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Abstract: With the trend toward taller and larger structures, the demand for high-strength and
lightweight cement concrete has increased in the construction industry. Equipment for transporting
ready-mixed concrete is frequently used to bring concrete to construction sites, and washing this
equipment generates a large amount of recycled water, which is an industrial by-product. In this
study, we recycled this water as the pre-wetting water for lightweight aggregate and as mixing
water, and we substituted blast furnace slag powder (BS) and fly ash (FA) as cementitious materials
(Cm). In addition, we evaluated the fluidity, compressive strength, tensile strength, drying shrinkage,
and accelerated carbonation depth of lightweight ternary cementitious mortars (TCMs) containing ar-
tificial lightweight aggregate and recycled water. The 28-day compressive strengths of the lightweight
TCM specimens with BS and FA were ~47.2–51.7 MPa, except for the specimen with 20% each of BS
and FA (40.2 MPa), which was higher than that of the control specimen with 100% OPC (45.9 MPa).
Meanwhile, the 28-day tensile strengths of the lightweight TCM specimens containing BS and FA
were ~2.81–3.20 MPa, which are ~13.7–29.5% higher than those of the control specimen. In this study,
the TCM specimen with 5% each of BS and FA performed the best in terms of the combination of
compressive strength, tensile strength, and carbonation resistance.

Keywords: recycled water; blast furnace slag powder; fly ash; strength; ternary cementitious mortar;
carbonation depth

1. Introduction

Cement concrete, which is widely used in various fields in the construction industry,
must demonstrate improved performance, such as high strength and lightweight, with the
increasing demand for taller and larger structures. Ready-mixed concrete, which is mainly
used at construction sites, must be transported to these sites, and the equipment used to that
end undergoes a washing process after the concrete is poured. This process generates a large
amount of recycled water, an industrial by-product. Some of this water is recovered through
recycling facilities, but some companies use recycled water that exceeds the standard value
or illegally discharge this water into rivers, causing environmental pollution [1]. To solve
these environmental problems, several studies have attempted to recycle the by-products
of ready-mixed concrete, such as recycled water [2–9].

Xuan et al. [2] reported that applying the slurry to concrete effectively reduces its
drying shrinkage after the accelerated carbonation of slurry waste generated in a ready-
mixed concrete plant. Zervaki et al. [5] examined the characteristics of mortar mixed with
dry sludge and sludge water generated in a ready-mixed concrete plant and reported that
using sludge water increased its compressive strength. Sandrolini et al. [8] evaluated the
characteristics of mortar and concrete mixed with ready-mixed concrete waste wash water,
reporting that this water improved their durability.

Moreover, worldwide efforts to suppress global warming are required, and the ce-
ment and concrete industry emits a large amount of greenhouse gases [10,11]. In the

Materials 2022, 15, 1967. https://doi.org/10.3390/ma15051967 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma15051967
https://doi.org/10.3390/ma15051967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2142-3745
https://doi.org/10.3390/ma15051967
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma15051967?type=check_update&version=1


Materials 2022, 15, 1967 2 of 9

construction industry, cement substitutes, such as blast furnace slag powder (BS) or fly ash
(FA), are widely used to reduce the amount of cement used as a part of efforts to reduce
greenhouse gases or to improve the durability of concrete [12,13]. In particular, several
studies have recently attempted to increase the number of cement substitutes by mixing
ternary cementitious material (Cm) with two or more cement substitutes [14–21]. Upon
mixing metakaolin and silica fume into the mortar, Chu et al. [16] found that although
silica fume negatively affected workability, metakaolin could alleviate this negative effect.
Similarly, Andrade et al. [18] investigated the properties of ternary cementitious paste with
metakaolin and nanosilica and demonstrated that adding 15% metakaolin and 3% nanosil-
ica increased the compressive strength by ~44% compared to that of the control specimen
without these two additives. Meanwhile, after evaluating the durability of ternary concrete
with BS, FA, and limestone filler, Lauch et al. [21] reported that BS and FA improved the
chloride penetration resistance of concrete.

