloQ Streptomyces roseochromogenes 4-HPP, flavonoids, isoflavonoids, 

stilbenoid
DMAPP [46]

 NovQ Streptomyces spheroids Phenylpropanoids, flavonoids, 
DHNs

DMAPP [45]

 NphB Streptomyces sp. CL190 4-HPP, plant polyketides, DHNs GPP [24, 38, 47]
 Fnq26 Streptomyces cinnamonensis 

DSM 1042
DHNs, flavolin, 4-hydroxybenzoic 

acid
GPP [43]

 SCO7190 Streptomyces coelicolor A3 Plant polyketids, DHNs DMAPP [24, 38, 47]
 XptB Aspergillus nidulans Xanthone DMAPP [48]
 VrtC Penicillium aethiapicum Tetracycline-like naphthacenedi-

ones
DMAPP, GPP [49]

 PaPT Phomopsis amygdali Fusicoccin P [50]
 TleC Streptomyces blastmyceticus Indolactam V DMAPP, GPP, FPP [83–87]
 MpnD Marinactinospora thermotolerans Indolactam V DMAPP, GPP, FPP, GGPP, GFPP [83–87]
 AtaPT Aspergillus terreus Lignanoids, xanthones, quinoline 

alkaloids, coumarins, benzophe-
nones, curcuminoid, hydrox-
ynaphthalenes

DMAPP, GPP, FPP, GGPP, PPP [88]

Cyanobactin PTases
 LynF Lyngbya aestuarii Tyr residue in cyclic peptides, 

N-boc-tyrosine
DMAPP [51]

 PagF Oscillatoria agardhii L-Tyr, N-acetyl-L-Tyr, N-boc-L-
Tyr, Tyr-Tyr-Tyr, Tyr4 residue in 
cyclic[INPYLYP]

DMAPP [59]

 TruF Ser and Thr residues in cyclic 
peptides

DMAPP [52, 57, 62]

 KgpF Microcystis aeruginosa
NIES-88

Trp residue in kawaguchipeptine 
B, Fmoc-Trp

DMAPP [58]

 TyrPT Aspergillus niger Tyr and Trp derivatives DMAPP, alkyl-PPs [31, 63]
 SirD Leptosphaeria maculans Tyr and Trp derivatives DMAPP, alkyl-PPs [29, 31, 41, 63, 92]

DMAT-type PTases
 5-DMAT Aspergillus clavatus,

Streptomyces coelicolor
Tyr and Trp derivatives, indolo-

carbazoles
DMAPP, alkyl-PPs [63, 70, 89]

 6-DMAT Streptomyces ambofaciens,
Streptomyces violaceusniger,
Streptomyces sp. SN-593

Tyr and Trp derivatives, naphtha-
lene derivatives

DMAPP, GPP, alkyl-PPs [63, 72, 73]

 7-DMAT Aspergillus fumigatus,
Neosartorya sp.

Tyr and Trp derivative, naphtha-
lene derivatives, acylphloroglu-
cinols, flavonoids

DMAPP, alkyl-PPs [44, 63, 66]

 AnaPT Neosartorya fischeri Tyr and Trp derivative, Trp-
containing cyclic dipeptides, 
acylphloroglucinols, flavonoids

DMAPP, alkyl-PPs [44, 67, 82, 91]

 FgaPT2 Aspergillus fumigatus Tyr and Trp derivatives, Trp-
containing cyclic dipeptides, 
indolocarbazoles

DMAPP, alkyl-PPs [26, 36, 42, 63, 90, 93]

 CdpC3PT Neosartorya fischeri Trp-containing cyclic dipeptides, 
acylphloroglucinols

DMAPP, alkyl-PPs [67, 77, 91]

 CdpNPT Aspergillus fumigatus Trp-containing cyclic dipeptides, 
naphthalene derivatives

DMAPP, alkyl-PPs [37, 67, 79, 91]

