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Abstract: Over the past few decades, many pathogenic bacteria have become resistant to existing
antibiotics, which has become a threat to infectious disease control worldwide. Hence, there has
been an extensive search for new, efficient, and alternative sources of antimicrobial agents to combat
multidrug-resistant pathogenic microorganisms. Numerous studies have reported the potential
of both essential oils and metal/metal oxide nanocomposites with broad spectra of bioactivities
including antioxidant, anticancer, and antimicrobial attributes. However, only monometallic
nanoparticles combined with essential oils have been reported on so far with limited data. Bi- and
tri-metallic nanoparticles have attracted immense attention because of their diverse sizes, shapes,
high surface-to-volume ratios, activities, physical and chemical stability, and greater degree of
selectivity. Combination therapy is currently blooming and represents a potential area that requires
greater attention and is worthy of future investigations. This review summarizes the synergistic
effects of essential oils with other antimicrobial combinations such as mono-, bi-, and tri-metallic
nanocomposites. Thus, the various aspects of this comprehensive review may prove useful in the
development of new and alternative therapeutics against antibiotic resistant pathogens in the future.

Keywords: essential oil; bi-metallic nanoparticles; tri-metallic nanoparticles; synergistic effect;
antimicrobial activities; multidrug-resistant pathogens

1. Introduction

Infectious diseases and foodborne illnesses are the leading cause of severe health problems
worldwide and can even lead to death. Antibiotics and other antimicrobial agents are the major
strategies used to combat pathogenic bacteria in human medicine [1]. However, inappropriate
over prescription and irrational use of antibiotics in the treatment of infectious diseases has led to
favorable conditions, exposure, and spread of resistant strains of different pathogens [2]. These
negative health trends require urgent attention from scientific institutions and pharmaceutical
researchers to develop novel therapeutics with different strategies for the prevention and treatment of
infectious diseases [3]. Infectious diseases resulting from multidrug-resistant bacteria have become
abundant, especially vancomycin-resistant enterococci, methicillin-resistant Staphylococcus aureus,
penicillin-resistant Streptococcus pneumoniae, ceftazidime-resistant Klebsiella pneumonia and Escherichia
coli, and Pseudomonas aeruginosa resistant to fluoroquinolones [4]. In addition, various types of
foodborne pathogens associated with Gram-positive and Gram-negative bacteria such as Bacillus cereus,
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E. coli, Listeria monocytogenes, Salmonella enteritidis, and S. aureus present a major threat to public health
and safety [5]. Owing to these problems, there has been renewed interest in alternative research for
more effective, less toxic antimicrobial agents among natural bioactive compounds, which are found in
aromatic plants, and have been used in cosmetics, aromatherapy, and folk medicine for many years,
such as essential oils and plant extracts [6]. Traditionally, medicinal and aromatic plants have received
significant attention for the treatment of human diseases because of their pharmacological activities,
low toxicity, and economic viability [7]. The presence of active phytochemicals or bioactive compounds
and their secondary metabolites, or essential oils in plants play an important role against the problem
of antibiotic resistance in bacteria. Some of these alternative antimicrobial therapies may reduce the
further spread and development of resistance in these pathogens.

Essential oils (EOs) are natural mixtures of volatile secondary metabolites extracted from different
parts of plants, such as the flowers, buds, seeds, leaves, twigs, bark, herbs, wood, fruits, and roots [8].
EOs may have received their name because they were the essence of odor and flavor or at one time, they
were considered essential to life processes. The most common chemical constituents of EOs include
phenols, polyphenols, flavonols, tannins, quinones, terpenoids, flavonoids, flavones, coumarins,
alkaloids, lectins, and polypeptides that exhibit potential biological activities such as anti-inflammatory,
antioxidant, insecticidal, anti-allergic, antiseptic, antiviral, anti-parasitic, anticancer, and antimicrobial
properties [9]. In addition, many plants’ EOs are useful as aroma in aromatherapy, flavor in food
and its additives, and enhancers in cosmetics, soaps, plastics, resins, and perfumes [10]. EOs are
obtained through various methods such as vacuum distillation, fermentation, solvent extraction,
simultaneous distillation, microwave-assisted extraction, supercritical fluid extraction, microwave
hydrodistillation, steam distillation, and static, dynamic, and high-concentration capacity headspace
sampling methods [11]. The EOs obtained contain a complex mixture of 20–60 bioactive compounds at
different concentrations. The yield can vary between different bioactive compounds and may differ
among different plant species and plant parts depending on chemically derived compounds such as
aromatic, aliphatic, and phenolic acids, and terpenes [12]. The differences in the chemical composition
of EOs are due to exogenous and endogenous factors, which may lead to chemotypes or ecotypes. The
exogenous factors depend on environmental factors such as light, temperature, weather conditions,
precipitation, growing site, and soil. The endogenous factors are associated with anatomical and
physiological characteristics of the plants like chemical variation and genetically related factors [13,14].

