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Meta-analyses of genome-wide association studies (GWAS) have improved our under-
standing of the genetic foundations of a number of diseases, including diabetes. However,
single nucleotide polymorphisms (SNPs) that are identified by GWAS, especially those
that fall outside of gene regions, do not always clearly link to the underlying biology.
Despite this, these SNPs have often been validated through re-sequencing efforts as not
just tag SNPs, but as causative SNPs, and so must play a role in disease development
or progression. In this study, we show how the 3D genome (spatial connections) and
trans-expression Quantitative Trait Loci connect diabetes loci from different GWAS
meta-analyses, informing the backbone of regulatory networks. Our findings include
a three-way functional–spatial connection between the TM6SF2, CTRB1–BCAR1, and
CELSR2–PSRC1 loci (rs201189528, rs7202844, and rs7202844, respectively) con-
nected through the KCNIP3 and BCAR1/BCAR3 loci, respectively. These spatial hubs
serve as an example of how loci in genes with little biological connection to disease come
together to contribute to the diabetes phenotype.
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Introduction

The genome-wide association study (GWAS) is a test for statistical associations between common
gene variants (single nucleotide polymorphisms, SNPs) and a phenotype. Reductions in overall costs,
and sequencing costs specifically, have resulted in a growth in the numbers of GWAS studies and
increases in the numbers of samples, phenotype details, and accessibility of the data associated with
large consortia studies (1) and re-sequencing validation efforts (2). There is a strong trend for studies
to combine data from multiple GWAS studies into a meta-analysis to (1) validate previous findings
(2), (2) expand findings from single populations to universal effects (3), and (3) identify novel gene
effects (1). Collectively, these changes have increased the power of the GWAS studies, reduced the
numbers of false positives, and enabled the detection of small genetic effects that are associated with
a number of diseases, including diabetes (1–7).

The large number of previous studies into the genetic contribution to type 2 diabetes (T2D)
(2) make it a model phenotype for the application of GWAS meta-analyses to further identify the
genetics that underlie the phenotype (2, 3, 5–7). This was recognized by the DIAbetes Genetics
Replication And Meta-analysis (DIAGRAM) (1) consortium, which performed a meta-analysis of
genetic variants associated with T2D (1). Combined with previous work in diabetes, the DIAGRAM
study described 10 new loci (to add to the 56 previously established loci) that are significantly
associated with T2D in 34,840 cases in patients of overwhelmingly European descent. However,
even with these new loci, only approximately one-third of the established GWAS peaks identified in
the DIAGRAM study were validated as significantly associated with a strongly overlapping clinical

Frontiers in Endocrinology | www.frontiersin.org July 2015 | Volume 6 | Article 1021

http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00102
https://creativecommons.org/licenses/by/4.0/
mailto:justin.osullivan@auckland.ac.nz
http://dx.doi.org/10.3389/fendo.2015.00102
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00102/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00102/abstract
http://loop.frontiersin.org/people/122149/overview
http://loop.frontiersin.org/people/30367/overview
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
http://www.frontiersin.org/Endocrinology/archive


Schierding and O’Sullivan Spatially connecting SNPs in diabetes

phenotype; glucose tolerance (p< 0.05) (6). The lack of overlap
between T2D and glucose tolerance may result from (1) the sam-
ple size being insufficient or (2) the GWAS meta-analysis missing
aspects of the clinical biology. Given the number of samples and
statistical methods used, it is unlikely that the DIAGRAM study
was so underpowered that it failed to detect a series of critical
SNPs [for review, see Ref. (8)]. Rather, it is more probable that
GWAS analyses are lacking information on crucial aspects of the
biology of the diabetes. The authors of the DIAGRAM paper
even concede that the “difficulties in inferring biological mech-
anisms from the variants of modest effect identified by GWAS
have inhibited progress in defining the pathophysiological basis
of disease susceptibility.” (1) Crucially, in its simplest form T2D
can be considered as a binary description of metabolic health
(i.e., insulin sensitivity). Therefore, the polygenic nature of T2D
actually reflects the complexity of the intermingled networks
that contribute to metabolism, and the metabolic syndrome. We
contend that the GWAS studies are missing the spatio-temporal
aspects of the regulatory networks that contribute to the pheno-
type and remain recalcitrant to detection by standard sequencing
and molecular approaches (9).