 BrePT Aspergillus versicolor Trp-containing cyclic dipeptides DMAPP, alkyl-PPs [30, 91]
 FtmPT1 Aspergillus fumigatus Trp-containing cyclic dipeptides, 

indolylbutenone
DMAPP, alkyl-PPs [27, 28, 91]
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Fig. 2   Examples of the prenylation substrates of ABBA-type and DMATS-type PTases. The highlighted atoms are the major prenylation points. 
The prenylation positions of non-highlighted compounds are not determined
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1042 shows slightly different substrate specificity from 
NphB, whereas Fnq26 shares ~ 40% identity with NphB [43]. 
Fnq26 catalyzes regular O-prenylation and reverse and regu-
lar C-prenylation toward flaviolin, 1,3-DHN, and 4-hydroxy-
benzoic acid. Further, the NphB homologue SCO7190 from 
Streptomyces coelicolor A3 shows similar substrate specific-
ity to NphB and generates dimethylallyl attached naringenin, 
olivetol, resveratrol, 1,6-DHN, and 2,7-DHN [24, 38, 47].

Some of fungal ABBA superfamily enzymes accept dif-
ferent type of polyketides and terpenoids. For example, the 
hydroxylated and methylated xanthone compounds are pre-
nylated by XptB from Aspergillus nidulans [48]. VrtC from 
Penicillium aethiapicum and its homologs catalyze prenyla-
tion of DMAPP and GPP to tetracycline-like naphthacen-
edione compounds such as phthacenedione, TAN-1612 
(2-acetyl-2-decarboxamido-anthrotainin), and 6-desmethyl-
4a-hydroxy-4-des-(dimethylamino)anhydrotetracycline [49]. 
Moreover, PaPT from Phomopsis amygdali accept glyco-
sylated terpenoid fusicoccin P to generate an O-prenylated 
compound fusicoccin J in the fusicoccin A biosynthesis [50].

The cyanobactin prenyltransferases LynF, PagF, KgpF, 
TruF, TyrPT, and SirD form a group of small ABBA-type 
proteins that catalyze the prenylation of tryptophan, tyrosine, 
threonine, or serine residues in ribosomally synthesized and 
post-translationally modified peptides (RiPPs) [50–61]. In 
these, LynF and PagF also accept N-boc-tyrosine and various 
tyrosine-containing cyclic peptides [51, 59]. Moreover, PagF 
used linear peptides with different amino acid sequences as 
substrates. TruF is encoded in the biosynthetic gene cluster 
of trunkamide and catalyzes the prenylation of DMAPP on 
serine or threonine residues of core peptide [62]. Although 
the substrate selectivity of purified enzyme of TruF has 
not been elucidated, the expression of tru biosynthetic 
genes in E. coli created quite large numbers of prenylated 
peptide derivatives [52, 57]. The tyrosine and tryptophan 
derivatives, including 4-amino- and 4-thiol-phenylalanine 
and methyl- or methoxylated tryptophans were accepted 
by tyrosine O-prenyltransferase SirD from Leptosphaeria 
maculans, involved in the biosynthesis of sirodesmin PL, to 
give O-, C-, N-, and S- prenylated compounds [29, 41, 63].

DMATS superfamily enzymes were used for the produc-
tion of various prenylated indole-containing compounds. 
The different DMATSs catalyze prenylation toward different 
position of indole ring. The catalytic reaction of DMATS are 
well introduced by Winkelblech et al. in 2015 [12]. Using 
DMATS enzymes, tryptophan derivatives, L-tryptophan-
containing cyclic dipeptides, isomers of L-tyrosine, indolo-
carbazoles, and phenolic molecules were prenylated [26, 
29, 41, 63–81]. Some DMATSs also accept aromatic com-
pounds such as acylphloroglucinols and related compounds. 
AnaPT from Neosartorya fischeri and 7-DMATS from 
Aspergillus fumigatus, and CdpC3PT from Neosartorya fis-
cheri catalyze prenylation toward phloroglucinol, orsellinic 

acid, 6-methylsalicylic acid, phloroglucinol carboxylic acid, 
phlorisobutyrophenone, phlorisovalerophenone, and phlor-
benzophenone [82].