EOs contain various components which have been screened for their antimicrobial activities.
Among these, terpenes—such as carvacrol, geraniol, menthol, and thymol—have higher antimicrobial
properties. Compared to the individual components, the whole or multicomponent EOs appear to have
greater antibacterial activity. However, each single chemical component in EOs plays an important
role, such as in the density, fragrance, color, texture, cell penetration ability, fixation on cell walls, and
bioavailability. Therefore, it is assumed that the other molecules present in EOs regulate the function of
the main components to enhance synergistic effects [15]. Thus, the combination of antimicrobials with
other antimicrobial agents provides many benefits, including higher biological activity, and reduces
the adverse effects and toxicity of the combined components. In synergistic activity, one antimicrobial
agent enhances the activity of the other, and finally they may act together more effectively [16]. This
could be a new approach to solving the problem of bacterial resistance and reduced susceptibility.
Most importantly, association of other antimicrobial agents with EOs targeting resistant bacteria
may have different mechanisms of action, and it may lead to new choices to overcome the assault
of microbial resistance. Various in vitro studies have confirmed the antimicrobial activities of some
essential/volatile oils, plant extracts, and antibiotics against different microorganisms using different
methods, and the synergistic effects of EOs/EOs, plant extract/plant extract, plant extract/EOs, plant
extract/conventional antibiotics, and phytochemical/antibiotics [16], with a significant reduction in
minimum inhibitory concentration.

Nanotechnology has proved to be a powerful tool for solving various biomedical and technological
problems using its predefined structures. This field provides the power of transforming the structures
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of atoms or molecules into desired geometry and properties. It has both health and environmental
applications, which includes effective drug delivery, cancer treatment, food packaging, harvesting
solar energy, and water purification, and reduces the use of industrial chemicals, thereby making
the environment healthier and safer [17]. Over the past few decades, many metal and metal oxide
nanoparticles (NPs) have been studied extensively due to their distinctive properties, and their potential
applications in various fields such as biomedical, biosensors, catalysis, electronics, optoelectronics,
information storage, and surface-enhanced Raman spectroscopy (SERS) [18]. As the name indicates,
monometallic NPs contain a single metal, which can be prepared either by biological or chemical
methods whereas bi- and tri-metallic NPs are formed by the combination of two or more metals, which
exhibit fascinating properties. Compared to monometallic NPs, bi- and tri-metallic NPs have drawn
greater interest because of their importance in optical, electrical, and catalytic applications in various
fields [19]. Transition bi- and tri-metallic NPs are used as catalysts in many organic reactions and
show higher catalytic activities compared to monometallic NPs [20–23]. Bi-metallic NPs such as FePd,
AuPd, PtPd, and CuPd [24–27], and tri-metallic NPs such as AuFeAg and FeAgPt [19,23] are used
as heterogeneous catalysts with excellent selectivity and activity compared to monometallic NPs. It
has been proven that it is possible to tune the shape, size, and properties of NPs as heterodimers [28],
nano-alloys [23], and core–shell [29] for further catalytic applications. However, only monometallic
NPs along with EOs have so far been reported to have limited data to target resistant bacteria.

This review highlights the most recent literature on EOs, with special focus on mono, bi-and
tri-metallic NPs, along with their antimicrobial potential. We have discussed the extraction methods,
chemical composition, antimicrobial effects of EOs, nano-encapsulation of EOs, and their synergistic
effects on infection resistant pathogens. Potential effects and antimicrobial activities of mono-, bi-, and
tri-metallic NPs will also be discussed. Additionally, the future prospects of the synergistic effects of
EOs and bi- and tri-metallic NPs have also been discussed herein. Some important and widely used
medicinal plants act as antimicrobial activities are depicted in Figure 1.

Figure 1. Widely used medicinal plants with high antimicrobial activities against human pathogens.

