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Abstract

The human brain exhibits a rich functional repertoire in terms of complex functional

connectivity patterns during rest and tasks. However, how this is developed upon a

fixed structural anatomy remains poorly understood. Here we investigated the

hypothesis that resting state functional connectivity and the manner in which it

changes during tasks related to a set of underlying structural connections that pro-

mote optimal communication in the brain. We used a game-theoretic model to iden-

tify such optimal connections in the structural connectome of 50 healthy individuals

and subsequently used the optimal structural connections to predict resting-state

functional connectivity with high accuracy. In contrast, we found that nonoptimal

connections accurately predicted functional connectivity during a working memory

task. We further found that this balance between optimal and nonoptimal connec-

tions between brain regions was associated with a specific gene expression linked to

neurotransmission. This multimodal evidence shows for the first time that structure–

function relationships in the human brain are related to how brain networks navigate

information along different white matter connections as well as the brain's underlying

genetic profile.
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1 | INTRODUCTION

Optimality quantifies the extent to which a system's function is

designed to maximize benefit within certain constraints (Parker &

Maynard, 1990). Biological systems have adapted to attain optimality.

For instance, optimal models suggest efficient energy conservation in

animal behavior (Alexander, 1996), maximal information flow in tran-

scriptional regulation (Tkacik, Callan Jr., & Bialek, 2008), balanced

growth in protein expression (Dekel & Alon, 2005) and reduced wiring

cost in the neuronal connectivity of the nematode Caenorhabditis

elegans (Pérez-Escudero & de Polavieja, 2007).

When multiple elements are interconnected as in biological net-

works, models can be used to assess the optimality of a network via

game-theoretic approaches such as equilibria between each element's

competing strategies (Fabrikant, Luthra, Maneva, Papadimitriou, &

Shenker, 2003). Unlike other biological networks, brain networks

(as determined by coordinated blood-oxygen-level-dependent [BOLD]

activity that is, functional connectivity), emerge within the constraints†Ioannis Pappas and Michael M. Craig contributed equally to this work.

Received: 13 September 2019 Revised: 24 January 2020 Accepted: 27 January 2020

DOI: 10.1002/hbm.24942

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2020;41:2229–2243. wileyonlinelibrary.com/journal/hbm 2229

https://orcid.org/0000-0002-0168-7014
https://orcid.org/0000-0003-2589-5739
mailto:ioannis@berkeley.edu
mailto:mmc57@cam.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


imposed by their underlying structural, white-matter network

(connectome) with the purpose of serving baseline and/or cognitive

function (Cole, Bassett, Power, Braver, & Petersen, 2014; Greicius,

Krasnow, Reiss, & Menon, 2003; Hagmann et al., 2008; Park &

Friston, 2013). Thus quantifying optimality in brain networks can lead

to the understanding of the one-to-many relationship between struc-

ture and function at rest but also during tasks.

One approach for disentangling the relationship between struc-

ture and function is to look at how information is communicated

upon fixed structural connections with models of brain communica-

tion (Laughlin & Sejnowski, 2003). Briefly, features of plausible bio-

logical models of brain communication can be summarized as

follows: information communication from one region to another

does not assume knowledge of the global topology of the network

(as in the case of small-world brain network hypothesis, Avena-

Koenigsberger, Misic, & Sporns, 2017; Bullmore & Sporns, 2012) but

rather information is transmitted by sequentially choosing neighbor-

ing nodes along white matter paths until the target node is reached

(ability to navigate information or navigability) (Seguin, van den

Heuvel, & Zalesky, 2018). In addition, a minimum number of connec-

tions is used for navigation reflecting a wiring-efficient architecture

(Bullmore & Sporns, 2012).

Efficient communication of information, in terms of maximizing

navigability and minimizing wiring cost, is an undeniable benefit that

an optimal brain may attain (Bullmore & Sporns, 2012). Therefore,

efficient communication paths in the structural connectome can

serve as a low-dimensional (compared to using the full structural

connectome) structural scaffold for explaining functional connectiv-

ity during rest while demanding cognitive functions could be served

by shifting from these paths to other, potentially “expensive” com-

munication strategies (Avena-Koenigsberger et al., 2017).

Given this assumption, we hypothesized that there is an optimal

core of structural connections that promotes efficient communication

and upon which functional connectivity is developed at rest. On the

other hand, we hypothesized that nonoptimal connections might be

recruited during task execution in the same way that BOLD activity

dynamics flexibly shift from rest to task to facilitate cognition (Shine

et al., 2019). Finally, we hypothesized that the difference between

optimal and nonoptimal connections could be related to specific

genetic signatures responsible for neurotransmission thus providing a

neurobiological underpinning for efficient communication (Richiardi

et al., 2015).

Methodologically for the first hypothesis, we derived an optimal

network model that takes into consideration each region's navigation

paths with the rest of the network while minimizing wiring cost

(Gulyás, Bíró, Kőrösi, Rétvári, & Krioukov, 2016). We used this model

for 50 healthy individuals and considered the overlap with their real

structural networks. We termed this overlap as the level of optimality

or optimality. In turn, we attempted to verify that information com-

municated upon optimal structural connections could explain func-

tional connectivity. We employed an algorithm that predicted resting-

state functional connectivity by utilizing paths of a structural network

(Becker et al., 2018). Using this method we showed that optimal

structural connections were essential for the accurate prediction of

resting-state functional connectivity compared to using the features

of the entire structural network, On the other hand, we hypothesized

that task-based connectivity (in this case during a working memory

experiment) would be better predicted by nonoptimal connections.

Finally, we showed that the balance of optimal and nonoptimal con-

nections, as a potential mediator between structure, resting-state and

cognitive function, is characterized by a distinct genetic profile impor-

tant for neurotransmission. To this end, we correlated the difference

in the number of optimal connections and nonoptimal connections

with the neurotransmitter density data obtained from post mortem

brains (Hawrylycz et al., 2012).

2 | RESULTS

2.1 | Optimal connections in structural
connectivity networks

We constructed an optimal network model where communication

between brain regions was maximized with the least possible number

of connections. From a graph-theoretic perspective, describing com-

munication involves the identification of paths form a source to a tar-

get region/node. One biologically plausible model for describing

communication in the human brain is navigation via greedy routing

where the closest node (in terms of spatial distance) is chosen sequen-

tially until the target node is reached (Avena-Koenigsberger et al.,

2017). In this context, navigability was defined as the extent to which

navigation can take place from one node to another. The number of

connections between nodes in order to achieve navigation defined

the wiring cost of navigation (Methods).