Single nucleotide polymorphisms identified by GWAS studies
may provide critical clues toward unraveling the regulatory net-
work that underlies phenotypic complexity. This is particularly
true of SNPs that are highly associated with disease but do not
occur in exons or promoters and, as such, have no obvious biolog-
ical relevance to the disease state (9, 10). It has been estimated that
approximately 80% of GWAS SNPs are in regulatory regions (11).
These SNPs may represent cell type-specific enhancer sites that
bind regulators and contribute to cis- or trans-gene regulation.
For example, obesity-linked non-coding SNPs in the fat mass and
obesity-associated gene (FTO) are spatially connected [i.e., they
are physically interacting in a manner, which can be captured by
proximity-ligation techniques (e.g., 4C-seq)] to promoters at the
Iroquois homeobox 3 (IRX3) gene. Crucially, these FTO variants
were associated with gene expression changes in IRX3, not FTO
(12). Therefore, it has been shown that alterations caused by a SNP
(or locus) in region X (not in a gene, but in a regulatory region)
can indeed affect the function or regulation of a gene locus in
region Y (spatially close, far away in the linear genome sequence,
but biologically significant toward a phenotype).

Here, we test the hypothesis that T2D SNPs, which lack obvi-
ous functional significance, physically come together (spatially
connect) with loci that are significant for the pathophysiology
of the disease state. We incorporate a targeted trans-expression
Quantitative Trait Loci (trans-eQTL) analysis to identify those
spatial connections that are associated with transcription and,
therefore, are putatively regulatory. This analysis identifies distant
elements that are significantly associated by gene expression to
T2D loci.

Results

T2D Hubs Form by Spatially Connecting
Diabetes-Related Loci
Each gene locus (as defined in methods) can act as a hub for
spatial connections within the nucleus. This is exemplified by the
spatial organization of the MYRF/FADS1 locus, first associated to

T2D in 2010 (5) and re-validated by deep sequencing in 2014 (2).
This locus contains rs174535 (chr 11: 61551356), which connects
spatially with several loci that are known diabetes risk factors:
FADS3 (11q12-q13.1), which regulates desaturation of fatty acids
and is clustered with FADS1 and FADS2; RNF214 (11q23.3),
which is associated with cardiovascular disease in women with
migraines; and USP6 (17p13), which is involved in cell migration
and division. The spatial connections of themembers of the FADS
family are particularly important, given that many variants in this
family significantly affect diabetes onset (13). This connection
is further supported by the eQTL analysis, as the SNP in the
MYRF locus associates with significantly altered expression of the
USP6 gene.

Known T2D SNPs Connect in Space Through
Intermediary Loci
Spatial (genomic interaction) and functional (protein interaction)
connections link three loci (i.e., TM6SF2, CTRB1–BCAR1, and
CELSR2–PSRC1, corresponding to rs201189528, rs7202844, and
rs599839, respectively) that were identified in two differentGWAS
meta-studies (Figure 1A). Crucially, these connections are indi-
rectly occurring through intermediary loci (i.e., KCNIP3 – 2q21.1
and BCAR1/BCAR3 – 16q23.1/1p22.1). The TM6SF2 locus is
associated with T2D (2), and is involved in the regulation of
liver fat metabolism. rs201189528 spatially connects with several
other loci: SUGP1 (19p13.11), which affects serum lipid levels
and dyslipidemia (13); LPP (3q28), which is associated with T2D
in American Indians (13); and KCNIP3 (2q21.1), which is asso-
ciated with diabetic retinopathy (14). Importantly, KCNIP3 also
connects spatially to a T2D SNP (rs7202844, chr 16: 75247391),
located within the CTRB1–BCAR1 locus (1).

The third locus, CELSR2–PSRC1 [associated with decreased
serum levels of LDL (5)] spatially connects to SORT1 (1p13.3),
which is implicated in LDL and triglyceride metabolism (13);
NOTCH2 (1p13-p11), which is involved in pancreas development
(13) and associated with T2D (1); BCAR3 (1p22.1), which is in
the insulin signaling pathway (13); and region 21q22.3, which
includes DNMT3L (regulator of methyltransferases, embryonic
development, and imprinting), B3GALT5 (implicated in pancre-
atic cancer) (13), and ABCG1 (cellular lipid homeostasis). The
spatial connection to BCAR3 is important here, because this forms
the basis for a functional connection between the CTRB1–BCAR1
andCELSR2–PSRC1 loci (SNPs rs7202844 and rs599839). Despite
being on different chromosomes, the BCAR1 and BCAR3 gene
products tightly interact at their C-terminal domains and the
proteins are co-dependent disease progression markers (15).