2. Methods of Extraction of Essential Oils

EOs can be extracted from different parts of plants using several methods with appropriate
solvents and techniques. Based on the characteristics of different plant materials, some specific
extraction techniques are used for extracting the volatile fraction from aromatic plants. The techniques
include solvent extraction, solvent flavor evaporation, Soxhlet extraction, maceration, CO2 extraction,
hydrodistillation, steam distillation, dry distillation, mechanical cold pressing, microwave-assisted
extraction, supercritical fluid extraction, simultaneous distillation extraction, vacuum distillation,
solid-phase microextraction, direct thermal desorption, dynamic headspace, static headspace, and
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high-concentration capacity headspace sampling [30,31]. The yield and success of extraction depends
on the type and length of extraction period, solvent, climate, the plant organ, age, temperature, pH, soil
composition, and vegetative cycle stage [32–35]. Generally, dried plant material and water are used as
a solvent for the extraction of EOs. However, some components of EOs are not soluble in water due to
low polarity, therefore, to increase the polarity, organic solvents may be used, such as acetone, ether,
petroleum ether, ethanol, chloroform, hexane, and ethyl acetate [36,37]. EOs produced using organic
solvents are not considered by the National Cancer Institute as the oil residues can alter the quality of
the EOs and lead to impurity [38].

Modern methods such as supercritical fluid extraction and microwave-assisted extraction were
achieved at the laboratory scale, but they are intuitively difficult to expect a reliable scale-up. Solvent
extraction is one of the most convenient and frequently used method to extract bioactive compounds
from plant materials. Solvent extraction method is a simple and efficient method used to separate a
compound into its components based on the solubility of the components when it is mixed with a
solvent. It is important to choose a good solvent since a residue of the solvent could be present in
the final product due to its polarity, viscosity, and vapor pressure. High solvent requirement, long
extraction period, and unsatisfactory reproducibility are some few disadvantages of this method [39,40].

Hydrodistillation is a simple and traditional method for extracting EOs from plant samples and
is further classified into the subcategories of water distillation, steam distillation, and direct steam
distillation [41]. In this method, samples are packed into a still compartment, sufficient quantity of
water is added, and the mixture is boiled by applying mild heat (water distillation); alternatively, live
steam (steam distillation) followed by direct steam (direct steam distillation) can also be injected into
the plant material. Hot water and steam act as the main influential factors that liberate EOs from the
plant tissues. The vapor, which is a mixture of water and oil, is condensed with cooling water. The
condensed mixture flows from the condenser to a separator, where the bioactive compounds and oils
are separated from the water [42].

Soxhlet extraction is a common conventional method that involves solid–liquid contact for
extracting several compounds. This extraction method uses chemical solvents to extract oils; the
solvent is heated in a distillation flask and the resulting vapor is condensed. The condensed solvent
from the condenser flows into the thimble that contains the sample. When the solution reaches an
overflow, a siphon pulls the solution in the thimble back into the distillation flask, thus carrying
dissolved solute into the bulk liquid [39,43]. This procedure should be repeated by washing with an
organic solvent until extraction is completed.

Maceration is the simplest process of extraction; the whole or coarsely powdered sample is mixed
with solvent and left to macerate for a known period with frequent agitations at room temperature.
After maceration, the sample mixture is pressed and filtered through an appropriate filter [39]. Cold
pressing method is one of the best methods used to extract oils. In this method, the whole plant is
pressed at low temperature and pressure to squeeze the material from the pulp to release the EO.
Supercritical fluid extraction is the process of separation of bioactive components using CO2 as an
ideal solvent. This technique requires low pressure, moderate temperature, and CO2 as solvent for a
wide variety of applications such as EO and metal cation extraction. CO2 is non-toxic, non-explosive,
noncorrosive, readily available, safe, inexpensive, and easily eliminated from the extract [44,45].

Ultrasound-assisted extraction provides a cutting edge with higher yields, superior quality, clean
process, and less energy. Sonication process was carried out as a solvent- or water-based method
to penetrate into the plant cells via bubble implosion generated by ultrasonic cavitation [46]. The
bubble implosion creates micro-jets, which pulverize the lipid glands in the plant cell tissue and the
process prevents the degradation of extracts [47]. Microwave-assisted extraction technique is more
efficient and bio-sustainable, and is an alternative to conventional heating because it reduces extraction
time, costs, energy, solvent consumption, and CO2 emissions [48,49]. In this method, plant materials
are dispersed in solvents, and the mixture exposed to microwaves, then the interaction between the
microwave irradiation and solvent releases the EOs [50]. Infusion and decoction are the popular
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traditional methods for the preparation of aqueous extracts with cold or boiling water for a fixed time
duration [51]. Some different plant EOs and its extraction methods are summarized in Table 1.