The Nash equilibrium Network Game model (NNG) takes as input

each individual's topographical organization, as defined by the spatial

location of brain regions/nodes, and creates a synthetic network by

maximizing navigability between nodes and minimizing wiring cost

(Gulyás et al., 2016). Given a node i, the navigation vector consists of

binary variables dj 6¼ i, each one representing whether node i is going

to connect to other nodes j 6¼ i or not. The value of each binary vari-

able dj 6¼ i is derived as follows. Based on the navigability premise,

node i will potentially connect to node j if information can be navi-

gated from node i to the rest of the network using node j as a greedy

next hop, that is, by transmitting information first to j and then from j

to the rest of the network. This requires identifying the paths from

node i to the rest of the network using node j as a greedy next-hop

and, eventually, finding the (target) nodes that can be reached from i

using these paths. The collection of these target nodes consists of a

mathematical set, denoted by Sij . After quantifying Sij for every node

j 6¼ i, the collection/union of these sets Sij represents all the nodes that

i can efficiently navigate to using the j nodes as potential next hops

(collection of target nodes). To which j nodes node i is going to con-

nect to depends on the collection of the target nodes. Node i should

be connected to as few j nodes as possible (based on the minimum

wiring premise) but, at the same time, information should be
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navigated to all the target nodes (based on the navigability premise).

Thus, the optimal navigation vector of node i is to select the minimum

number of sets Sij whose union still includes the collection of target

nodes. This is the minimum cover set of sets Sij . If S
i
j is selected in the

minimum cover set of all Sij 6¼i sets then dij=1 and a connection is made

between i and j (Figure 1a–c, and Methods).

F IGURE 1 Optimality in structural brain networks (a) In this work optimality relates to finding appropriates edges that will maximize
navigability at minimum wiring cost. Navigability refers to constructing paths from one node to other (target) nodes in the network by
sequentially making connections to nearby (in terms of spatial distance) nodes. Each node's optimal navigation vector consists of binary decision
variables indicating whether it will connect to other nodes or not in order to maximize navigability at minimum wiring cost. In the toy graph
presented (we use the same layout as in Gulyás et al., 2016), node's B optimal navigation vector consists of three binary decision variables dA, dC,
and dD corresponding to whether node B is going to be connected to nodes A, C, and D respectively. To compute these, quantities SBA , S

B
C , and SBD

are calculated that represent the set of nodes that node B can navigate to using A, C, and D respectively as first steps. For example, SBA is defined
as SBA = wjdist w,Að Þ< dist w,Bð Þf g (dist is the Euclidean distance) (b) The values of the binary decision variables are based on the minimum cover set
of these three sets; here we find that dA = dC = 1 and dD = 0. Therefore, BC and BA connections will be created. (c) By repeating calculations for
the remaining nodes, it can be shown that the resulting network has maximum navigability (as a result of choosing appropriate intermediate

nodes) and a minimum number of connections (as a result of the minimum cover set). This network is also the Nash equilibrium between all the
nodes when it comes to maximizing navigability at minimum wiring cost (this is Nash equilibrium network game-NNG model). Panel (d) shows an
example of a whole-brain structural network. Black dots represent the location of each ROI/node and green lines show existing connections
(edges) between ROIs in the case where the general fractional anisotropy between them was nonzero. Panel (e) shows the NNG model (edges are
in magenta color) obtained using the locations of ROIs shown in (d). (f) Optimality is defined as the overlap between networks D and E or in
statistical terms, as the number of true positives identified by the NNG model divided by the total number NNG edges. Optimality statistics for
the structural networks at the 234 resolution. Results are presented in the form of mean (SD) over n = 50 individuals
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By repeating this process independently for all nodes, the

resulting network is the Nash equilibrium of all the optimal navigation

vectors. One way of thinking about the Nash equilibrium is to con-

sider two friends (players) that try to maximize happiness by consider-

ing different eating out options. If Player 1 decides to eat lunch, then

Player 1 is happy because she likes lunchtime and Player 2 is unhappy

because it is too late for her. If Player 2 decides to eat breakfast she

will be happy, Player 1 though will be unhappy because it is too early

for her. However, if they both go for brunch, they will attain a certain

level of happiness and they cannot get any happier by choosing a dif-

ferent option (lunch or breakfast); this renders brunch as the Nash

equilibrium between the two players. The Nash equilibrium in our

setup is the network configuration where each node's optimal naviga-

tion vector has been attained thus rendering any other configuration

to be suboptimal for any node. From a computational perspective, the

Nash equilibrium network (NNG network) comes from the minimum

cover set selection process for every node as described previously

and is a synthetic network that has maximal navigability between

every node with a minimum number of connections (because of the

definition of Sij and the minimum cover set).

Given this model, our first objective was to assess the overlap

between NNG and real structural networks in 50 healthy individuals.

Here structural networks were defined by generalized fractional

anisotropy (GFA) values for tracts connecting regions of interest

(ROIs) based on a specific parcellation spanning the entire brain (see

Methods). To quantify this overlap, we defined an optimal connection

(T) between two ROIs as one that existed in both the structural net-

work (i.e., nonzero GFA) and the NNG network (true positives). Non-

optimal connections were those that existed in the structural network

but were not present in the NNG network (Figure 1d,e). False posi-

tives were defined as those connections that existed in the NNG net-

work but not in the structural network (i.e., zero GFA) (F). Using

notation, optimality was defined as the ratio |T|/|M| where |T| was the

total number of optimal connections and |M| was the total number of

connections in the NNG network. False positives were defined as

|F| = |M|−|T|. We first report results for a 234-ROI parcellation. The

mean optimality score across subjects (mean = 0.79, SD = 0.02)

suggested that brain networks follow a consistent pattern of optimal

connectivity (Figure 1f). We also report the number of false positives

across subjects (mean = 133.1, SD = 17.0) compared to the number of

connections that the NNG produced (mean = 627.28, SD = 24.7).

To show that our results were consistent across different

parcellation resolutions we applied the same model to the 129-ROI

parcellation. Optimality of structural networks using this parcellation

was also high (mean = 0.7161, SD = 0.0430) while false positives

remained low (mean = 93.8, SD = 15.4) compared to the number of

connections that the NNG produced (mean = 334.1, SD = 5.4)

(Appendix S1). We further wanted to assess the extent to which the

results would change when using geodesic distances instead of Euclid-

ean distances entertaining the assumption that paths along the corti-

cal surface mesh would be preferable. Because geodesic distances are

defined over closed surfaces within each hemisphere, optimality for

each hemisphere was calculated separately (Methods). We observed

that optimality dropped to 0.6182, SD = 0.0286 for the left hemi-

sphere and 0.6454, SD = 0.0230 for the right hemisphere. The reduc-

tion in optimality could be attributed to the fact that communication

utilizes white matter pathways that do not relate to the geodesic dis-

tances that characterize the cortical mesh.