Specificity for prenyl donors

In contrast to aforementioned PTases that show broad 
specificity toward a variety of prenyl acceptors, TleC from 
Streptomyces blastmyceticus and MpnD from Marinactino-
spora thermotolerans, in the biosynthesis of teleocidin and 
pendolmycin, accept only indolactam V as a prenyl accep-
tor [83–87]. Instead, these enzymes exhibit broad substrate 
specificity toward prenyl donors (Fig. 3a). The DMAPP 
(C5), GPP (C10), farnesyl diphosphate (FPP) (C15), gera-
nylgeranyl diphosphate (GGPP) (C20), and geranylfarnesyl 
diphosphate (GFPP) (C25) were accepted by the enzymes 
to generate C-7 position or C-5 position prenylated indola-
ctam V. Moreover, the extremely promiscuous AtaPT from 
Aspergillus terreus was reported to produce 72 prenylated 
aromatic compounds, including lignanoids, xanthones, qui-
noline alkaloids, coumarins, benzophenones, curcuminoid, 
and hydroxynaphthalenes using DMAPP, GPP, and FPP 
as prenyl donors [88]. The formation of mono-, di-, and/
or tri-prenylated compounds were demonstrated. AtaPT 
also accepts GGPP and phytyl diphosphate (PPP) as pre-
nyl donors to attach geranylgeranyl or phytyl group on 
(+)-butyrolactone II (Fig. 3b).

The aromatic PTases can also accept synthetic unnatural 
alkyl donors, e.g. methylallyl diphosphate (MAPP), 2-pen-
tenyl diphosphate (2-pen-PP), and benzyl diphosphate (ben-
zyl-PP) (Fig. 4). When 2-pen-PP were used as a alkyl donor 
of FgaPT2 and 5-DMATS, the enzymes generated regular 
C5-alkylated and C6-alkylated L-tryptophan, respectively 
[89, 90]. Similarly, the regular C4- and C5-alkylated and 
regular C5- and C6-alkylated L-tryptophan were produced 
by FgaPT2 and 5-DMAT, respectively, with MAPP as an 
allyl donor. Furthermore, C2- and C3- reversely alkylated 
cyclic dipeptides using MAPP and 2-pen-PP as alkyl donors 
were delivered by C3-prenyltransferases (CdpC3PT, Cdp-
NPT, and AnaPT) and C2-prenyltransferases (BrePT and 
FtmPT1) [91]. Interestingly, BrePT and FtmPT1 afforded a 
mixture of C2- and C3-alkylated diastereomers. C5-, C6-, 
and C7-benzyl-L-tryptophan derivatives were enzymati-
cally synthesized with 5-DMATS, 6-DMATS, TyrPT, and 
FgaPT2.

SirD and FgaPT2 were used for further alkyl-diversifica-
tion of L-Tyr and indole-containing compounds, respectively. 
Bandari et al. synthesized various alkyl-PP analogues, includ-
ing allylic, conjugated diene analogues and benzylic substi-
tuted substrates shown in Fig. 4 [92, 93]. The 33 unnatural 
compounds were used as substrates of FgaPT2 and the 20 
unnatural compounds were tested for SirD. SirD accepted 15 
out of the 20 unnatural alkyl-PP to deliver the corresponding 
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alkylated L-tyrosine. In these, single corresponding O-mon-
oalkylated L-tyrosine were mainly produced, while two 
monoalkylated products were given from cinnamyl-PP and 
(2E,4E)-5-phenylpenta-2,4-dien-1-yl-PP. On the other hand, 
FgaPT2 used 24 out of the 33 synthetic alkyl-PPs. The C4 
and C5-regular alkylated and C3 and N1-reversely alkylated 
L-tryptophan were synthesized through in vitro enzyme reac-
tions. Additionally, C3 position of 7-hydroxy-indolocarbazole 
was able to be alkylated by FgaPT2 with (E)-3-methylpent-
2-en-1-yl-PP, 3-ethylpent-2-en-1-yl-PP, cyclohex-1-en-1-yl-
methyl-PP, 2-cyclopentylideneethyl-PP, 2-cyclohexylidenee-
thyl-PP (Fig. 4).