Table 1. Various extraction methods for different essential oils

Common Name Scientific Name Plant Parts Extraction Method References

Rosemary Rosmarinus officinalis Leaves Hydrodistillation [52]

Pu-erh ripe tea Camellia sinensis Leaves Soxhlet extraction [53]

Chokeberry Aronia melanocarpa Fruits Maceration [54]

Lemon Citrus limon Fruits Cold pressing [55]

Lavandin Lavandula angustifolia Flowers Supercritical fluid [56]

Lavender Lavandula angustifolia Flowers Ultrasound-assisted [57]

Black cumin Nigella sativa Seeds Microwave-assisted [58]

Oregano Origanum vulgare Leaves Infusion and decoction [59]

3. Chemical Composition of Essential Oils

The chemical composition of EOs are attributed to various factors, e.g., plant species, climatic
conditions, soil type, temperature, humidity, ecotype, phenophase, photoperiod, irradiance, genotype,
harvesting seasons, age of leaves, agronomic conditions, geographic region, and extraction
process [60–62]. EOs are complex mixtures of aromatic and volatile compounds with many single
compounds, but the number can vary in different plant materials. Most EOs are composed of aromatic,
aliphatic constituents; terpenes, terpenoids with low molecular weights; lipophilic, highly volatile,
secondary plant metabolites; mono- and sesquiterpenes; and allyl and isoallyl phenols. Terpenes
are formed by condensation of two or more isoprene units represented by the chemical formula
(C5H8)n through the mevalonic acid pathway, which occurs in the cytoplasm of the cell [63]. Based
on the number of carbon atoms present in the structure, terpenes are classified as mono-, sesqui-,
di-, ses-, tri-, and tetra-terpenes (carotenoids), and alternative hemi-terpenes. Many terpenes are
hydrocarbons, but alcohols, aldehydes, or ketones are oxygen-containing compounds and these
terpenes are known as terpenoids. Monoterpenes are the most delegate structures composed of two
isoprene units covering a wide range of oxidation states like monocyclic, bicyclic, and acyclic forms,
and organic functional groups including hydrocarbons (myrcene, camphene, α-pinene, α-terpinene,
and p-cimene) and alcohols (menthol, nerol, borneol, and linalool). There are other functional groups
like aldehydes (geranial and citronellal), esters (citronellyl acetate, linalyl acetate, and menthyl), ketones
(camphor, pulegone, and carvone), peroxides (ascaridole), phenols (carvacrol and thymol), and ethers
(1,8-cineole and menthofurane), which are also main constituents of EOs [64]. Sesquiterpenes are
major types of terpenes formed from the combination of three isoprene units. Sesquiterpenes provide
the spicy note, and are unsaturated compounds, which include hydrocarbons (azulene, β-bisabolene,
cadinenes, germacrene D, humulene, farnesenes, zingiberene, and β-caryophyllene), oxygenated
sesquiterpenes (caryophyllene oxide, spathulenol, and nerolidol), alcohols (patchoulol, bisabolol,
β-nerolidol, farnesol, β-santalol, and patchoulol), acids (benzoic acid and geranic acid), aldehydes
(citral), ketones (germacrone, benzophenone, acetophenone, β-vetinone, and turmerones), epoxides
(caryophyllene oxide and humulene epoxides), and lactones (bergapten) [65,66].

Some different kinds of organic compounds—such as sterols [67], alkaloids [68], tannins [69],
and flavonoids [70]—are also present in EOs. Aromatic compounds occur as relatively small part
of EOs when compared to terpenes. They contain alcohol (cinnamyl alcohol); benzene (styrene);
aldehydes (cynnamaldehyde); phenols (chavicol, eugenol, vaniline, and cinnamaldehyde); methoxy
compounds (methyleugenol, elemicine, estragole, and anethole), and methylene dioxy derivatives
(safrole, myristine, and apiole) [71]. The other compounds like nitrogen and sulfur-containing
compounds are also present as aglycones or glucosinolates in EOs [72]. The sulfur-containing
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compounds—namely dimethyl sulfide, allyl sulfide, diallyl sulfide, and dimethylthiophene—are
mainly responsible for the characteristic odor and taste [73]. Nitrogen-containing compounds like
indole, pyridine, methyl anthranilate, and pyrazine, are found in only a few EOs [74]. The major and
biologically important chemical constituents of EOs and its structures are depicted in Figure 2.