In summary, rs201189528 (chr 19) is linked to rs599839 (chr 1)
through a spatial connection with KCNIP3 (chr 2); meanwhile,
rs599839 (chr 1) is spatially connected to BCAR3 (chr 1), whose
gene product forms a complex with the BCAR1 gene product
(rs7202844). These inter-chromosomal spatial connections and
functional protein connection link three highly significant, yet
biologically uninformative T2D SNPs with loci previously shown
to be components of key diabetes pathways, including LDL and
triglyceride metabolism and homeostasis, pancreatic develop-
ment (and cancer), and insulin signaling.

Spatial connections also connect two T2D-associated loci that
were identified in different studies: IGF2BP2 [rs16860235 (1)]
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FIGURE 1 | Spatial and trans-expression Quantitative Trait Loci
(trans-eQTL) connect diabetes loci from different GWAS meta-analyses.
Spatial connections (dashed gray arrows) were obtained from data within the
ENCODE database, focusing on those loci that recent meta-analyses have
verified as being associated with diabetes. Spatial connections link loci together
into a hub(s). These hubs might (1) be regulatory (i.e., contribute to the
regulation of nuclear processes including gene regulation, DNA repair, and DNA
replication); (2) structural; or (3) simply the result of random associations. To test
the hypothesis that some of these spatial connections are regulatory, we
included a trans-eQTL analysis (red arrows). The trans-eQTL analysis highlights
significant expression effects associated with the GWAS loci within the spatially
associated loci. The eQTL data were derived from a single cancer cell line in the
eight Hapmap populations. Future work should determine if these eQTL results
are replicated in pancreatic or cardiac cells from individuals developing
symptoms of the metabolic syndrome (data currently unavailable). Loci that

were identified by GWAS as being important for T2D and the metabolic
syndrome are represented by hashed red circles. Loci in biological pathways
related to T2D or metabolic syndrome are represented by tan filled loci.
Protein/phenotype connections (blue lines) are illustrated where appropriate to
connect relevant loci and further expand the regulatory co-interaction diagram.
For example, (1) spatial associations with KCNIP3 (2q21) and a physical
connection between the BCAR1–BCAR3 proteins link TM6SF2,
CTRB1–BCAR1, and CELSR2–PSRC1, into a spatial hub and (2) GRM (11q14)
links the IGF2BP2 locus (3q27) to the HNF1A locus (12q24) together along with
other loci that have been previously implicated in diabetes. (A,B) illustrate two
spatial hubs that are connected by functional linkages between SBNO1-SBNO2
and B3GNT3-BGNT4. *For the sake of clarity, the following loci were
abbreviated: CELSR2, CELSR2/PSRC1; BCAR1, CTRB1/BCAR1; GATAD2A,
GATAD2A/TSSK6/NDUFA13/YJEFN3/CILP2; ABCB9,
ABCB9/OGFOD2/PITPNM2.

and HNF1A [rs1169288 (5)] (Figure 1B). These loci are spatially
connected via physical associations with GRM5 (11q14.3), a
metabotropic glutamate receptor gene that functions in beta

cells and has been associated with both T1D and T2D (13).
Compellingly, both rs16860235 and rs1169288 also physically
connect to other loci that are involved in energy metabolism and
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cardiovascular disease (Table 1). Therefore, despite the fact that
no direct link has been captured between the IGF2BP2 locus on
chromosome 3 and the HNF1A locus on chromosome 12, the
shared connection with GRM5 and additional connections to loci
that have been previously associated with T2D is consistent with
these SNPs associating with a larger hub that links different genes
that contribute to T2D.

The hubs that form about the interacting loci, described above,
might be (1) regulatory (i.e., contribute to the regulation of nuclear
processes including gene regulation, DNA repair, DNA replica-
tion); (2) structural; or (3) simply the result of random associa-
tions. To test the hypothesis that some of these spatial connections
are regulatory, we included a trans-eQTL analysis (Figure 1).
The trans-eQTL analysis highlights significant expression effects
associated with the GWAS loci within the spatially associated
loci. Many of the GWAS loci have significant eQTL associations,
showing a connection between spatial associations and expression

pathways. To highlight one interaction of particular importance,
the CELSR2–PSRC1 hub includes several spatial and eQTL asso-
ciations, including one of each with NOTCH2, which has been
previously implicated in diabetes.