Although many studies have used the by-products of the ready-mixed concrete indus-
try and Cm, no research has yet been published on ternary cementitious composites with
artificial lightweight aggregates and recycled water. In this study, we used recycled water
as both the pre-wetting water for the lightweight aggregate and the mixing water, and we
substituted BS and FA as Cm. In addition, we evaluated the fluidity, compressive strength,
tensile strength, drying shrinkage, and accelerated carbonation depth of lightweight ternary
cementitious mortars (TCMs) containing artificial lightweight aggregate and recycled water.

2. Materials and Methods
2.1. Materials

The Cm used in this study was ASTM type-I OPC manufactured by the Asia Cement
Co. (Seoul, Korea), and the BS was obtained from Daehan Slag Co., Ltd., Gwangyang-si,
Korea. FA manufactured at the D thermal power plant in Korea was used.

Figure 1 shows the SEM images of the cement, FA, and BS used in this study. Unlike
FA, which is composed of spherical particles, the cement and BS have irregularly shaped
grains. Table 1 lists the chemical compositions of the Cm used in this study.
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Figure 1. SEM images of cement (a), FA (b), and BS (c).

Table 1. Chemical composition of cementitious materials (cm).

Type SiO2 Al2O3 Fe2O3 CaO MgO K2O Blaine
(cm2/g)

Density
(g/cm3)

Cement 17.43 6.50 3.57 64.40 2.55 1.17 3430 3.15

Blast furnace
slag powder (BS) 30.61 13.98 0.32 40.71 6.43 0.60 4210 2.93

Fly ash (FA) 64.88 20.56 6.06 2.58 0.80 1.45 3710 2.21
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As an artificial lightweight sand (LS), lightweight fine aggregate from KOEN, Korea,
manufactured by calcining coal ash and dredged soil at ~1100–1200 ◦C, was used. The shape
of the internal voids in the LS aggregate can affect the flowability and mechanical properties
of the mortar sample. The optical micrograph of a single grain of the artificial LS in Figure 2a
shows its shape, and the SEM image in Figure 2b reveals the grain interior, which contains
a large number of voids. Table 2 lists its physical properties.
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Figure 2. Optical (a) and SEM (b) images of the artificial lightweight aggregate.

Table 2. Physical properties of lightweight fine aggregate.

Type Fineness Modulus
(FM) Density Water Absorption

Ratio (%)
Unit Weight

(kg/L)

Artificial lightweight
sand (LS) 4.61 1.77 8.71 1010

In the case of recycled water, by referring to a previous study [22], sludge was prepared
with a 4:1 ratio of cement and sand–fines (less than 0.15 mm), and recycled water with a
sludge content of 5% was used as the pre-wetting and mixing water. Table 3 details the
composition of the sludge used in this study.

Table 3. Composition of the sludge.

Mix. W/C
(%)

Water
(g)

Cement
(g)

Sand Fines
(g)

Sludge 50 200 400 100

2.2. Mix Proportions and Specimen Preparation

Table 4 shows the mix proportions of the experimental cement mortar specimens.

Table 4. Mix proportions of the cement mortar specimens.

Mix.
BS
(%)

FA
(%)

Sludge
Content

(%)

LS
(S * %)

W/Cm
(%)

W
(kg/m3)

Cm
(kg/m3)

R5-C100 0 0

5 100 45 153 340
R5-BS5FA5 5 5

R5-BS10FA10 10 10
R5-BS15FA15 15 15
R5-BS20FA20 20 20

The water–Cm ratio was fixed at 45%, and the sludge content of the recycled water
was 5%, which showed good characteristics in a previous study [23]. The recycled water
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was used as both the pre-wetting water and mixing water. To make TCMs, 5–20% BS and
FA were used to replace part of the cement content.

