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Diagnosing brain tumours by 
routine blood tests using machine 
learning
Simon Podnar   1, Matjaž Kukar2,3, Gregor Gunčar3, Mateja Notar3, Nina Gošnjak1 & 
Marko Notar3

Routine blood test results are assumed to contain much more information than is usually recognised 
even by the most experienced clinicians. Using routine blood tests from 15,176 neurological patients 
we built a machine learning predictive model for the diagnosis of brain tumours. We validated the 
model by retrospective analysis of 68 consecutive brain tumour and 215 control patients presenting 
to the neurological emergency service. Only patients with head imaging and routine blood test data 
were included in the validation sample. The sensitivity and specificity of the adapted tumour model 
in the validation group were 96% and 74%, respectively. Our data demonstrate the feasibility of brain 
tumour diagnosis from routine blood tests using machine learning. The reported diagnostic accuracy is 
comparable and possibly complementary to that of imaging studies. The presented machine learning 
approach opens a completely new avenue in the diagnosis of these grave neurological diseases and 
demonstrates the utility of valuable information obtained from routine blood tests.

Diagnosis of brain tumours is usually based on the patient’s history, neurological examination and neuroim-
aging findings. The obstacles in diagnosis are often nonspecific clinical presentations1 and the relative rarity of 
brain tumours (estimated annual incidence rate in the USA: 29/100,000 population)2. Therefore, in order not to 
miss a diagnosis, physicians need to order a large number of neuroimaging studies, many of which turn out to 
be negative. Widespread referrals for neuroimaging are costly, not just economically3 but also medically due to 
false positive studies4. As the majority of brain tumours are initially diagnosed in emergency departments, using 
predominantly computed tomography (CT) imaging, ionization radiation exposure of patients is also a concern5. 
Diagnostic accuracy of neuroimaging for brain tumours is also not ideal6,7. As more effective treatments for 
brain tumours are developed, their early diagnosis may become even more important8. Although neuroimaging 
studies will unquestionably remain pivotal in the future, there is a definite need for cheap and efficient alternative 
diagnostic approaches that are useful in patients with headache and other common neurological presentations 
of brain tumours1.

Tumours secrete various substances9, and the body reacts to tumour growth10, both of which affect body fluid 
composition. Physicians are able to extract only a small fraction of information hidden in routine blood test 
results11. Therefore, it is valuable to analyse routine blood test results more closely to try to find evidence of neo-
plastic growth. Because machine learning (ML) can recognise subtle patterns in data, it is ideal for this task. We 
previously demonstrated that the ML model largely outperformed experienced clinicians in diagnosing haema-
tological disorders11. Brain tumours also seem suitable for the application of ML because neuroimaging presents 
a solid reference test for their diagnosis, which is essential for building good predictive models.

The present study aimed to determine the diagnostic accuracy of the ML model for diagnosing brain tumours 
from the results of routine blood tests. After building a model using a large database of neurological patients, we 
assessed the sensitivity of this approach in a group of patients with newly diagnosed brain tumours and the speci-
ficity in a cohort of consecutive control patients evaluated at the neurological emergency service by routine blood 
tests and neuroimaging studies. We also determined blood parameters that were most important in the diagnosis 
of brain tumours by the ML model.
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Materials and Methods
Patients and controls.  We obtained data from several groups of patients. (1) The “training group” included 
retrospective patient data obtained from March 2012 to December 2017 at the Division of Neurology, University 
Medical Centre Ljubljana (UMCL), Slovenia. (2) The “validation study group” included retrospective data of 
consecutive patients with newly diagnosed intrathecal tumours recruited at the same institution from January to 
July 2018. Patients with previously diagnosed tumours, with an uncertain tumour diagnosis, and patients treated 
with antipsychotic, antiepileptic, antibiotic or corticosteroid medications were excluded. (3) The “validation con-
trol group” included consecutive patients who were evaluated at the neurological emergency service of the same 
institution from January to mid-February 2016. These data were available from a previous analysis and were 
excluded from the training group. Patients with newly diagnosed brain tumours from this group were added to 
the validation study group (Fig. 1).