2.2 | Optimal connections in large-scale networks

We next investigated whether optimal connections were distributed

differentially across a set of seven canonical cortical networks (CCNs),

namely the default mode network (DMN), the dorsal attention net-

work, the frontoparietal network, the limbic network, the

somatomotor network, the ventral attention network, and the visual

network (Yeo et al., 2011). Hierarchical organization across these net-

works has been widely discussed (Margulies et al., 2016) so this was

an attempt to understand whether such organization is underpinned

by optimal connections. To this purpose, we first assigned each ROI

from the Lausanne 234-ROI parcellation to each CCN. We then com-

puted the number of optimal connections between ROIs within CCNs

(intranetwork optimal connections) and between ROIs of different

CCNs (internetwork optimal connections). To account for differential

CCN sizes we divided the number of optimal connections by the total

number of intra- or internetwork connections (Methods). We found

that the somatomotor network (SM) contained the highest proportion

of optimal intranetwork connections (Figure 2a,b). This is in agree-

ment with earlier studies proposing that the SM network has

increased within-network connectivity in relation to other networks

(Power et al., 2011). The DMN showed the lowest relative optimal

intranetwork connectivity, possibly reflecting the metabolically expen-

sive frontoparietal connections linking the medial prefrontal cortex

and posterior cingulate/precuneus areas (Greicius, Supekar, Menon, &

Dougherty, 2009). In contrast, we found that the DMN had substan-

tially higher internetwork optimal connectivity than any other net-

work (Figure 2c–e), in support of the idea that the DMN might act as

a global workspace, integrating information from other distributed

networks (Vatansever, Menon, Manktelow, Sahakian, & Stamatakis,

2015). Furthermore, there are suggestions that the DMN occupies the

top of the brain's large-scale connectivity hierarchical organization

(Margulies et al., 2016).

2.3 | Predicting resting-state functional
connectivity using optimal structural connections

Next, we probed the capacity of the optimal connections to predict

whole-brain functional connectivity (Figure 3-Appendix S1). We

employed a recently developed algorithm that predicts resting-state

functional connectivity using the eigen-structure of a structural con-

nectivity matrix (Becker et al., 2018). Specifically, the predicted

functional connectivity matrix was obtained by a polynomial transfor-

mation of the structural connectivity matrix utilizing the latter's path

information thus allowing us to assess how navigability on paths
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consisting of optimal (and nonoptimal connections) related to the

emerging functional connectivity (Figure 3-Appendix S1 and

Methods). The higher the order of the polynomial transformation, the

longer the paths that are considered for prediction. Based on previous

work (Becker et al., 2018), we chose k = 5 as our order of interest.

Specifically, for this k the algorithm produces maximal correspondence

between predicted and real functional connectivity matrices while the

prediction accuracy plateaus when considering higher-order (k > 5)

polynomial transformations. We computed predicted functional con-

nectivity matrices for each individual using optimal, nonoptimal and all

connections in the structural matrices and we compared the predicted

matrices with actual functional connectivity matrices obtained from

each individual's BOLD data. For the 234-ROI parcellation we found

that predictability was superior when using only the optimal connec-

tions (correlation coefficient between predicted and real functional

matrices mean r = .9688, SD = 0.0285) compared to using all the

structural connections (mean r = .9156, SD = 0.0256) (Figure 3(a)). We

also found that predictability dropped considerably when using only

the nonoptimal structural connections (correlation coefficient

between predicted and real functional network mean r = .8414,

SD = 0.0572). A one-way repeated-measures analysis of variance

(ANOVA) confirmed that each prediction was significantly different

from the others (F[2,98] = 125.74, p < .0001, post hoc tests were

Bonferroni corrected for multiple comparisons). For prediction

results across different polynomial transformation orders, see

Figure 3-Appendix S2.

These results were further verified using a newly introduced

method for predicting functional diversity from structure based on

persistent homology tools (Liang & Wang, 2017). Instead of just quan-

tifying the correlation between the fully connected predicted and real

functional connectivity matrices, this method looks at the persistence

of their topological differences across all possible thresholds-from

F IGURE 2 Intra- and internetwork optimal connections in structural brain networks (a) Optimal intranetwork connections in each of seven
canonical cortical brain networks (CCNs). Bars show mean and SE of the mean from n = 50 individuals. (b) Intranetwork optimal connections in
the somatomotor network, the network that showed the greatest number of intranetwork connections. (c) Optimal internetwork connections

between each cortical network averaged across individuals. (d) Bars below show the mean of optimal connections from each network to the other
six networks. (e) Internetwork optimal connections from the DMN, the network that showed the greatest number of internetwork connections.
For (b) and (e) line emphasis corresponds to connections that exist in more than 30 (of the 50 subject sample) subjects. CCN definitions are from
Yeo et al. (Yeo et al., 2011). All numbers reflect ratios of the number of optimal connections over the total number of intra- or internetwork
connections respectively. CCN abbreviations: DMN, default mode network; DAN, dorsal attention network; FPCN, frontoparietal control
network; SM, somatomotor network; VAN, ventral attention network; Visual, visual network
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fully connected matrices to sparsely connected matrices (Methods). In

this case, a higher score would imply poorer prediction. Here we

observed that the differences in connected components were smaller

using only optimal connections thus showing their high predictive

accuracy (F[2,98] = 28.07, p < .0001, post hoc tests were Bonferroni

corrected for multiple comparisons) (Figure 3b). To further confirm

that the prediction results were a function of an optimal core of struc-

tural connections and not an artifact of the parcellation resolution, we

repeated these analyses using the 129-ROI parcellation and obtained

similar results (Figure 3-Appendix S3).

Further, we conducted a similar analysis using streamlines instead

of GFA, in other words, GFA values in the structural connectivity

matrices were replaced by the number of streamlines. We found that

the prediction results remained unchanged (Figure 3-Appendix S4).

2.4 | Controlling for distance

It is possible that the prediction of resting-state functional connectiv-

ity by the NNG model could be confounded by the model's preference

for short-range connections (Hermundstad et al., 2013). We per-

formed control analyses to see whether there was an effect of dis-

tance in the predictability (here only in terms of correlation coefficient

between predicted and real functional network) of the optimal con-

nections. We compared the predictability of resting-state functional

connectivity of the NNG model to that of an appropriate generative

network model that preferentially creates edges based on short

Euclidean distances and closely matches the individual structural net-

works (Betzel et al., 2016). We found that the predictability of the

synthetic model using Euclidian distances was lower (mean r = .9494,

SD = 0.0182, two-sample t test p = .0042) compared to the NNG.

