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Abstract

Through thermal expansion of oceans and melting of land-based ice, global

warming is very likely contributing to the sea level rise observed during the 20th

century. The amount by which further increases in global average temperature

could affect sea level is only known with large uncertainties due to the limited

capacity of physics-based models to predict sea levels from global surface

temperatures. Semi-empirical approaches have been implemented to estimate the

statistical relationship between these two variables providing an alternative

measure on which to base potentially disrupting impacts on coastal communities

and ecosystems. However, only a few of these semi-empirical applications had

addressed the spurious inference that is likely to be drawn when one nonstationary

process is regressed on another. Furthermore, it has been shown that spurious

effects are not eliminated by stationary processes when these possess strong long

memory. Our results indicate that both global temperature and sea level indeed

present the characteristics of long memory processes. Nevertheless, we find that

these variables are fractionally cointegrated when sea-ice extent is incorporated as

an instrumental variable for temperature which in our estimations has a statistically

significant positive impact on global sea level.

Introduction

Coastal erosion, loss of coastal wetlands and increased risks of flooding are some

of the negative impacts that increases in the sea-level would have on coastal

communities and ecosystems [19]. Although the economic costs derived from

some of these impacts have been found to be relatively small in terms of GDP
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losses [1], it is nevertheless important to improve the confidence on the estimates

of the relationship between global average temperature and global sea level.

Current physics based-models have been shown to be able only to partially

replicate recent sea level rise observations based on global average temperature

and semi-empirical approaches have been implemented with the intention of

filling the predictive gaps in the former class of models [26]. However, most of

these studies have not considered the potential spurious inference that is likely to

be drawn from a regression of two series with strong temporal properties such as

global sea level and global temperature [28]. Two noteworthy exceptions are [29]

and [13]. The former performs a cointegration analysis to correct for potential

spurious effects and the latter adjusts a nonstationary model through the Kalman

filter. However, while a statistically significant impact of sea level on temperature

is found in [29], statistical significance for the converse causal relationship is not

obtained, which has important implications for climate change adaptation

policies. Our study extends the work of Schmith et al. [29] (SJT12 hereinafter) in

two ways. First, we obtain fractional orders of integration for the series and

present evidence of a long-run relationship between sea level and temperature that

is fractionally cointegrated. Second, through the use of instrumental variables we

obtain a consistent estimate of the impact of global average temperature on global

sea level.

When the distant past of a series affects its current levels, it is said that the

process possess long memory. Granger and Joyeaux [11] formally introduced the

related concepts of long memory and fractional integration into the field of

econometrics. Unit root tests are frequently used to detect the nonstationarity of a

series, however, such tests are ill-suited in determining whether a series presents

long memory (see, for instance [8, 9]). Tsay and Chung [35] show that the

presence of long memory, even in stationary series, leads to spurious relationships.

Therefore, determining the fractional order of integration is crucial if valid

inferences are to be made regarding the statistical relationship between time series.

Although the approach taken in SJT12 has been long recognized as an

appropriate mechanism to correct for the nonstationarity of the series in a

regression context, the study does not incorporate more recent developments

regarding the implications of long memory in series that seem to be

nonstationary. As mentioned above, our study extends the work of SJT12 to the

fractionally integrated case allowing us to make statements about the long

memory properties of the series and their implications in terms of statistical

inference.

Based on our estimates both global temperature and sea level indeed present the

characteristics of long memory processes. We however find evidence that supports

the fractional cointegration of these two series when sea-ice extent is incorporated

as an instrument for sea level to explain global temperatures (hereinafter the term

instrument refers to a specific instrumental variable while instrumental variables or

IV, refers to the estimation technique; see [3] (Ch. 4) for an overview of the

method). The purpose of including an instrument for temperature is the

inconsistency that would result from estimating ordinary least squares (OLS) due
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to the simultaneity between sea level and temperature, since as empirically shown

in SJT12, the former also affects the latter. Sea-ice extent is believed to be a valid

instrument since it does not affect sea-level but it is affected by global

temperatures. Simulated finite-sample evidence shows that, unlike OLS, inference

drawn using IV eliminates the endogeneity bias with fractionally-cointegrated

series.