In all groups, we collected data on age, sex, blood test results and the ICD10-encoded final diagnoses. Only 
patients with neuroimaging studies were included in the validation group (both study and control patients). 
Additionally, symptom duration, tumour dimensions, and neuroimaging diagnoses were also collected for the 
validation study group. From dimensions measured on MR, we calculated tumour volumes. We analysed all 
blood parameters available in the electronic medical records using our ML algorithm.

The smart blood analytics (SBA) machine learning (ML) algorithm.  The SBA algorithm is an ML 
pipeline consisting of several processing stages, corresponding to phases 2–6 of the CRISP-DM standard12: (1) 
data acquisition: acquiring raw data from the database; (2) data filtering: using only blood test results obtained 
before treatment and the final diagnosis as the training subset; (3) data preprocessing: canonizing blood parame-
ters (matching them with our reference blood parameter database, filtering out outliers, recalculation to SI units); 
(4) data modeling: building the predictive model using ML algorithms; (5) evaluation: evaluating the model with 
stratified 10-fold cross-validation; (6) deployment of the successfully evaluated model through the SBA website13. 
As the principal ML algorithm, we used the extreme gradient boosting machine (XGBoost)14–16, which is cur-
rently one of the most popular tools17.

Evaluation of predictive models.  The models were automatically evaluated using stratified ten-fold 
cross-validation. The results were used in a statistical comparison of the model’s performance on all training 
cases, aggregated into confusion matrices and to calculate performance measures (sensitivity, specificity, receiver 
operating characteristic (ROC) curve). To obtain “binary” performance measures, we formed the “tumour” and 
the “no tumour” groups. To better understand the model’s behaviour within the tumour group, we reviewed its 
confusion matrix by confronting patients’ actual diagnoses (determined with neuroimaging) with their predicted 
diagnoses (predicted from blood tests).

Blood parameter frequency and importance.  We analysed the relative frequencies of blood parameters 
and explored the effect of missing (not measured) parameters on predictive accuracy. The predictive model per-
formance was evaluated by incrementally including blood parameters, starting with the most frequent ones. The 
resulting learning curve depicted the relation between the number of parameters and predictive accuracy. XGBoost 
predictive models explicitly calculate blood parameter importance scores18 that can be used for ranking parameters. 

Figure 1.  Flow chart of patients included in the validation process.
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We determined the 40 most important blood parameters measured in both the training and validation datasets. For 
each blood parameter, we also calculated the relative frequency, reference range, and median values for all groups. 
All blood parameter values (reference ranges, medians) were centred and scaled according to reference ranges. We 
compared blood parameter distributions in groups by the nonparametric k-sample Anderson-Darling (AD) test19. 
If the null hypothesis was rejected (α = 0.05), we also calculated the “common language” effect size20.

Statistics.  According to STARD criteria21, we calculated the ML model sensitivity, specificity and accuracy 
in the validation group, with neuroimaging as a reference standard. In addition, for sensitivity and specificity, the 
95% Agresti-Coull binominal confidence intervals were calculated22. All tests were performed at a significance 
level of α = 0.05 (two-sided).

Results
The training sample included 15,176 neurological patients, 701 of whom had intrathecal tumours, most often 
malignant (Table 1). Table 2 shows the sensitivity, specificity and accuracy (@k = 1, 3, 5, 10) of the original model, 
predicting all 87 diagnoses. Figure 2a shows the ROC curve of the ML model adapted for predicting only the pres-
ence/absence of tumours, obtained with 10-fold stratified cross-validation in training data. The selected threshold 
value of 0.025 in the training dataset resulted in a sensitivity of 90% (95% confidence interval (CI), 88–92%), a 
specificity of 68% (95% CI, 67–69%) and an accuracy of 69% (95% CI, 68–70%).