Structure‑based engineering of ABBA and DMATS 
PTases

So far, more than 15 crystal structures of aromatic PTases 
have been reported [23, 58, 66, 78, 84, 87, 93–102]. The 
structure-based engineering of PTases were also performed 
for several enzymes.

The EpzP and PpzP from Streptomyces cinnamonen-
sis DSM 104 and Streptomyces annulatus 9663, respec-
tively, catalyze prenylation toward phenazine [101]. The 
crystal structures of EzpP, the docking model with a sub-
strate 5,10-dihydrophenazine-1-carboxylate (dhPCA), and 

A

B

Fig. 3   The substrate specificity of a TleC, MpnD, and b AtaPT toward prenyl donors
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the mutagenesis analysis provided the intimate structural 
details of the prenylation reaction mechanism. Based on 
these information together with the sequential comparison 
between EpzP and PpzP, the catalytic velocity of EpzP was 
improved by site-directed mutagenesis. V270F mutation was 
introduced to form π-stacking between dhPCA and Phe resi-
due. As a result, the enzymatic activity of V270F mutant was 
increased five-times compared to wild type. Furthermore, 
the substitution of Ala285 with Gln residue to interact with 
a water molecule in the active site showed ~ 14-fold higher 
enzymatic activity than wild type.

The substrate specificity of FgaPT2 was altered by 
structure-based mutagenesis experiment. Lys174 residue in 
FgaPT2, proposed to abstract a proton from prenyl-attached 
arenium intermediate, was substituted with phenylalanine to 
stabilize the arenium intermediate and increase the interac-
tion with benzene ring of non-genuine substrate L-tyrosine 
[26, 103]. The K174F exhibited 4.9-times higher catalytic 
efficiency toward L-tyrosine than that of wild type, while the 
activity toward L-tryptophan was almost abolished. Interest-
ingly, the K174F mutant catalyzes C3-prenylation reaction 
toward L-tyrosine and its analog 4-amino-L-phenylalanine, 
and N-prenylation reaction toward 4-amino-L-phenylalanine 

as a minor reaction [56]. The specificity for the prenyla-
tion of L-tyrosine and L-tryptophan was changed from 1:31 
(wild type) to 208:1 (K174F mutant). Furthermore, satura-
tion mutagenesis was performed at Arg244, interacting with 
carboxylate group of substrates [104]. The prenylation activ-
ities of 13 Arg244 mutants toward tryptophan-containing 
cyclic dipeptides were increased up to 76-times compared 
to wild type. Interestingly, the preferences for tryptophan-
containing cyclic dipeptides, including cyclo-L-Trp-L-Leu, 
cyclo-L-Trp-D-Pro, cyclo-L-Trp-L-Pro, cyclo-L-Trp-Gly, 
cyclo-L-Trp-L-Trp, and cyclo-L-Trp-L-Phe of these mutants 
were also changed. For example, the wild-type, R244A, 
R244T, and R244Q prefer cyclo-L-Trp-D-Pro and cyclo-L-
Trp-L-Leu, while R244G utilizes cyclo-L-Trp-L-Leu and 
cyclo-L-Trp-L-Trp as preferable substrates. The combina-
tion of the K174F and R244X mutations succeeded to alter 
the regiospecificity of prenylation from C4-regular prenyla-
tion to C3-reverse prenylation toward tryptophan-containing 
cyclic dipeptides (Fig. 5a) [105].