Our results show that global average temperature has a positive impact on

global sea level. Importantly, we find evidence of the long-range dependence of

these geophysical variables which has profound implications in the modelling

approach of future research on the sea level-temperature relationship: the long

memory behavior of these series must be acknowledged and appropriately

addressed if statistical inference is to be correctly drawn.

Materials and Methods

Monthly observations on average global sea level (S) and temperature (T)

anomalies for the period 1880 (January)-2009 (December) were respectively

obtained from [7] and [16]. This dataset is slightly different to the one used in

[26] and SJT12. Initially, we used the same yearly dataset than the previous

authors; nevertheless, studies on long memory can hardly be performed using

series with one hundred observations. Moreover, we obtained simulated finite

sample evidence (see Appendix S1) that shows that inference about long-range

properties of a series is unreliable when drawn from such small samples. This

result is in line with SJT12, where it is considered that much larger samples are

needed to obtain statistically valid results. Data on the mean monthly sea-ice

extent (km2) in the northern hemisphere (I) from 1880 to 2009 were obtained

from Chapman (http://arctic.atmos.uiuc.edu/SEAICE). It is important to mention

that sea-based ice exhibits a very strong sinusoidal seasonal pattern, which is why

we seasonally adjusted it; the seasonal adjustment is done automatically through

the X-12 ARIMA program, included in the statistics/econometrics free software

GRETL. Given the large sample size, the dataset was split in three parts and each

one was processed. Raw data and final dataset are available as supporting

information (Data S1).

The monthly dataset includes 1,560 observations, and, according to our finite

sample results (see Appendix S1), we can be confident that our estimates exhibit a

negligible bias, contrary to the ones obtained using datasets with only 100

observations. Sea-level and global temperature are depicted in Figure 1 in which a

clear upward trend during this period for both series can be observed. Figure 2

shows the downward trend in the sea-based ice series which instruments for

temperature in the next section.

Long memory processes represent a bridge between those presenting infinite

(nonstationary) and short memory (stationary). The autocorrelation function

(Sacf) of processes of the latter kind exhibit exponential decay. Conversely, the

Sacf in integrated processes does not decay, whereas the Sacf of long memory

Long-Memory and the Sea Level-Temperature Relationship

PLOS ONE | DOI:10.1371/journal.pone.0113439 November 26, 2014 3 / 12

http://arctic.atmos.uiuc.edu/SEAICE


Figure 1. Sea level and global temperature (1880–2009). Continuous line: temperature [7]: global average sea level from satellite altimeter data for 1993–
2009 and from coastal and island sea-level measurements from 1880 to 2009. Temperature is zeroed at the 1990 level; dashed line: sea level [16]: GISS
data, the average sea level over the 30-year period 1951–1980.

doi:10.1371/journal.pone.0113439.g001

Figure 2. Sea-ice extent (1880-2009) in tenths of millions of km2. See http://arctic.atmos.uiuc.edu/SEAICE for details.

doi:10.1371/journal.pone.0113439.g002
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processes decays hyperbolically. Figure 3 shows the estimated autocorrelation

function up to the 500th lag of the sea-level, temperature and sea-based ice series;

these patterns suggest the presence of long memory in the three series. Formally, a

variable yt : t[Zf g is said to behave as a long memory process if its

autocovariances are not absolutely summable,
P?

h~{? jc(h)j~?, where

c(h)~ yt,ytzhh i is the hth autocovariance. An alternative definition, that can be

used as a vehicle to introduce the long memory notation, can be grounded in the

hyperbolic decay of the autocovariances, c(h)*h2d{1‘(h) as h??, where d

denotes the long-memory parameter and ‘ is a slowly varying function [25] (pp.

39–43).