A remaining question is whether the difference in the high predict-

abilities between optimal connections and synthetic networks is mean-

ingful or it is an artifact of the prediction algorithm that potentially

overfits and predicts functional connectivity using only short distances.

We, therefore, repeated the comparison where we tried to predict

functional connectivity with distance regressed out from functional

connectivity (Methods) and we found that the predictability of optimal

connections was substantially higher (two-sample t test p < .001) using

optimal connections (mean = 0.6908, SD = 0.0764) compared to that of

the synthetic networks (mean = 0.6189, SD = 0.0957). Thus, we con-

cluded that distance itself could not explain the predictive power of

optimal connections. It is worth noting that the predictability of the

synthetic networks was higher than that of all brain connections,

potentially supporting the notion that structural connectivity resembles

functional connectivity at short distances (Honey et al., 2009). How-

ever, synthetic networks still underperformed compared to the NNG.

2.5 | Predicting task-based functional connectivity
using optimal structural connections

Our findings so far indicate that optimal connections successfully pre-

dict resting-state functional connectivity. Nonoptimal connections

corresponded to connections that did not conform to the maximal

navigability with minimum wiring principle. In that regard, an impor-

tant question remains as to what is the functional role of nonoptimal

F IGURE 3 Predicting functional connectivity from structural
connectivity (a) The prediction algorithm uses the eigen-structure of a
polynomial transformation of order k (here only for k = 5) of the
structural connectivity matrix to predict the functional connectivity
matrix (Figure 3-Appendix S1). Each box plot shows the prediction
accuracy across n = 50 individuals in terms of cross-matrix correlation
between the real and predictedmatrices. Higher scores show higher
predictability. See Figure 3-Appendix S2 for different polynomial
orders k. (b) Here we usedmethods from homology theory to correlate
predicted and real functional matrices. Lower scores reflect a smaller
difference between the real and predicted functional networks. Both
prediction scores showed that using only optimal (Opt) connections
wasmore predictive of whole-brain functional connectivity than using
nonoptimal (Non-opt) or all structural connections (All-conn). For each
box, thick lines show themedian value for n = 50 individuals while
whiskers reflect the maximum andminimum values of the data.
***indicates p < .001 significance See Figure 3-Appendix S3 for
comparable results at the 129-resolution parcellation
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connections. Nonoptimal connections by definition do not necessarily

conform to the navigability principle. Thus, they could consist of direct

long-range connections between source and target. One possible

explanation could be that these correspond to connections that sup-

port direct communication between regions when this is needed. Such

configurations are believed to support integration at the whole-brain

level by connecting specialized regions (Betzel & Bassett, 2018). Paral-

lel to this, many studies focusing on working memory have shown that

functional connectivity during a working memory task becomes more

integrated compared to rest (Cohen & D'Esposito, 2016; Vatansever

et al., 2015). Together these results entertain the following hypothe-

sis: nonoptimal connections would predict task-based connectivity

better compared to resting-state data due to their role in integrating

information when cognitive demands increase. We tested this hypoth-

esis by looking at how optimal and nonoptimal connections would

predict functional connectivity during a working memory paradigm

(two-back task/2bk) and compared this prediction to the previously

established prediction for resting-state functional connectivity. We

observed a significant increase (difference between means = 0.0214,

p < .001) in the predictability of nonoptimal connections during the

2bk task compared to resting-state (Figure 3-Appendix S5). In addi-

tion, we observed that the predictability of the optimal connections

during the 2bk task was significantly reduced (difference between

means = 0.1095, p < .001) when compared to rest. So overall much

F IGURE 4 Association between gene
expression and regions with higher
optimal connectivity (a) We related AIBS
gene expression data to the extent to
which each region contained optimal
connections that is, the difference
between optimal and nonoptimal
connections (RO). Partial least squares
(PLS) analysis revealed a significant
component driving the variance in the RO
score (optimal–nonoptimal connections)
of each ROI. (b) Using a gene ontology
toolbox, we found that this PLS
component was enriched for genes
functional related to transmembrane
transportation and channel activity. For a
complete list of significant genes and their
function see Appendix S2. Because
differences could be due to the different
number of connections in each region, RO
scores were normalized by the total
number of connections of each region
(normalized RO)
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greater difference in terms of optimal and nonoptimal predictability

when comparing task to rest. The difference was only apparent when

separating optimal and nonoptimal connections, and not when consid-

ering all connections (Figure 3-Appendix S5). Collectively these results

propose that the balance between optimal and nonoptimal connec-

tions relates to whether the brain engages with increased cognitive

demands.

2.6 | Neurogenetic basis of optimally and
nonoptimally driven functional connectivity

We next sought to identify the neurobiological mechanism that allows

optimal and nonoptimal connections to drive functional connectivity in a

differential fashion. First, we calculated the difference between the num-

ber of optimal and nonoptimal structural connections (averaged over

50 subjects) for each region (degree of optimal connectionsminus degree

of nonoptimal connections normalized by the total degree of each region),

calling this metric each region's regional optimality (RO). Then we identi-

fied which genes were disproportionately expressed in ROIs with high

RO. To do so we mapped the location of the samples from the AIBS

human microarray data set to the ROIs of the Lausanne 234-ROI

parcellation to obtain their respective microarray expression (Whitaker

et al., 2016). For the ROIs that were matched to sample locations, we

used a regression analysis to find a relationship between RO scores and

the gene expression scores (Methods). This analysis resulted in several

PLS components consisting of weighted linear combinations of gene

expression scores that explainedmost of the RO score variance and were

ranked by the cumulative variance explained in both the gene expression

data and (normalized) RO scores. We observed that the top PLS compo-

nent, explained around 18% of the variance in RO scores and we found a

positive association between the (normalized) RO score with the PLS

component (Spearman's ρ = 0.2975, p < .0001, Figure 4a) implying a rela-

tionship between the genetic expression of each ROI and its RO score.