Of the 5974 patients who presented to UMCL during the tumour patient recruitment period of 7 months, 
85 patients were identified. After exclusion of 17 patients with known tumour diagnoses, 68 patients with newly 
diagnosed intrathecal tumours were further analysed (Fig. 1). They were symptomatic for a few hours to six 
months (median, ten days), and their tumour volumes varied from 2 to 145 cm3 (median, 19 cm3). Tumour MR 
diagnoses were glioma in 22 patients, glioblastoma in 15, metastases in 14, meningioma in 11, schwannoma in 2, 
and ependymoma, neuroblastoma, pituitary adenoma, and craniopharyngioma in 1 patient each. The majority of 
patients were diagnosed with malignant brain tumours (Table 1).

Training group

Validation group

Tumour Control

Recruitment period 2012/03–2017/12 2018/01–2018/07 2016/01–2016/02

Inclusion criteria Blood tests & 
diagnoses

Blood tests & 
neuroimaging

Blood tests & 
neuroimaging

Number of patients 15, 176 68 215

Number of men (%) 7285 (48%) 34 (50%) 115 (53%)

Age range (median) years 18–103 (67) 19–86 (66) 24–97 (74)

The most frequent ICD diagnosis (I63 – cerebral infarction) 34% 0% 49%

Number of tumour patients 701 68 0

Number of blood parameters 295 110 138

Missing parameter values 83% 81% 84%

Tumour diagnoses

  Malignant neoplasm of brain - C71 496 (70.8%) 56 (82.4%) 0 (0%)

  Benign neoplasm of the brain and other parts of the CNS - D33 26 (3.7%) 0 (0%) 0 (0%)

  Neoplasm of uncertain behaviour of the brain and CNS - D43 51 (7.3%) 0 (0%) 0 (0%)

  Malignant neoplasm of the meninges - C70 36 (5.1%) 0 (0%) 0 (0%)

  Benign neoplasm of the meninges D32 63 (9.0%) 9 (13.2%) 0 (0%)

  Neoplasm of uncertain behaviour of the meninges - D42 5 (0.7%) 0 (0%) 0 (0%)

  Malignant neoplasm of the spinal cord, cranial nerves and other 
parts of the CNS - C72 24 (3.4%) 3 (4.4%) 0 (0%)

Table 1.  Characteristics of data used for the training and validation of the machine learning model.

k

Sensitivity@k ± binominal CI Specificity@k ± binominal CI

Training dataset
Validation 
dataset Training dataset

Validation 
dataset

1 0.51 ± 0.037 0.51 ± 0.116 0.98 ± 0.002 0.99 ± 0.018

3 0.66 ± 0.035 0.69 ± 0.108 0.93 ± 0.004 0.93 ± 0.035

5 0.78 ± 0.031 0.79 ± 0.097 0.83 ± 0.006 0.82 ± 0.052

10 0.95 ± 0.016 0.99 ± 0.043 0.38 ± 0.008 0.23 ± 0.056

Table 2.  Basic performance indicators with Agresti-Coull binomial confidence intervals (CIs) as obtained 
from the training dataset (n = 15,176 neurological patients) with ten-fold cross-validation and in the validation 
dataset (68 brain tumour patients and 215 control patients). @k – prediction is correct if the actual tumour 
diagnosis is within the first k predicted diagnoses.
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During the recruitment period of one and a half months, 1195 patients were evaluated at the UMCL neuro-
logical emergency service. Routine blood tests were performed in 292 patients, however no neuroimaging was 
performed in an additional 77 patients, resulting in 215 control patients (Fig. 1). Their final diagnoses were as 
follows: ischemic stroke in 105, epileptic seizures in 20, subarachnoid haemorrhage in 19, intracerebral haemor-
rhage in 14, transient ischemic attack (TIA) in 10, headache in 7, dementia in 3, etc. During recruitment of this 
group, 7 patients with brain tumours (3 meningiomas) were also diagnosed and were added to the validation 
study group.

Sensitivity, specificity and accuracy (@k = 1, 3, 5, 10) in the validation group are shown in Table 2 (see 
Supplementary Table S1 for TP, FN, TN and FP values). Using the threshold for the ROC curve selected in the 
training data, the sensitivity of the model was 96% (95% CI, 91–100%), the specificity was 74% (95% CI, 68–79%) 
and the accuracy was 79% (95% CI, 74–84%) (Fig. 2b). One-third of meningiomas (7 out of 21) were predicted to 
be malignant brain tumours (C71).