Figure 2. Major and biologically important bioactive constituents present in essential oils.

4. Antimicrobial Effects of Essential Oils

At present, many new antimicrobial agents or antibiotics have been developed from various
sources for treating different microbial pathogens. However, the increased use of antibiotics has
resulted in the emergence of multidrug resistance bacteria, which has led to the severity of diseases
caused by bacterial pathogens. Some of the main multidrug resistance bacteria are E. coli, S. aureus,
P. aeruginosa, Enterococcus spp., Salmonella spp., and coagulase-negative Staphylococcus, and are included
in the category of community and hospital acquired pathogens, which affects public health [12].

Natural resources like plant extracts widely used as medicinal plants with high antimicrobial
activities against human pathogens (Figure 1). EOs and their major bioactive constituents are
potential candidates for antibacterial, antifungal, antiviral, antiseptic, antioxidant, anti-parasitic,
and insecticidal agents for promoting food preservation, and as alternatives for treating infectious
diseases (Figure 2) [75,76]. EOs exhibit wide-ranging inhibitory activities against various bacterial
pathogens [77] by easily penetrating the lipids of the bacterial cell membrane and disrupting their cell
wall structure [78]. Association of EOs constituents with lipids causes loss of integrity and cellular
contents, and finally leads to bacterial cell death [79]. Some of the constituents of EOs such as carvone,
a member of terpenoids, split in the lipid membrane, while terpinen-4-ol, an isomer of terpineol, prevent
cellular respiration, and both destroy the function of the cell membrane as a permeable barrier [80,81].
Several bioassays are well known and commonly used, such as well diffusion, disk-diffusion, and
agar dilution methods, but others such as bioluminescent and flow cytofluorometric methods are not
widely used because they require selected equipment [82].

The minimum inhibitory concentration (MIC) is the lowest concentration of antimicrobial agent
that completely inhibits growth of the organism in micro-dilution wells or tubes as detected by
the unaided eye [83]. However, the determination of minimum bactericidal concentration (MBC)
or minimum fungicidal concentration (MFC), also known as minimum lethal concentration (MLC),
is the most common estimation of bactericidal or fungicidal activity, which is defined as the lowest
concentration of antimicrobial agent needed to kill 99.9% of the final inoculum [84].
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The various bioactive components present in different EOs play an individual role; for instance,
the EOs of cinnamon and black pepper damaged the cell membrane and decreased the metabolic
activity of E. coli and S. aureus [85,86]. Similarly, EO from Dipterocarpus gracilis inhibited the growth of
P. mirabilis and B. cereus by infecting cytoplasmic membrane. The differences in antimicrobial activity of
EOs may be associated with the chemical constituents, geographical location, seasons, and extraction
methods [87]. Some important plants, which are the most-active EOs and their antimicrobial activity
against pathogenic microorganisms, are summarized in Table 2.

Table 2. Major chemical composition of various EOs and their antimicrobial activity against
pathogenic microorganisms

Plant Source Plant Part Major Chemical
Compounds Microorganisms References

Fortunella margarita Leaves Gurjunene, eudesmol,
muurolene

B. subtilis, S. aureus, Sarcina luta, S. faecalis,
E. coli, K. pneumonia, P. aeruginosa [88,89]

Eremanthus
erythropapps Leaves Germacrene D, p-cymene,

γ-terpinene S. epidermidis [90]

Euphrasia rostkoviana Commercial
EOs

n-Hexadecanoic acid,
thymol, myristic acid,

linalool

E. faecalis, E. coli,
K. pneumoniae, S. aureus, S. epidermidis,

P. aeruginosa
[91]

Pogostemon cablin Leaves Patchoulol H. pylori [92,93]

Plectranthus neochilus Leaves α-Pinene,
trans-caryophyllene S. mutans [94,95]

Ocimum basilicum Arial parts Linalool, methyl chavicol M. flavus [96,97]