Focusing on the gene expression profile of this PLS component, we found

that its transcriptional signature was significantly enriched in genes asso-

ciated with voltage gated ion channels and small amino acid neurotrans-

mitters (Figure 4b, for the complete list see Appendix S2a; for a list of

gene function categories and statistics, see Appendix S2b). These genes

code for membrane bound proteins that play a role in the regulation of

synaptic transmission and the initiation of action potentials. To verify that

these results do not reflect some form of spatial variation in the genetic

expression across the cortex, we shuffled the assignment of ROIs

between the gene and the RO data and re-computed the PLS compo-

nents for 1,000 permutations.We found a rejection of the null hypothesis

at p < .02 (Figure 4-Appendix S1) indicating that our results were not

driven by the spatial autocorrelations in the genetic andRO data.

3 | DISCUSSION

In this work, we used the NNG model as an ideal network where com-

munication between nodes is optimal with a minimum wiring cost and

assessed its overlap with real structural networks. With the same

methodology, Gulyás and colleagues showed that many real-world net-

works, including the Internet, metabolic networks, roads, airports, and

one human brain network are highly optimal (Gulyás et al., 2016). Using

diffusion imaging data from 50 healthy volunteers, we expanded this

finding to show that structural networks have consistently high opti-

mality. Earlier work has shown that structural networks have small-

world architecture that is, their organization is characterized by high

efficiency in communication usually facilitated by the presence of short

paths (Bullmore & Sporns, 2012). How do these findings relate to the

small-world hypothesis? The high overlap between real and optimal

networks potentially suggests that structural networks have developed

to efficiently communicate information in a pattern that takes into con-

sideration how each node differentially routes information to the rest

of the network, expanding the small-world framework where one

would expect information to be routed using only shortest paths

(Avena-Koenigsberger et al., 2017). In turn, the NNG model results

from the Nash equilibrium between each node's optimal navigation

vectors. The only input required for deriving the NNG model is each

node's position and how it is relative to its neighbors' positions. This

process is different from network generative small-world models that

impose constraints (or favor) the emergence of a specific whole-brain

network structure (Vértes et al., 2012).

The NNG model uses the brain's three-dimensional layout to pro-

duce efficient navigable networks. The notion that brain network effi-

ciency is intertwined with the geometrical placement of brain regions

has been the focus of research looking at brain organization (Cherniak,

1994; Ercsey-Ravasz et al., 2013). One account suggests that the posi-

tioning of regions relates to the emergence of optimal brain networks

in terms of efficient wiring at minimum cost (Cherniak, Mokhtarzada,

Rodriguez-Esteban, & Changizi, 2004; Chklovskii, Schikorski, & Ste-

vens, 2002; Klyachko & Stephens, 2003; Koulakov & Chklovskii, 2001).

This positioning is considered to be the result of developmental mecha-

nisms and the increasing tensions associated with expanding brain vol-

ume and size (Van Essen, 1997). The tension hypothesis emphasizes

the mechanical forces between neurons and their role in shaping brain

morphology. Because the size of the cortical sheet is larger than the

space needed to develop, tensions along the axons of connected neu-

rons influence spatial morphology within this reduced space. For exam-

ple, tensions would pull strongly interconnected regions towards one

another, forming an outward fold (e.g., formation of a gyrus) thus reduc-

ing the distance between regions in the opposite sides of the fold. This

process can explain why region positioning is related to efficient wiring

at a minimum cost (Wang & Clandinin, 2016). Along these lines, Nash

optimality could be regarded as a “goodness-of-fit”measure for individ-

ual brains that captures the extent to which efficient connectivity is

developed within a layout of regions.

The discrepancy in optimality when using geodesic distances sug-

gests that navigability is not as efficient when following paths along

the surface. One explanation for this is that large-scale signaling uses

paths formed along white matter connections whose length has been

shown to strongly correlate with the Euclidean distance between

these regions (Roberts et al., 2016). It is worth noting that navigability
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might depend on a combination of white matter and cortico-cortical

surface paths. To this end, models have assessed the impact of both

geodesic and Euclidean distances to communication strategies

(Avena-Koenigsberger et al., 2019). In our work, one can modify the

process of finding navigation paths to depend on both geodesic and

Euclidean distances, thus accounting for both of these factors when

assessing optimality in the brain. We plan to explore these ideas in a

future study.

We then asked how optimal structural connections were differen-

tially distributed across CCNs. First, a high number of optimal connec-

tions were found within the SM network. This is consistent with

previous studies suggesting the SM network has high local communi-

cation efficiency possibly reflective of continuous and comparatively

rigid processing demands (Power et al., 2011). In contrast, the DMN

had a low number of intra-network optimal connections potentially

attributed to the fact that the NNG was not able to capture direct,

metabolically expensive connections linking the medial prefrontal cor-

tex with the posterior cingulate cortex (Ongur & Price, 2010).

Despite having a low number of optimal intra-network connections,

the DMN had the highest number of optimal internetwork connections.

Along these lines, studies on structural connectivity have singled out the

DMN as a network extensively connected to regions of other large-scale

networks (Parvizi, Van Hoesen, Buckwalter, & Damasio, 2006). Our

results show that this connectivity was supported by principles of effi-

cient communication and minimum wiring cost reflecting flexible infor-

mation exchange of the DMN with other large-scale networks during

different cognitive states (Vatansever, Menon, & Stamatakis, 2017). In a

recent study by Margulies and colleagues (Margulies et al., 2016)

the authors showed that DMN regions occupy ideal positions along a

principal gradient, a property related to the topographic organization

of large-scale connectivity, thus promoting efficient information

processing. The NNG model provides a complementary approach to

understanding the DMN's unique multifunctional, integrative fingerprint

in the sense that it substantiates the DMN's high number of optimal con-

nections towards the rest of the brain.When conceptualizing the propor-

tion of internetwork optimal connectivity in a continuous spectrum, our

results place the DMN distant from the contributions of other networks,

thus providing evidence for its functional heterogeneity and flexibility.

We next used structural-to-functional matrix association in order

to identify the extent to which optimal connections can predict func-

tional connectivity. The prediction algorithm utilized path information

embedded into the structural connectivity matrix by expressing func-

tional connectivity as a weighted combination of the powers of the

matrix, each one associated with paths of different lengths (Becker

et al., 2018). Remarkably, we found that optimal connections were

predictive of whole-brain resting-state functional connectivity. Our

finding proposes that paths consisting of optimal edges serve as

better predictive features for explaining functional connectivity.