Direct Connections Form Between T2D SNPs
While the spatial connections we have described above have
occurred through intermediary loci, direct connections also occur
between known SNPs from different studies. For example, the
pantothenate kinase 1 (PANK1) locus (2) encodes a gene product
for the biosynthesis of coenzyme A that is regulated by p53.
PANK1 includes rs10160034 (chr 10: 91352850), which spatially
links to 4p16.1. Region 4p16.1 is associated with Wolfram syn-
drome, an autosomal recessive neurodegenerative disorder char-
acterized by juvenile-onset diabetes mellitus and bilateral optic
atrophy (13). rs1801214 (chr 4: 6303022) is associated with T2D
(1) and sits within this Wolfram syndrome 1 (WFS1) locus.

TABLE 1 | Novel SNPs and their spatial interactions.

SNP Spatially linked locus

SNP (rs) Position (Chr:bp) Gene Reference Position Genes Disease association Reference

(i)

16860235 3:185512361 IGF2BP2 (1) 15q21.3 LIPC and
HDLCQ12

Fat metabolism (13), N

1169288 12:120978847 HNF1A (5) 10q11.21 PRKG1 Energy metabolism, cellular aging, and
late onset diseases (e.g.,
cardiovascular)

(16, 17), N

(ii)

2001844 8:126478745 N/A (40 kb) (5) 8q24.13 TRIB1 Lipid metabolism and serum lipid levels (13), N

6909 19:19619542 GATAD2A (2) 19p12 NCAN Serum lipid levels and coronary heart
disease

N

2p11.2 IMMT, ST3GAL5,
MAT2A, FABP1

Insulin signaling, insulin growth factor
and fatty acid metabolism

N

7798124 7:15055616 N/A (>40 kb) (1) 7p21.1 AGMO (TMEM195) Decreased glucose-stimulated insulin
response, type 2 diabetes

N

3p12.2 Glycogen storage disease IV N, G

7168849 15:90346227 ANPEP (1) 15q26.1 IDDM3 Insulin-dependent diabetes N

3q22.1 TF, TOPBP1,
NPHP3

Iron homeostasis, pulmonary arterial
hypertension,
adrenal-hepatic-pancreatic dysplasia.

N, G

7111 15:90373873 AP3S2 (1) 9p31.2 IGFBPL1,
IGFBPRP4

Insulin growth factor binding protein
genes

N

11755566 6:38116669 ZFAND3 (1) 6q22 FIQTL1 Altered fasting insulin levels N

(iii)

3741530 12:123469647 ABCB9
PITPNM2

(3) 12q24 SBNO1 Coronary artery disease and
hypertension

N

2q34 SPAG16 Childhood obesity in Hispanics N

2p24 RAD51AP2 Hypertension in Japanese N

703977 10:0944230 ZMIZ1 (1) 10q22.3 DUPD1 South Asia populations energy
metabolism and weight in females

(18), N

11683087 2:227586606 IRS1 (7) 14q23.3-q24.1 TMEM229B/
PLEKHH1

Susceptibility to insulin resistance T2D
GWAS

N

N/A, not applicable, distance to closest gene in brackets. N, NIH GWAS Catalog and NIH Gene Database; G, Genecards and Uniprot.
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Novel Spatial Links Provide a Possible
Explanation for the T2D Association of Some
SNPs
We have identified clusters of significant SNPs that have puta-
tive regulatory and functional relationships to T2D. This spatial
clustering may provide a heretofore unrecognized coordination
between the different pathways that contribute to T2D. More-
over, we included an analysis of loci that were associated with
T2D in non-European populations in an attempt to understand
how spatio-temporal analysis can affect ethnic-specific SNPs that
underlie a complex disorder like T2D (19) (Table 1).

Spatial Connections Link to Pancreatic Beta Cell
Transcription Factors
It remains to be determined whether specific transcription factors
or DNA binding proteins are involved in mediating the regula-
tory spatial interactions that we identified. A preliminary anal-
ysis of Pasquali et al. (20) shows that five loci (ANK1, BCAR1,
WFS1, ZFAND3, and ZMIZ1) identified in our analysis overlap
islet enhancers. Moreover, our spatial analysis included loci with
binding sites for four specific beta cell transcription factors [i.e.,
FOXA2, NKX2.2, NKX6.1, and PDX1 (20)]. CTCF binding sites
[a marker implicated in the formation and regulation of spatial
interactions in various cell types (21)] were also found in many of
our loci.