Salvia sclarea Arial parts Linalool, linalyl acetate E. coli, S. aureus, B. subtilis, S. typhimurium,
K. pneumonia, P. Aeruginosa, B. pumilus [98]

Thymus kotschyanus Arial part Carvacrol, 1,8 cineole,
thymol, borneol

S. aureus, S. epidermidis,
B. cereus, E. coli [99,100]

Glechon marifolia Leaves β-Caryophyllene,
bicyclogermacrene herpes simplex virus type 1 [101]

Myrtus communis Leaves α-Pinene, 1,8-cineole C. albicans, A. flavus [102,103]

Origanum vulgare Leaves Carvacrol T. tonsurans, T. violaceum, T. floccosum,
T. mentagrophytes [104,105]

Syzygium aromaticum Leaves Eugenol, eugenylacetate C. albicans, Candida spp. [106,107]

Pelargonium graveolens Leaves Citronellol, geraniol C. tropicalis [108,109]

Trachyspermum ammi Leaves Thymol, α-pinene, Japanese encephalitis virus [110,111]

Lepechinia salviifolia Leaves Germacrene D Herpes simplex virus type 1 [112]

Lavandula x intermedia EOs Linalool, camphor and
1,8-cineole L. monocytogenes [113,114]

Thymus vulgaris Leaves Carvacrol M. furfur [115]

Mentha piperita L. Leaves Menthol C. albicans, C. tropicalis, P. anomala and
S. cerevisiae [116,117]

Melaleuca cajuputi Leaves 1,8-Cineole, linalool,
terpinen-4-ol Aspergillus spp. A. niger [118]

Cinnamomum
zeylanicum Bark Carvacrol Borrelia Burgdorferi [119,120]

Eugenia caryophyllata Clove buds Eugenol, β-caryophyllene S. aureus. [121]

E. loxophleba Leaves 1,8 Cineole S. aureus and E. coli [122]

Salvia officinalis L. Leaves 1,8-Cineole, α-thujone,
camphor B. subtillis and S. epidermidis [123,124]

Melaleuca alternifolia Leaves Terpinen-4-ol C. albicans [125,126]

Coriandrum sativum L. Fruits Linalool E. coli B. bronchiseptica [127,128]

B. dracunculifolia Leaves,
flowers Spathulenol, nerolidol, S. aureus, B. cereus, and

P. aeruginosa. [60]

Ocimum basilicum Arial parts Linalool C. albicans, S. aureus [129]

Rosmarinus officinalis Leaves 1,8-Cineole, camphor C. perfringens [130]

Epilobium parviflorum Arial parts Oenothein B, myricitrin E. fecalis, S.aureus [131]
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5. Antioxidant Activity of Essential Oils

Free radicals play an important role in origin of life and biological evolution, leaving beneficial
effects on the organisms and involved in many biochemical activities of cells such as signal transduction,
gene transcription, and regulation. The human body produces oxygen free radicals and other reactive
oxygen species (ROS) as byproducts through several physiological and biochemical processes. However,
over production of free radicals can cause oxidative damage to biomolecules leading to many chronic
diseases such as cancer, cardiovascular, diabetics, chronic inflammation, and atherosclerosis in humans.
Therefore, much attention has been focused on the use of antioxidants to inhibit lipid peroxidation
due to free radicals by using synthetics or natural antioxidants. Synthetic antioxidants such as
butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) are suspected to be harmful
to human health. On the other hand, natural products present in medicinal plants like EOs shows
significant antioxidants performance from different plant source. The EOs obtained from Zanthoxylum
alatum, Ammodaucus leucotrichus, Marrubium globosum, Citrus sinensis and Citrus latifolia, Lawsonia
inermis, Thymus fontanesii, Artemisia herba-alba and Rosmarinus officinalis, Syzygium aromaticum L.,
Origanum vulgare L., Mentha spicata L., and Eremanthus erythropappus M showed promising antioxidant
activity [132–137].

6. Potential Impacts of Bi-Metallic and Tri-Metallic Nanoparticles

Over the past decades, several mono-, bi- and tri-metallic NPs have drawn significant attention
due to their catalytic, optical, and magnetic properties in a wide array of fields such as catalysis,
medical, imaging, remote sensing, environmental, and energy applications. As the name suggests,
monometallic NPs are composed of only a single metal (Au, Pt, or Pd), whereas, bi- and tri-metallic NPs
are composed of two and three different metals (Au/Ag, Pt/Pd, Fe/Ag/Pt, and Au/Fe/Ag), respectively.
Bi- and tri-metallic NPs have tunable and better properties due to the addition of a second and
third metal of the nanoparticle combination, and can improve catalytic activity and selectivity when
compared to monometallic NPs [138]. The catalytic activity of the external metal (secondary metal)
may increase by the bi-metallization of NPs.