The structure-based engineering of DMATS to alter 
the product specificity was also achieved using FtmPT1 
from Aspergillus fumigatus in fumitremorgins biosynthe-
sis. FtmPT1 originally catalyzes C2 prenylation reaction to 

Fig. 4   Structures of the synthetic unnatural prenyl donors tested for 
FgaPT2 and SirD. The substrates highlighted in purple, red, and 
blue are tested for the both of FgaPT2 and SirD, only SirD, and only 

FgaPT2, respectively. The substrates enclosed in red and blue frames 
are accepted by SirD and FgaPT2, respectively
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bevianamide F (cyclo-L-Trp-L-Pro). The structure analy-
sis of FtmPT1 suggested that Tyr205 residue in FtmPT1 
interacts with ketone-group of bevianamide F. The 

saturation-mutagenesis at Tyr205 revealed that the 15 
mutants generate regularly C3-prenylated brevianamide 
F, but not at C2 position [106]. The substrate specificity 

A

B

C

D

Fig. 5   The enzyme reactions of engineered ABBA-type and DMATS-
type PTases. The enzyme reaction of a the FgaPT2 and its K174F/
K244X mutants, b the FtmPT1 and its Y205X mutants, c the TleC 

W97Y/A173M and W97Y/F170W/A173M mutants, and d FgaPT2 
and its M328X mutants
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analysis of the two selected mutants Y205N and Y205L 
revealed that these mutants generated C3-reverse prenylated 
compounds as predominant products when cyclo-D-Trp-D-
Pro, cyclo-D-Trp-L-Pro, and cyclo-L-Trp-D-Pro were used 
as substrates (Fig. 5b).

On the other hand, the engineering of substrate specificity 
toward prenyl donors was demonstrated using MpnD, and 
TleC. MpnD and TleC prefer to utilize C5 DMAPP and C10 
GPP, respectively, and catalyze attachment of prenyl donor 
at the C-7 position of indolactam V in a reverse fashion 
[85]. The structural analysis of MpnD and TleC complexed 
with substrates suggested that the three amino acid residues 
Trp97, Phe170, and Ala173 in TleC and Tyr80, Trp157, and 
Met159 in MpnD regulate the selectivity of the length of 
prenyl donor and regiospecificity of prenylation position 
(Fig. 5c). Based on these observations, TleC A173M, TleC 
W97Y/A173M, and TleC W97Y/F170W/A173M, MpnD 
M159A were constructed and analyzed. The preference for 
prenyl donors of TleC A173M switched from GPP to the 
smaller DMAPP. On the contrary, M159A substitution in 
MpnD improved the GPP prenylation activity to generate 
lyngbyatoxin A, while DMAPP prenylation activity was 
decreased. Moreover, the TleC W97Y/A173M and TleC 
W97Y/F170W/ A173M mutants newly produced teleocidin 
A-2, C-19-epimer of lyngbyatoxin A, and 5-geranylindola-
ctam V in addition to lyngbyatoxin A.

Similar manipulation of prenyl donor substrates was also 
performed using FgaPT2. The structure-based modeling 
of FgaPT2 with substrate suggested that the side chain of 
Met328 protrudes toward the active site and would decrease 
the size of active site. Thus, Met328 was thought to regu-
late the substrate specificity of the length of prenyl donor. 
The substitution with smaller side chain, including M328A, 
M328C, M328S, and M328G significantly increased the 
activity for GPP and FPP prenylation (Fig. 5d) [107]. Fur-
thermore, the model also suggested that the active site 
residues Lue263 and Tyr398 could also interfere with ter-
minal isoprene unit of FPP. The large-to-small substitu-
tion of Leu263 and Tyr398 with Ala and Phe, respectively, 
improved the FPP prenylation activity.

Conclusion

The development of the sequencing technology and the 
improvement of methodology to characterize the enzymes 
have accelerated the understanding of the biosynthesis of 
secondary metabolites. By using these techniques, dozens of 
ABBA-type and DMATS-type aromatic PTases were func-
tionally and structurally characterized. The accumulation of 
the knowledge in enzymes provided the chance for the appli-
cation and engineering of these aromatic PTases. The results 
presented in this review would be the model cases toward 

utilization of the secondary metabolite enzymes to gener-
ate structurally diversified and biologically active unnatural 
novel molecular scaffolds for drug discovery.
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