Evaluating blood parameter frequency and importance in the training group.  Using 50 of the 
most frequent blood parameters measured in more than half of the patients, the diagnostic accuracy was 50%. 
Maximum accuracy of 54% was reached with 100 blood parameters; the contribution of the remaining 195 less 
frequently measured blood parameters was negligible.

Blood parameters with the highest discriminative power are shown in Fig. 3. Only the first 29 parameters were 
relatively important. The majority of parameters in the validation group fell within the reference range (Fig. 3).

When comparing training and validation data, for 12 of 295 blood parameters we can reject the null hypoth-
esis that they were sampled from the same distribution, but even for them, the “common language” effect size20 
was negligible.

Discussion
Our results confirmed that brain tumour diagnosis is indeed feasible from routine blood tests by the application 
of ML to data obtained from neurological patients. This approach challenges standard procedures and opens a 
completely new avenue to diagnose these devastating neurological diseases. We adapted the predictive model 
to specifically aim at brain tumour diagnosis, constructed ROC curves, and determined the threshold value. In 
our training data, the cross-validated AUC (area under the curve) was 0.90 (Fig. 2a), and in our validation data 
AUC reached 0.95 (Fig. 2b). AUC values above 0.90 are considered excellent23. In order not to miss patients with 
tumours, it is desirable to have a high sensitivity, coupled with reasonable specificity. In the validation group, the 
sensitivity of the adapted tumour model was 96%, and the specificity was 74% at the previously selected threshold. 
Sensitivity (90%) and specificity (68%) were slightly lower for cross-validation in the training group. This differ-
ence is likely due to better data quality in the validation group. We excluded patients with previously diagnosed 
brain tumours (17/87 = 22%) from our validation group but could not do the same from the training sample. The 
majority of previously diagnosed patients were treated by surgery, irradiation and chemotherapy. In addition, 
they usually use other medications for symptom management. These interventions change blood biochemistry 
and may degrade the diagnostic performance of the ML model. Similar problems can occur in patients treated 
with antiepileptic, antipsychotic, antibiotic, or corticosteroid medications. Our model is therefore useful for the 
primary diagnosis of brain tumours in patients who are not taking medications that could have major effects on 
blood composition.

Figure 2.  ROC curves for tumour diagnosis calculated from (a) the training data using ten-fold stratified 
cross-validation and from (b) the validation data. The blue dot depicts the point corresponding to the selected 
threshold value.
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We believe that our results present a paradigm shift in the clinical diagnosis of brain tumours. Patients pre-
senting with headache or other nonspecific complaints, possibly caused by a brain tumour, may now first have 
routine blood tests assessed by the developed ML model. All patients with predicted brain tumours would then 
have neuroimaging studies to confirm the diagnosis and obtain information on the location, size and character-
istics of brain tumours, which are necessary for further management.

The diagnostic performance of imaging studies is also not perfect in brain tumours. In a recent study includ-
ing 127 patients, the sensitivity for the diagnosis of brain tumours was 88% for CT, 89% for magnetic resonance 
imaging (MRI), and 93% for positron emission tomography (PET)24. In another recent study, the sensitivity of 
MRI for the detection of brain metastases with diameters >2 mm evaluated by four radiologists (two residents) 
varied from 85% to 95% (average, 89%)6. The diagnostic performance of our predictive model is therefore similar 
to that of imaging studies.

We obtained blood samples from patients immediately after they presented to our neurological service with 
a median symptom duration of 10 days. The tumour volume on presentation varied, with the smallest of only 
2 cm3. This observation suggests that our algorithm is also useful in the early symptomatic phase when tumours 
are small and easier to miss on imaging studies. We do not have data on the ability of our model to diagnose 
presymptomatic brain tumours. However, we previously reported a patient in whom our haematological model 
diagnosed plasmacytoma from blood parameters obtained two years before the first symptoms11. Nevertheless, 
due to the low prevalence of brain tumours in the general population, our model is probably not useful for pre-
symptomatic screening.