The most common long memory processes are the autoregressive fractionally

integrated moving average in which the order of integration includes the interval

{
1
2
vdv1, excluding the zero. These processes admit an infinite moving average

or an infinite autoregressive process representation [11, 18, 33]. Series are said to

be stationary when dv

1
2

and nonstationary otherwise (when dv0, the series are

said to be antipersistent). Estimates of a regression between variables that are

nonstationary may be spuriously significant. However, there may exist a linear

combination that reduces their order of integration measured in the residuals of

the estimated regression. In such cases the series are said to be fractionally

Figure 3. Correlograms for sea level and temperature. Sample Autocorrelation Function (Sacf) for (a) sea-level; (b) temperature; (c) sea-ice extent. Lags
in the x axis denote which autocorrelation is estimated, whilst the y axis measures the value of the autocorrelation. Dashed lines represent the 95%
confidence interval; whenever the Sacf falls whithin these limits, the null hyptothesis that the Sacf50 cannot be rejected.

doi:10.1371/journal.pone.0113439.g003

Long-Memory and the Sea Level-Temperature Relationship

PLOS ONE | DOI:10.1371/journal.pone.0113439 November 26, 2014 5 / 12



cointegrated and purged of spurious effects [5, 12, 30]. When the order of

integration of the residuals is less than 1/2, deviations from the linear equilibrium

relationship between series are slowly–mean–reverting.

Before presenting results in the next section we provide a summary of the semi-

empirical statistical procedure we implement to estimate the relationship between

temperature and sea-level. Each result is associated with one of the following

stages of our procedure and will be presented in the same order in the results

section: 1) the strong temporal properties of the variables of interest pose the risk

of estimating a spurious regression. Therefore prior to the estimation procedure,

we first study whether the series exhibit long-range dependence in their time

dynamics by examining the Sacf of the series and formally measuring long

memory for each series using the Two-Step Exact Local Whittle estimator

(2ELW). To the best of our knowledge, this is the finest available estimator of the

persistence of a series and overcomes the limitation of the one-step Local Whittle

estimator which is only applicable in the stationary case (i.e., jdjv1=2) and is

inconsistent for dw1 [30]. The 2ELW is consistent and has a normal limit

distribution N(0,1/4m) for all values of {1=2vdv2, where m is the bandwidth

parameter of the estimator [31] (Th.3, p. 511). The first step in this estimator is to

detrend the data thus avoiding problems originated from time trends. 2) having

obtained sound evidence of long-range dependence in the series, we test whether

such long-range dependence is statistically the same for the variables in our

model. Based on the statistical properties of the 2ELW estimator we perform a test

that reveals that S, T, and I statistically have the same time persistence. 3) the

latter finding is a necessary condition for fractional cointegration and we estimate

the semi-empirical model using the IV method that corrects for the potential

endogeneity bias due to simultaneity of temperature and sea-level (i.e., S affects T

and viceversa). 4) to ensure that the IV method has been appropriately applied we

perform three tests: Sargan’s OI test and F test that explore respectively the

validity and relevance of the instrument (in this case, I), and a Hausman test that

provides evidence on whether there is indeed an endogeneity problem (otherwise

OLS would be preferred, because it is an unbiased and more efficient method in

that case). The results of these three tests indicate that our instrument is valid and

relevant and that the method corrects for the endogeneity bias yielding consistent

estimates of the parameters of the semi-empirical model. 5) we implement again

the 2ELW estimator to test the persistence of the residuals resulting from the

regression and find that the relationship is indeed fractionally cointegrated (this is,

there is a linear combination of the variables with a persistence inferior to the one

exhibited by the variables). 6) predictions are then produced using our estimated

parameters and data.

Results and Discussion

The first stage from our procedure is to obtain formal evidence of long memory or

nonstationarity of the series. The Two-step Exact Local Whittle statistic (2ELW) is

Long-Memory and the Sea Level-Temperature Relationship
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estimated for both series. The 2ELW was proposed by Shimotsu and Phillips [30],

and Shimotsu [32]; the code is available in Shimotsu’s webpage (see http://

shimotsu.web.fc2.com/). Based on this estimator, results in Table 1 show that

temperature, sea level and sea-ice extent are all nonstationary and present long

memory. Note further that the 2ELW estimator is asymptotically distributed as a

normal variable,
ffiffiffiffi
m
p

(d̂{d0)?
D N (0,1=4), for d[ {

1
2

,2

� �
and m~N0:6, [31]

(Th.3, p. 511). This property allows us to build classical x2 tests, where d0 would

be the value under H0. The last row in Table 1 shows the results of a typical

inequality test (H0 : dv1=2).