Interregional communication using optimal paths might provide a

framework for explaining flexible brain function with information effi-

ciently navigating between functionally specialized regions (Avena-

Koenigsberger et al., 2017). Compared to using the whole structural

connectome, these paths could serve as a low-dimensional scaffold

for brain communication during resting state. Indeed, a previous

positron emission topography study showed uneven distribution in

energy consumption with glucose metabolism distinctively higher in

brain regions important for brain communication (Tomasi, Wang, &

Volkow, 2013). This suggests that cortical networks attain efficient

energy consumption by maintaining high metabolism in selective

regions important for brain communication and, potentially shifting

the metabolic demands to other regions in the case of serving cogni-

tive function. This agrees with our finding showing that a handful of

paths important for communication predict resting-state functional

connectivity while, as we discuss later, tasks require the recruitment

of additional paths that potentially come with a certain metabolic and

energetic cost.

It is worth noting that our comparison with a synthetic, distance-

penalizing model showed that predicting functional connectivity could

not be explained solely based on interregional distance. Optimal com-

munication considers the brain's ability to transmit information

through efficient navigation paths but not necessarily through

shortest paths that solely take into account the spatial proximity of

brain regions. Thus, communication of information based on distance

cannot fully account for predicting functional connectivity.

Nonoptimal edges were predictive of functional connectivity dur-

ing a working memory task. It is possible that nonoptimal connections

reflect direct and metabolically expensive connections linking and

integrating information from distant parts of the brain such as the

posterior and anterior parts of the DMN (Ongur & Price, 2010). Previ-

ous work has shown that functional connectivity during a working

memory task becomes more integrated with the emergence of long-

range functional connections especially within the DMN (Vatansever

et al., 2015). We believe that our results contribute to this notion as

nonoptimal connections predicted 2bk functional connectivity better

that resting-state functional connectivity. This result, in conjunction

with other studies suggesting that long-range connections have high

connectional specificity (Betzel et al., 2017), indicates that nonoptimal

connections might serve a specific functional role during tasks: the

integration of information between distant parts of the brain. It is cru-

cial to investigate whether these results generalize in other tasks or

cognitive domains in order to establish whether nonoptimal connec-

tions are a feature of task connectivity in general or if they are specific

to working memory.

Our work on linking structure to function disentangles the contri-

butions of optimal and nonoptimal connections to the prediction of

rest and task-based functional connectivity. We claim that optimal

connections are important because they allow efficient communica-

tion at minimum cost and that this is a suitable scaffold for resting-

state functional connectivity. However, to serve cognitive demands

the brain additionally recruits nonoptimal connections potentially for

long-range communication. This approach diverges from previous

studies investigating structure-to-function relationships using correla-

tions between all structural and functional connections (Hermundstad

et al., 2013; Honey et al., 2009). In these studies, it was only specu-

lated that the observed differences between how structure relates to

resting-state functional connectivity and how structure relates to
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task-based functional connectivity would be mediated by certain

structural connections (Hermundstad et al., 2013). Here we separated

optimal and nonoptimal connections and thus provided direct evi-

dence for why these differences might exist.

It is also worth noting that predicting functional connectivity

using optimal connections could potentially provide useful insights in

clinical settings. Alterations in the predictive capacity might suggest

diversions from a normal “optimally” configured brain that can be

quantified and used to classify between certain clinical populations

and healthy controls.

Finally, the relationship between structural optimal, nonoptimal

connections and function was complemented by the genetic analysis,

where we showed that regions with an increased number of optimal

connections minus nonoptimal connections (RO score) have higher

expression of genes tied to regulating neurotransmission and synaptic

plasticity. We found that the top PLS component correlated signifi-

cantly with regions with high RO. Genes overexpressed in this compo-

nent were associated with potassium and calcium gated channels.

These are associated with action potential initiation and propagation

that regulates neurotransmission (Lledo et al., 1995; Shull & Lingrel,

1987). These results are also in the direction of findings associating

highly connected regions (hubs) with genes producing adenosine tri-

phosphate (ATP) in the mouse brain (Fulcher & Fornito, 2015). Thus,

our results provide initial evidence that optimal connections could

promote efficient communication potentially by utilizing mechanisms

responsible for neural communication. We could not draw similar con-

clusions when the gene samples' location assignments were randomly

permuted; thus we concluded that the variation of genes along

regions with high RO must reflect an intrinsic architecture and not just

a spatial variation of the genes along the brain as it has been previ-

ously shown (Burt et al., 2018). However, it is worth noting that due

to the limited information of the genetic data (approximately 20,000

genes from two postmortem brains) these results are exploratory and

require further verification.

The following limitations should be considered when interpreting

our findings. Despite strict preprocessing pipelines in the diffusion

data, signal/GFA dropout could have biased the finding of optimal and

nonoptimal connections. In future work, we plan to address this point

by looking at additional diffusion data with different low signal to

noise ratio and quantifying the relationship between signal dropout

and optimal/nonoptimal connection identification. The model that

relates structural and functional connectivity has too many degrees of

freedom, which might result in overfitting. This in combination with

the inherent fiber tracking difficulties due to signal dropout necessi-

tates caution when interpreting the associations between structural

and functional connectivity matrices. In addition, future work will

involve further evaluation of the robustness of our results against

alternative distance models that perhaps incorporate more compli-

cated distance-based rules for the creation of connections between

nodes. Furthermore, the assignment of nodes to CCNs should be

addressed with caution as imperfect overlap between regions of inter-

est and CCNs could bias the results. Further work will re-confirm the

resting-state prediction results with global signal regression and the

task-prediction results using the whole task period rather than blocks

of task on/off.

Notwithstanding these limitations, by combining mathematical

modeling techniques with multimodal imaging and genetic datasets,

we identified a set of optimal structural connections, differentially dis-

tributed across the brain that were highly predictive of whole-brain

functional connectivity. Furthermore, we showed that regions with a

high number of optimal connections are enriched with genes that

code for the fundamental architecture of neuronal communication.

Further discovery of these subtle but vital relationships will deepen

our understanding of how function emerges from optimal structure

and may help identify mechanisms associated with brain disease in

cases of suboptimal solutions.

4 | MATERIALS AND METHODS

4.1 | Data

Data were downloaded from the Human Connectome Project (HCP)

website: http://www.humanconnectome.org/ (Van Essen et al., 2013)

Structural and functional magnetic resonance images from a total of

50 subjects between the ages of 22 and 35 were used in the analysis.

Demographics are in the Appendix.

4.2 | Individual parcellations

High-resolution T1-weighted scans were first segmented using

FreeSurfer's recon-all function (Fischl, Sereno, Tootell, & Dale, 1999).