Our model was also not useful for differentiation among primary malignant brain tumours, brain metastases 
and meningiomas. This differential ability, however, is not particularly relevant because all patients with suspected 
space-occupying lesions need neuroimaging studies. In patients with suspected brain metastasis, our other ML 
models could be employed (e.g., pulmonary, gastrointestinal, etc.) to noninvasively identify the primary tumours. 
Validation data also included 3 other intrathecal nerve tumours: 2 acoustic schwannomas and 1 ependymoma of 
the cauda equina. Although the diagnostic accuracy was low, the group was too small for conclusions (Table 1).

Figure 3.  Group median values of the 40 most important routine blood parameters, centred and scaled to 
reference intervals. Groups (tumour/no tumour) within the datasets (training/validation) were evaluated by the 
Anderson-Darling test. The significance levels (0.95 and 0.99) of the test results are depicted at the bottom.
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Another potential use of our algorithm is differentiation of brain tumours from tumour mimics, e.g., demy-
elinating disease, primary vasculitis, tuberculoma, vascular lesions, neurosarcoidosis, etc., which often pose a 
diagnostic challenge for neuroimaging studies25. Similarly, differentiation of tumours from radiation necrosis 
can also be difficult. Further appropriately designed studies are needed to validate ML predictive models in these 
situations.

Some routine blood parameters proved to be more important in our model than other parameters were. 
However, looking at the 40 most important parameters (e.g., troponin I, total cholesterol, prothrombin time, iron, 
etc.) does not provide physicians with clues regarding brain tumour diagnosis (Fig. 3). Troponin is not related to 
tumours, but it is likely important to exclude patients with stroke26. Importantly, in our model, these parameters 
are mainly within the normal range, but their values differ considerably between the tumour group and other 
neurological conditions (e.g., stroke, epilepsy, etc.). Glucose and neutrophils are the only two that fall outside the 
normal range, and both are significantly more elevated in the tumour group compared to the nontumour group 
(Fig. 3). Interestingly, lymphocytes, eosinophils and basophils were all decreased in the tumour group, indicating 
a possible role for tumours in the down-regulation of the adaptive immune cells that fight against tumours.

Our study has some limitations. First, we performed this analysis on data obtained in a single centre, which 
might limit its generalizability. However, using standardised and approved procedures, reagents and technology, 
we would expect similar laboratory blood test results elsewhere. Second, we included in the analysis of the valida-
tion group only a minor proportion of neurological patients because, in the opinion of neurologists, the majority 
did not require blood testing or neuroimaging studies. Third, the study was retrospective, which limited the scope 
of information obtained from our patients. However, for our purpose, we mainly needed results of routine blood 
tests and accurate neuroradiological diagnoses that were available for all patients with brain tumours. Finally, we 
did not obtain the final histological diagnoses of brain tumours. In our opinion, this was not essential because 
the model is only aimed at deciding whether to proceed with imaging, and for this purpose, neuroimaging study 
findings were sufficient.

The study also has several strengths. First, we analysed data from a large number of patients (>15,000) with 
good data quality for blood tests and diagnoses. Second, neurologists diagnosed all patients, and neuroradi-
ologists read and interpreted all neuroimaging studies, which assured high quality of the diagnoses. Third, we 
used state-of-the-art ML algorithms that are able to develop the best predictive models. Finally, we validated our 
model in both the whole training group (15,176 patients) and the validation group (283 patients) and obtained 
consistent results.

The present study demonstrated that brain tumours can be efficiently diagnosed from the results of routine 
blood tests. The SBA brain tumour ML model was able to extract subtle prognostic data from blood test results 
that are hidden even from the most experienced clinicians. We believe that our results present a real paradigm 
shift in the approach that physicians can use to diagnose brain tumours.

Data Availability
The predictive model is available at www.smartbloodanalytics.com upon registration and reasonable request for 
its use. The study was approved by the Slovenian National Medical Ethics Committee No. 0120-718/2015/5.
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