Note that, for the three variables considered in this study, the null hypothesis

that d~0 as well as that for d~1 are rejected at the one percent level. Also, for the

three variables, the order of integration seems to be superior to 1/2, which implies

that they behave as long-range nonstationary variables.

The correlation between the original series, 0.833 (p-value,0.001) is similar to

that found in [26] (0.88). However, as noted in [28], this correlation does not take

into account the potential stochastic trend in the series which could result in a

spurious relationship. The corrected correlation obtained with the filtered series,

0.128 (p-value,0.001), is much weaker (but still significant) than that found

between the original nonstationary series.

In order to explore the possibly fractional cointegrated relationship, we first

need to show that the sea-level and temperature have, statistically, the same order

of integration (this is stage 2 from our procedure). We therefore test the null

hypothesis dS~dT . Under the null hypothesis, the test statistic is distributed as a

x2 with one degree of freedom. The resulting test statistic is 2.374 and the

corresponding p-value is 0.123 which does not allow rejection of the null that

both variables have the same order of fractional integration, even at the 10% level.

This is also true for the hypothesis dI~dT (test statistic is equal to 0.209, with a p-

value of 0.648). We therefore have evidence that the three variables share the same

fractional integration order.

The results reported in Table 2 correspond to the third stage from our

procedure. These are based on an IV regression in which the contemporaneous

value as well as two leads of the sea-ice extent series serve as instruments for

Table 1. Tests of hypothesis on the 2EWL estimator.

Null hypothesis tested Sea level Temperature Sea-based ice

d50.677 d50.618 d50.636

H0a : d~0 (Wald statistic) 313.858*** 261.642*** 276.623***

H0b : d~1 (Wald statistic) 71.188*** 99.561*** 90.657***

H0c : dv1=2 (t statistic) 4.639*** 3.098*** 3.555***

H0i for i5a,b,c accounts for the null hypothesis being tested.
*** denotes rejection of the null hypothesis at 1% level. m5N7/10. Hypothesis tests are based on the 2ELW estimate of d. The variables have been linearly
detrended.

doi:10.1371/journal.pone.0113439.t001
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temperature. We implement this method in order to overcome the potential bias

resulting from the simultaneity between the variables sea-level and temperature.

In Appendix S1, a finite sample simulation experiment shows that the IV

estimates converge to the true parameter values as the sample size grows. Such

convergence cannot be attained using OLS. In other words, if sea-level and

temperature are nonstationary long-range dependent endogeneous variables

belonging to a system of simultaneous equations, then the OLS estimates of the

relationship that links these variables would be biased and inconsistent. The IV

approach is able to correct such inconsistency, provided that the instrument (sea-

based ice) is relevant and valid, and the sample is large enough.

Present and future levels of sea-ice extent could be considered valid instruments

since they should not be correlated with sea level (validity) except indirectly

through their relation with temperature (relevance). Tests on the relevance and

validity of sea-ice extent as an instrument for temperature are also reported in

Table 2 (stage 4 from our procedure). The instruments are valid and relevant

according to the Sargan over-identification (OID) and the weak-instruments

robust F-test. Furthermore, the rejection of the null under the Hausman test

suggests the presence of endogeneity in which case our IV procedure is not only

valid but also advisable. It should be noted, however, that the behavior of these

three tests, OID, Hausman and weak-instrument, has not been studied for long-

range dependence series and its interpretation should be made with caution.