Cubic specimens with dimensions of 50 mm × 50 mm × 50 mm were prepared
via molding for compressive strength testing, and cylindrical specimens with dimen-
sions of ø50 mm × 100 mm were prepared for split-tensile strength testing. In addition,
40 mm × 40 mm × 160 mm specimens were prepared for drying shrinkage and carbona-
tion tests. We then demolded the specimens after 24 h and cured them in a water tank
at 20 ◦C until the required age (7, 28, or 56 days). Mortar flow and compressive strength
were measured according to KS L 5105 [24], and tensile strength was determined according
to KS F 2423 [25]. Drying shrinkage was assessed using a contact gauge according to
KS F 2424 [26]. For the carbonation test, the carbonation depth was measured using a
phenolphthalein solution after a carbonation process in an accelerated carbonation chamber
according to KS F 2584 [27].

3. Results and Discussion
3.1. Mortar Flow

Figure 3 presents the different flow values of the lightweight aggregate mortar samples
with recycled water and ternary Cm. The flow of the R5-C100 sample was the lowest at
~176 mm. The flow values of the TCM samples with BS and FA were all higher than
that of R5-C100. Further, the flow of the mortar sample gradually increased with the
amount of FA and BS. This increased flow was attributed to the spherical shape of FA,
as shown in Figure 1, which likely caused a ball bearing effect, rather than BS, which was
irregularly shaped.
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Figure 3. Mortar flow.

The flow of the R5-BS20FA20 sample, which had the highest amounts of BS and FA,
was ~199 mm, which was ~13.3% higher than that of R5-C100. Furthermore, each time the
amount of BS and FA was increased by 5%, the flow value of the lightweight TCM sample
with recycled water increased by ~2.6–4.2%. It has been reported that the use of recycled
water does not have a significant effect on the mortar flow [4]; similarly, this study found
that the mortar flow was more affected by the use of Cm than the use of recycled water.

3.2. Compressive Strength

Figure 4 shows changes in the compressive strength of the lightweight mortar spec-
imens with recycled water and ternary Cm. After 7 days, the compressive strength of
R5-C100 was ~44.6 MPa, showing the highest value. The 7-day compressive strengths of
the TCM specimens with BS and FA were ~32.1–41.0 MPa, all of which were lower than
that of R5-C100. Moreover, as the amount of BS and FA increased, the 7-day compressive
strength of the TCM specimen tended to decrease.
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Figure 4. Compressive strength.

However, the evolution of the 28-day compressive strength showed a different trend.
Specifically, the 28-day compressive strength of the R5-C100 control specimen was ~45.9 MPa,
whereas the 28-day compressive strengths of the lightweight TCM specimens containing BS
and FA were ~47.2–51.7 MPa; only the R5-BS20FA20 specimen showed a lower compressive
strength (40.2 MPa) than R5-C100. In particular, R5-BS5FA5 showed the highest 28-day
compressive strength of ~51.7 MPa, which was ~12.8% higher than that of R5-C100.

Interestingly, the R5-BS15FA15 specimen also showed a higher 28-day compressive
strength of ~47.3 MPa, although its total Cm amount was 30%. This significant enhancement
in performance might have been due to the filling action of fines in the recycled water [8] and
the activation of the Cm reaction owing to the high alkalinity of the recycled water [28–30].
Therefore, these results suggest that the appropriate use of recycled water and Cm in a
lightweight aggregate cement composite can effectively improve its compressive strength.

After 28 days, the strength continued to evolve, and the 56-day compressive strength of
the R5-C100 specimen was ~51.9 MPa. In contrast, the compressive strength of R5-BS5FA5
(55.5 MPa) was the highest among the TCM specimens. Indeed, the 56-day compressive
strengths of most TCM specimens with Cm were higher than that of R5-C100 without Cm;
only the 56-day compressive strength of the R5-BS20FA20 specimen (51.0 MPa) was similar
to that of the R5-C100 specimen.