These were parcellated using the Lausanne 2008 atlas (Hagmann

et al., 2008) into two different resolutions of 234 or 129 regions of

interest (ROIs) using the easy_lausanne software with settings

corresponding to each resolution (http://github.com/mattcieslak/

easy_lausanne). The parcellated structural images were then aligned

to each individual's diffusion and fMRI images (Cammoun et al., 2012;

Daducci et al., 2012). The obtained x, y, z coordinates for the center

of mass of each ROI in each individual were utilized in the Nash Equi-

librium Network game model construction described in the “Nash

equilibrium Network game model (NNG)” section.

4.3 | Structural and functional connectivity

Real structural connections were defined using High Angular Resolution

Diffusion Imaging (HARDI). Preprocessing was conducted as part of the

HCP pipeline and included eddy current andmotion corrections, gradient

non-linearity correction, and transformation to native structural space

(Sotiropoulos et al., 2013). The diffusion tensors were reconstructed in

DSI-studio (http://dsi-studio.labsolver.org) using generalized q-sampling

imaging (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2013).

Using each individual's Lausanne parcellation ROIs and GFA values

obtained from a deterministic fiber-tracking algorithm, we created a

2238 PAPPAS ET AL.

http://www.humanconnectome.org/
http://github.com/mattcieslak/easy_lausanne
http://github.com/mattcieslak/easy_lausanne
http://dsi-studio.labsolver.org


234 × 234 or 129 × 129 connectivity matrix depending on the resolu-

tion of the parcellation used. Each entry (i, j) contained either a positive

number between 0 and 1 corresponding to the GFA when a nonzero

GFA between each pair of brain regions was obtained or a 0 when a zero

GFA value was obtained. The number of streamlines between each pair

of regions was also obtained. For resting-state functional connectivity,

whole-brain echo-planar imaging was acquired with a 32-channel head

coil using a 3 T Siemens Skyra scanner, modified for use in the HCP. The

HCP minimal preprocessing pipeline was used to preprocess functional

data. This included artifact removal, motion correction, registration

to the structural T1-weighted scans, and nonlinear registration into

MNI152 space (Glasser et al., 2013). Connectivity analysiswas performed

using the Conn functional connectivity toolbox (Whitfield-Gabrieli &

Nieto-Castanon, 2012). Functional images were highpass filtered at

0.009 Hz to remove low-frequency drifts due to scanner noise. Physio-

logical noise was removed by using the anatomical CompCor (aCompCor)

technique (Behzadi, Restom, Liau, & Liu, 2007). Motion related noise and

linear drifts were also removed. Following preprocessing we computed

temporal correlations between each region's BOLD signal in the Lausanne

parcellation, resulting in 234 x 234 or 129 x 129 functional connectivity

matrices for each individual. A 2back working memory task was acquired

with similar parameters. Task-specific time series and functional connec-

tivity matrices were obtained using the Conn toolbox after concatenating

the functional data corresponding to each task condition. Details are in

the Appendix.

4.4 | Nash equilibrium network game model

The NNG model is derived from the Nash equilibrium between all the

network nodes' optimal navigation vectors coming from maximizing

navigability while maintaining a minimum number of edges as in

Gulyás et al. (Gulyás et al., 2016). For a node u, navigability refers to

the ability to make a path from u to any target simply by progressing

to the next node closest to the desired target that is, the ability of

making a greedy path between u and the target. Formally in an N-

node graph, the navigation vector of a node u ∈ V = {1, …N} consists

of creating connections to the rest of the nodes; this is formulated as

a navigation vector su = (s0, s1, …, sN − 1) while G(s) is the resulting

graph. The objective function can be defined as cu =
P

{8v 6¼ u}pG(s)(u, v)

+ j suj where pG(s)(u, v) is the navigability term. Specifically pG(s)(u, v) is

0 if G(s) contains a greedy (choosing neighboring nodes sequentially as

intermediate steps) path from u to v and infinity otherwise. The term

jsuj represents the number of connections. Each node's u optimal navi-

gation vector is the one that minimizes the function cu that is, maximiz-

ing navigability and minimizing wiring cost.

We provide more information as to how the optimal navigation

vector of each node was calculated. For nodes u and v ∈ V if dist(p1,

p2) is defined as the Euclidean distance using the x, y, z coordinates of

each node/ROI (as described in the “Individual parcellations” section),

then Suv = wf jdist v,wð Þ< dist u,wð Þg represents the set of nodes w to

which one can navigate to from starting from u and using node v as a

greedy next hop. Given this, the problem of finding the optimal

navigation vector for a node u that would minimize cu is summarized

as follows. First, node u is associated with a collection of sets Suv , each

one corresponding to the rest of the nodes v∈V\{u} that u is poten-

tially going to connect to. These represent all the (target) nodes that

information from u can reach using the v nodes as next greedy hops.

In turn, the optimal navigation vector of node u consists of con-

structing edges to those nodes v0 such that their Suv0 sets belong to the

minimum cover set of the sets Suv . For a collection of sets, the mini-

mum cover set problem refers to selecting the minimum number of

sets such that their union includes all the elements appearing in the

collection of sets. Thus the minimum cover set will select the mini-

mum number of nodes v that u can be connected to while information

can still be navigated to all target nodes. This corresponds to the opti-

mal navigation vector of node u. If this process is repeated indepen-

dently for all nodes u∈V, it can be proved that the resulting network

is the Nash equilibrium of all the nodes' strategies and is characterized

by maximum navigability with minimum number of edges (Gulyás

et al., 2016). From a computational perspective, for each ROI u we

extracted its optimal navigation vector by coding the minimum cover

set problem defined previously and solving it using the glpk library

(https://www.gnu.org/software/glpk). This was repeated for all ROIs

of each individual resulting in a subject-specific NNG model. Instead

of the Euclidean distance dist(p1, p2), the geodesic distance (the

shortest path along the cortical surface) was also used in order to find

subject-specific NNG models. More information is provided in the

Appendix.