Predictions obtained from our model of sea-level rise given temperature

increases require the series to be fractionally cointegrated. The results from stage 5

from our procedure provide support for this condition. Based on the 2ELW

estimator, the residuals from the regression (R hereinafter) in Table 2 have an

order of integration of 0.475. We fail to reject the null hypothesis that dRv1=2 (t-

test statistic: 20.652; p-value: 0.257) while the hypotheses that dR~1, and dR~0
are rejected (x2

1 d:f : statistics: 188.477 and 154.373, respectively with both p-values

inferior to 0.001). Altogether, these results suggest that the series are fractionally

Table 2. IV Regression (dependent variable: sea level).

Variable Coefficient Standard error z-statistic p-value

Constant 261.956 2.083 229.750 0.000

Temperature 217.142 8.623 25.180 0.000

R2 0.694

Additional Tests: Test statistic p-value

Sargan OID test1 2.627 (0.262)

Weak instruments test2 144.482 (,0.001)

Hausman test3 470.711 (,0.001)

Heteroskedastic-autocorrelation robust standard errors. N51,558.
1Null hypothesis: the instruments are valid.
2Null hypothesis: the instruments are weak.
3Null hypothesis: Temperature and innovations are not independent.

doi:10.1371/journal.pone.0113439.t002
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Table 3. Results from other semi-empirical models.

Article Dataset(s) Methodology Estimate1,2,3 Additional comments

IPCC 2007 [19] - - (3): 0.18–0.59 Benchmark No 1

Rahmstorf (2007) [26] [6], [15] SSA and OLS. Additional
MA smoothing.

(2): 3.40 (3): 0.50–1.40 First semi- empirical model of SL- T rela-
tionship.

Holgate et al (2007) [17] Same as [26] Same as [26] but dataset
split in four relevant epochs.
Does not MA smooth series

(2): 1st half: 8.26 2nd
half: 6.60

Critique to [26] on the grounds of nonlinearity
of the SL-T relationship and the resulting
degrees of freedom due to MA smoothing

Schmith et al (2007) [28] Same as [26] Same as [26] but controlling
for the trending mechanism.

(2): 5.80 Critique to [26] on the ground of uncontrolled
nonstationarity in SL and T.

Rahmstorf (2007b) [27] Same as [26] Same as [26] but uses part
of the sample (up to 1940) to
estimate the T-SL relationship
and the rest of the sample for
forecasting.

(2): 4.20 (3): 0.93 Reply to critiques in [17] and [28] arguing that
the SL-T relationship holds the predictive
test.

Vermeer & Rahmstorf
(2009) [36]

Same as [26] Same as [26] but including a
time trend in the regression.

(1): 2.50 (+/20.5) (2):
0.80 (+/20.17) (3):
0.75–1.90

-

Grinsted et al (2010) [14] [23], [21], [2], [22] Monte Carlo inversion (no
SSA smoothing).

(2): 6.30 (+/2 1.1) 8.20
(+/2 1.1) 3.00 (+/2
1.8) (3) 0.62–1.60
0.96–2.15 0.30–1.59

Alternative semi-empirical model with longer
datasets.

Schmith et al (2012) [29] [16], [6] Cointegration analysis
between SL and T controlling
for other external radiating
forces, such as atmospheric
CO2 concentration.

None (see comments) Confirm stochastic trends in variables and a
cointegrated long-term relationship.
However, the statistical causality is reversed:
T (and not SL) adjusts to hold the long-term
relationship. They hypothesize that ocean
heat capacity, being larger than atmosphere
heat capacity, lies at the heart of the
difference.

Grassi et al (2013) [13] Same as [26] State space model (no SSA
smoothing).

(2): 4.56 (3): 0.15–1.50 Alternative semi-empirical model capable of
conveniently treating the nonstationary nat-
ure of the series.

IPCC 2013 [20] - - (3): 0.28–0.98 Benchmark No 2 (relative to 1986–2005)

Cazenave et al (2014) [4] Satellite altimetry
based global mean
sea level (GMSL)

Thermosteric time series:
high-pass filter (removes
signals years); linear etrendr-
ing. Removal of annual and
semi-annual signals by fitting
12- and 6-month period;
four-month MA smoothing
to all series.