Discussion

Genome-wide association studymeta-analyses have been growing
in popularity, providing a boost in the power to detect SNPs while
limiting false positives. However, a GWAS meta-analysis can only
analyze genotypes and phenotypes that are homogenous across
cohorts, missing any findings that are lost by heterogeneity of
methods of detection. This can obscure relationships fromGWAS
associations to the underlying biology of the phenotype and often
there are no obvious features (e.g., genes) that explain the disease
risk associated with many SNPs. Here, we have shown that spatial
connections better inform howGWAS SNPs outside of T2D genes
can interact with other gene regions to associate with T2D risk. In
effect, it is possible that the risk associated with non-coding SNPs
is attributable to spatio-temporal associations with other genes.
The spatial connections that we describe provide clues as to the
putative functional connectivity that a series of cross-validated
and highly significant SNPs have in T2D.

Single nucleotide polymorphisms that affect the organization
of the gene regulatory network within a genome will exhibit tem-
poral and cell-type dependence. In this study, we have identified
the existence of specific connections within the human genome.
We have not determined the temporal or cell-type specificity
of the connections that we identified. More in-depth studies of
different cell types [e.g., human lymphoblastoid cells, cervical
cancer cells, mammary epithelial cells, umbilical vein endothelial
cells, fetal lung fibroblasts, chronic myelogenous leukemia cells,
epidermal keratinocytes (21)] will inform on the cellular speci-
ficity of the connections that we have identified. While our results
provide new avenues for research into the 3D spatio-temporal
organization of the genome in diabetes, in vivo analyses that incor-
porate proximity-ligation and empirical perturbation (e.g., using

CRISPR–Cas) are required to definitively prove the role for these
connections in T2D disease development.

The eQTL analysis also suffers from temporal and cell-type
dependence issues. In our current analysis, the presence or lack
of eQTL does not definitively (dis)connect two loci. This is due to
the cell-line specificity of the eQTL data and the current lack of
data for diabetes-specific cell types from individuals at a diabetes-
relevant time-point (i.e., pancreatic beta cells from individuals as
they are developing insulin resistance). However, as the eQTL
analysis is only used to support the spatial analysis, we contend
that loci associated by eQTL provide substantial putative evidence
of co-regulation and/or spatial connections.

Experimental Procedures

Identification of SNPs
Wecombined results from the sixmost recentmeta-analyses iden-
tified from PubMed using the keywords “GWAS,” “meta-analysis,”
“diabetes,” “metabolic syndrome,” and “insulin resistance” (Table
S1 in Supplementary Material). The six meta-analyses had a total
of 124 underlying genetic cohort studies (Table S1 in Supplemen-
tary Material).

Selection of SNPs for Analysis – Definition
of a Locus
In total, 489 significant SNPs, identified in the meta-analyses,
were used in the downstream analyses (Table S2 in Supplementary
Material). SNPs within the same haplotype block were combined
and named according to their locus. For our purposes, haplotype
blocks were defined as all SNPs sharing linkage disequilibrium
coefficients of at least 0.8 r2 or 0.8 D′. Each haplotype is named
according to the genes within the block, thereby known as a locus.

Literature Searches for Diabetes Connections
Each locus was assessed to determine if it had previously been
associated to T2D. Previous associations to diabetes were iden-
tified by searches of the published literature (PubMed), dis-
ease databases (OMIM), and functional classification databases
(Uniprot). In addition, the GWAS Catalog (NHGRI-EBI Catalog
of published GWAS) was used to elucidate known GWAS SNPs
for each spatial locus, citing any relevant SNPs to the metabolic
syndrome that have been found in that locus (Figure 1).

Identification of Spatial Connections to Diabetes
The web-based programs GWAS3D (22) and HaploRegv2 (23)
were used to identify physical connections [as captured by prox-
imity ligation (24, 25)] between T2D SNPs and to identify which
SNPs define a locus (see above for criteria).

Identification of eQTL Connections to Diabetes
We hypothesized that spatial associations between T2D GWAS
SNPs and distant loci were regulatory. Therefore, we set about
identifying significant SNP-dependent expression changes within
theHapmap3 dataset (population-adjustedmicroarray expression
values from HapMap lymphoblastoid cell lines in each of the
eight Hapmap populations). Significant associations were iden-
tified if the expression changes were (1) significant (p< 0.05)
within at least three of the test populations or (2) significant
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(p< 0.001) within a single population, using a Spearman-rank test
through the java-based programGenevar 3.3.0 (26). Thus, the cis-
and trans-eQTLs identify experimentally derived instances where
there are significant SNP-dependent expression changes between
the two spatially associating loci (i.e., the downstream regulatory
effects of the diabetes-associated SNPs).
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