4.5 | Structure-to-function prediction algorithm

For each subject j, for each pair of structural and functional connectivity

matrices Sj and Fj of dimensions n x n we used a methodology as

described in Becker et al. (Becker et al., 2018) to assess the ability of

structural connectivity to predict functional connectivity. The first step

consisted of writing the predicted functional connectivity matrix as

F
z}|{

j =R
Xk
r =0

arS
r
j

 !
RT

The term
Pk
r =0

arS
r
j

� �
represented a weighted sum of powers of

Sj up to order k (polynomial transformation of order k) and the rotation

matrix R was used to transform the eigenvectors of the matrix Sj in

order to align to those of Fj. In the second step we solved the optimi-

zation problem by finding best approximation F
z}|{

j that fits the origi-

nal matrix Fj, that is, we solved the problem

min
arf gkr =0,R

F
z}|{

j −Fj

���� ����= R
Xk
r =0

arS
r
j

 !
RT−Fj

�����
�����,RTR=RRT = In,detR= 1

where k.k stands for the Frobenius norm, In is the all-ones diago-

nal matrix of dimension n and det stands for the determinant of the

matrix. The constraints guarantee that the matrix R is a rotation

matrix. Details are in Appendix. We quantified the goodness-of-fit
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between the predicted F
z}|{

j and the real Fj functional connectivity

matrices using two methods. First we used correlation of the upper

triangular entries obtained from the real matrix with those entries

obtained from the predicted matrix. Second we used a homology-

based evaluation (Liang & Wang, 2017). This evaluation was based on

comparing the number of connected components of the real and

predicted functional connectivity matrices at different edge density

levels λ (Betti numbers β0(λ) and ^β0 λð Þ , respectively). Here edge den-

sity referred to the percentage of correlation entries in the connectiv-

ity matrix. Therefore, zero density implied an empty matrix whereas

the density of 1 indicated the existence of all correlation values in the

matrix. SSEβ was used to evaluate the goodness-of-fit for the predic-

tion. This was formulated as

SSEβ =
1
n2

ð1
0
ðβ0 λð Þ− dβ0 λð ÞÞ2 dλ

where the integral spanned all edge densities from 0 (no correlation

entries existing) to 1 (all correlation entries existing) and n is the

dimension of the matrix. Practically, the smaller the score the better

the fit of the predicted matrix to the real matrix as the number of dif-

ferent connected components is smaller.

Given this framework, we used optimal (NNG model), nonoptimal

connections, and the entire structural connectome in place of Sj and we

obtained predicted functional connectivity matrices as above for each of

the three cases.We then quantified the goodness of prediction using the

two methods mentioned and compared the predictabilities between the

three cases.More information is provided in the Appendix.

4.6 | Controlling for distance

We conducted an additional analysis to control for the effect of dis-

tance in predicting functional connectivity. First we adopted a model

for generating synthetic structural networks by penalizing the probabil-

ity of a connection between pairs of regions u and v based on their dis-

tance that is, P(u, v) = dist(u, v)−η where η is a parameter that regulates

whether short or long range connections will be constructed and E is

the Euclidean distance between u and v (Betzel et al., 2016). We fit

generative models to the connectomes of individual participants follow-

ing this procedure. Starting with an initial set of parameters η a set of

synthetic networks was calculated using the previous distance rule. In

turn, the parameter space was partitioned according to a Voronoi tes-

sellation (Betzel et al., 2016). The energy of each Voronoi cell was cal-

culated as the Kolmogorov–Smirnov distance between the real

structural network and the corresponding synthetic networks. Cells

were then chosen with probability inversely proportional to their

energy, meaning that we chose cells with parameters that would give

synthetic networks with a better fit. Next, new parameters were cho-

sen from the selected cells and new synthetic networks were calcu-

lated. The above process was repeated twice in order to get a better fit

between the distance model networks and the individual structural net-

works. Eventually, the synthetic network with the best fit was chosen

for consequent analysis. Predicting functional connectivity matrices

was conducted using these synthetic networks and this was compared

to the predictability of the NNG models. Details are in Appendix.

To ensure that the comparison in the predictability between

synthetic and NNG models was not driven but additional spurious

distance correlates, we regressed out Euclidean distance from the

predicted functional connectivity matrices func_pred in both models.

For each subject we calculated the Euclidean matrix dist(i, j) where

each entry represented the Euclidean distance between regions i and

j. Then func_new_pred = (func_pred − dist * (pinv(dist) * func_pred)) was

calculated where pinv is the pseudoinverse function. Finally, we rec-

alculated the similarity between func_new_pred and the actual func-

tional connectivity matrices for the synthetic and NNG models and

treated this as the predictability number of each one of these models.

4.7 | Gene expression samples and processing

The Allen Human Brain Atlas is a publicly available online resource of

microarray-based gene expression profiles for a set of predefined ana-

tomical brain regions from the Allen Institute for Brain Science (AIBS)

(Hawrylycz et al., 2012). The atlas is based on postmortem tissue from

six donorswith no known history of neurological or neuropsychiatric dis-

ease, who also passed a set of serology, toxicology, and RNA quality

screens. Because only two donors had coverage in both hemispheres,

we restricted our analysis to these two post mortem brains. We spatially

matched the centroids of each region of the 234 Lausanne parcellation

to the coordinates of the samples from the AIBS for each of the two

donors. To do so, we converted the latter to voxel space and we over-

lapped their locations with the masks obtained from each region of the

parcellation. A total of 81 regions did not match sample locations in

either one of the two post mortem brains and thus were left out from

the analysis to ensure robustness. As the raw expression data contained

multiple probes belonging to the same gene or included unidentified

gene symbols, we used the gene list as presented in Whitaker et al.

(Whitaker et al., 2016). For the remaining regions, expression data were

averaged across all samples from all donors across both hemispheres. To

relate optimality to gene expression data, we calculated the optimal

minus nonoptimal degrees for each node (RO) and we averaged across

50 individuals. We then used a Partial Least Squares-PLS analysis to

explain the variance in the optimal minus nonoptimal degree. PLS uses

linear combinations of the gene expression scores (components) that

predict the covariance between regional optimality and genes the most

(Hastie, Tibishirani, & Friedman, 2001). We used gene enrichment analy-

sis and visualization tools to identify significant gene ontology terms in

the genes derived by the PLS component that explained the variance the

most. Details are in Appendix.

4.8 | Statistics

Statistical parameters including the definitions and exact values of sam-

ple size are reported in the main text, the figures and their
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corresponding legends. Prediction accuracies were compared using

one-way ANOVAs with one repeated (optimal, nonoptimal, whole-brain

connections) measure. Data were checked for normality using the

Kolmogorov–Smirnov test before applying ANOVA. The obtained P

values were corrected for violations of sphericity using a Greenhouse–

Geisser correction. Post hoc tests were corrected for multiple compari-

sons using the Bonferroni test. For comparison of the predictive ability

of the NNG to other connections and models, two sample t-tests were

applied. For comparison of the predictive ability of the NNG during task

to the one during resting-state, paired t-tests were used. PLS analysis

was computed using the plsregress function in MATLAB (The

MathWorks, Inc., Natick, MA) with a 10-fold validation setting. The p-

value was calculated by contrasting the variance explained in the

predicted variable against a null model consisting of 1,000 permutations

of the label assignment between the gene and RO data (Details are in

Appendix).
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