(1): 3.30 (+/20.4) No semi-empirical model but corrects GMSL
time series of SL by removing the inter-
anualvariability mostly due to the exchange
of water water between oceans, atmosphere
and continents.

This work [7], [16] Fractional cointegration analy-
sis between SL and T through
IV, using sea-based ice as
instrument.

(3): 0.22–0.81 Much in line with [29], but (a) the (co)in-
tegration is allowed to be of non-integer order
to control for possible long memory; (b) we
take into account [29]’s eversed causality
evidence and estimate the relationship using
IV to control for possible endogeneities.
Projected SLR based on regression esti-
mates from this study and the means of
global mean surface temperature variations
from the four scenarios in [20].

(1) mm/year; (2) mm/year/C; (3) SLR: Sea level rise (meters) in 2100.
SSA: Singular spectrum analysis; MA: Moving average; OLS: Ordinary least squares; SL: Sea level; T: Temperature; IV: Instrumental variables.

doi:10.1371/journal.pone.0113439.t003
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cointegrated (i.e., there exists a linear combination of the variables that is

integrated of a lower order). In particular, it is important to note that the order of

integration of the residuals is inferior to 1/2, which implies that they behave as a

stationary process.

The last stage from our procedure is to use the estimates to predict sea-level

rises as a consequence of hypothetic increases in global temperatures. Our

estimations indicate that temperature has a positive and statistically significant

impact on sea level: for each C̊ increase, sea level would rise by 0.22 m. In the

absence of temperature increases, sea level would be reduced by 0.06 m. The

magnitude of these impacts are within the range found in [26] where it was

estimated a 1.25 m sea level rise for a 5.8 C̊ increase (i.e., 0.22 m per ˚C). Our

estimates are not only within those from other semi-empirical models (see

[20, 24] and Table 3) but also within the range predicted from process-based

models reported for the four IPCC’s AR5 emissions scenarios [20]. The median

predictions from these latter class of models are respectively 0.19 m and 0.24 m

per C̊ for the mid and late- 21st century relative to 1986–2005. It is important to

note that our estimates cannot incorporate future nonlinear changes in the

relationship between temperature and sea level that could occur due to melting of

land-based ice at rates that have not been observed in our sample period.

This study provides a consistent estimate of the impact of temperature on sea

level. Our results suggest that sea level would rise by roughly 0.22 m per ˚C
increase. This estimate together with the mean predictions for global temperature

increases from IPCC’s AR5 four emissions scenarios by the end of the 21st century

(1 to 3.7 C̊) would result in a global sea level rise between 0.22 and 0.81 m.

However, as with other semi-empirical estimates, our predictions are not capable

of incorporating potentially nonlinear effects deriving from land-based ice

melting. Therefore, at the global level our estimates should be taken as a lower-

bound impact of temperature on sea level rises that will ultimately inflict severe

damages on coastal communities and ecosystems. Furthermore, the melting of ice

sheets, among other factors, is expected to impact sea level changes differently

across regions [34]. Future research should incorporate recent advances in

fractional panel cointegration methods [10] in combination with regional series to

examine the impact of temperature variations on regional sea level changes.

Importantly, our results suggest that geophysical variables, such as global

temperature, sea level and sea-based ice, behave as long-range dependence

processes. Although their nonstationarity became obvious for many researchers

their long-lasting relation with their own past has not been considered in

empirical research. Taking into account such a property is a capital issue if valid

inferences from semi-empirical methods are to be drawn.

Supporting Information

Appendix S1. Finite sample evidence.

doi:10.1371/journal.pone.0113439.s001 (PDF)
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Code S1. Monte Carlo code for Matlab.

doi:10.1371/journal.pone.0113439.s002 (ZIP)

Data S1. Raw data and final dataset.

doi:10.1371/journal.pone.0113439.s003 (ZIP)

Data and Code S1. Data and GRETL code used in regression.

doi:10.1371/journal.pone.0113439.s004 (ZIP)
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