3.3. Tensile Strength

Figure 5 compares the 28-day tensile strengths of the lightweight TCM specimens with
recycled water and ternary Cm with that of the control. The R5-C100 specimen without Cm
showed the lowest tensile strength of ~2.47 MPa, whereas those of the lightweight TCM
specimens with BS and FA were ~2.81–3.20 MPa, which were ~13.7–29.5% higher than that
of R5-C100. In particular, the tensile strength of the R5-BS5FA5 specimen, which had the
highest 28-day compressive strength, was ~3.20 MPa, the highest among the mixtures and
~29.5% higher than that of R5-C100. This increase compared to that of the control is more
than double compared to that in the compressive strength (12.8%). Therefore, the proper
use of recycled water and Cm in the lightweight aggregate cement composite effectively
increases both the tensile and compressive strengths of the cement composites. In this
study, the improvement in the tensile strength was greater.
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3.4. Drying Shrinkage

The drying shrinkage of lightweight mortar specimens with recycled water and ternary
Cm is shown in Figure 6. After 56 days, the R5-C100 specimen without Cm showed
the lowest drying shrinkage at ~0.143% compared with the lightweight TCM specimens
incorporating BS and FA. Specifically, the 56-day drying shrinkage of R5-BS15FA15 was
~0.161%, which was ~12.5% greater than that of R5-C100, whereas that of R5-BS5FA5
(0.154%) was relatively low among the TCM specimens. The higher drying shrinkage of
the TCM specimens with Cm compared with that of the R5-C100 specimen without Cm
was likely due to the increase in the mineral admixture content and the high fineness effect
of the Cm particles used in this study [31,32].
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Figure 6. Drying shrinkage.

3.5. Carbonation Depth

Figure 7 shows the carbonation depths of the lightweight mortar specimens with
recycled water and ternary Cm after 28 days of accelerated carbonation. The carbonation
depth of the R5-C100 specimen without Cm was ~1.56 mm, whereas those of the lightweight
TCM specimens with Cm were ~0.84 to 1.52 mm, all of which were smaller than that of R5-
C100. However, as the amount of BS and FA increased, the carbonation depths of the TCM
specimens gradually increased. In particular, the carbonation depth of R5-BS5FA5 was only
~0.84 mm, which was ~46.1% smaller than that of R5-C100. The reason for this decreased
carbonation depth was that the 56-day compressive strength of the R5-BS5FA5 specimen
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was the largest, and a denser cement matrix is considered to improve its penetration
resistance to CO2 gas. Thus, this study found that the proper use of recycled water and Cm
improved the compressive strength of the mortar by making its internal structure denser,
which seems to have influenced the observed improvement in the carbonation resistance.
Therefore, in this study, the R5-BS5FA5 showed the optimal performance in terms of its
combination of compressive strength, tensile strength, and carbonation resistance.
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4. Conclusions

(1) In this study, when the amounts of BS and FA were increased by 5%, the flow value of
the lightweight TCM specimen with recycled water increased by ~2.6–4.2%.

(2) The 28-day compressive strengths of the lightweight TCM specimens containing BS
and FA were ~47.2–51.7 MPa, except for that of R5-BS20FA20 (40.2 MPa), which was
higher than that of R5-C100. In particular, the 28-day compressive strength of the
R5-BS5FA5 specimen with 5% BS and FA was ~51.7 MPa, which was ~12.8% higher
than that of R5-C100.

(3) The 28-day tensile strengths of the lightweight TCM specimens incorporating BS
and FA were ~2.81–3.20 MPa, which were ~13.7–29.5% higher than that of the R5-
C100 specimen. Therefore, the proper use of recycled water and Cm in lightweight
aggregate cement composites is efficacious in improving the tensile and compressive
strengths of the cement composite specimen.

(4) The drying shrinkage of the lightweight TCM specimens with BS and FA was relatively
higher than that of the R5-C100 specimen.

(5) The carbonation depth of the R5-BS5FA5 specimen with 5% BS and FA was ~0.84 mm,
which was ~46.1% smaller than that of R5-C100. The carbonation depths of all the
lightweight TCM specimens containing Cm were ~0.84–1.52 mm and were smaller
than that of the R5-C100 specimen (1.56 mm).

In this study, the R5-BS5FA5 specimen incorporated with 5% each of BS and FA showed
the best performance in terms of compressive strength, tensile strength, and carbona-
tion resistance.
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