The properties of bimetallic NPs include electronic, catalytic, thermal, size, and shape, which may
differ from those of the monometallic NPs. In tri-metallic NPs, the addition of a third metal modifies
the electronic structure, reduces the lattice, and increases the charge shift, catalytic performance, and
selectivity when compared to monometallic and bimetallic NPs [139,140]. The preparation conditions
regulate the structure, size, and shape of the particles such as alloy, core–shell, and heterodimer
of two or more metals in bi- and tri-metallic NPs [23,28,29]. The catalytic performance of mono-,
bi-, and tri-metallic NPs was also investigated individually and in combination. However, in our
previous reports, bi- and tri-metallic NPs showed superior catalytic activity when compared with
monometallic NPs [23]. When one metal alloy is combined with other metals to form bi or tri-metallic
NPs, the catalytic properties of the consequent material become better when compared to pure metals.

Bi- and tri-metallic NPs contain a few tens to several thousand of atoms, which are excellent
catalysts, with improved selectivity and efficiency due to their highly active surfaces, and act as
green catalysts by recyclability [17]. Multi-metallic structures like bi- and tri-metallic NPs furnish
many active inter-metallic interfaces to change the electronic structure [141] and allow tuning of the
catalytic activity via composition ratios. So far, bi- and tri-metallic NPs interfaces are more active
because of fast electron interchange and the presence of crystal defects, which assures substantial
implementation [142]. Several different methods are used to prepare bi- and tri-metallic NPs in the
required size, composition, and shape, which influence the properties of the material, including
electrochemical reduction, microwave, microemulsion, co-precipitation, pyrolysis, hydrothermal,
selective catalytic reduction, sol–gel, solvothermal processes, and combustion [143–152].
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7. Antimicrobial Activities of Metallic Nanoparticles

Bacterial resistance has become a severe problem due to the substantial application of antibiotics
preferred for the treatment of infectious disease without proper medical indications. In order to solve
this problem, the use of alternative antibacterial agents to treat infectious diseases have attracted great
interest, due to their heat resistance, sustainability, and improved stability under harsh processing
conditions. Due to their smaller dimensions and large surface area to volume ratios, metallic NPs
provide strong, targeted, and extended antimicrobial interaction with bacteria and biofilms at smaller
doses. In the last few decades, new and novel antimicrobial agents—such as metallic NPs and
macromolecules—have been found to be the most effective agents to combat pathogenic bacteria.

Some metal NPs such as silver (Ag), gold (Au), gallium (Ga), copper (Cu), zinc (Zn), iron (Fe),
and palladium (Pd) have potential antimicrobial activities. Metal oxide NPs like aluminum oxide
(Al2O3), iron oxide (Fe3O4), titanium dioxide (TiO2), copper oxide (CuO), zinc oxide (ZnO), cobalt
oxide (Co3O4), manganese oxide (Mn2O3), magnesium oxide (MgO), indium oxide (In2O3), silicon
dioxide (SiO2), nickel oxide (Ni2O3), zirconium dioxide (ZrO2), and chromium oxide (Cr2O3) have
also shown potential antimicrobial activities (Table 3). Metal and metal oxide-based NPs damage the
cell membrane by binding and releasing metallic ions into proteins and enzymes of the bacterial cell
wall. NPs can attack the bacterial cell wall through several modes of action like electrostatic attraction,
van der Waals forces, and hydrophobic interactions [153–155]. However, different types of NPs have
different mechanisms to combat bacteria by forming pores on the surface of bacterial cell membrane,
which in turn causes radical formation, generates reactive oxygen species, inhibits enzyme activity,
deactivates proteins and DNA, induces oxidative stress, and modifies gene expression levels [156,157].

Table 3. Antimicrobial activity of mono, bi-, and tri-metallic and metal oxide nanoparticles, specifically
highlighting size, shape, bacterial strains tested, and mode of action

NPs Size and Shape Bacteria Pathogens Mode of Action Ref.

Ag 15 nm, triangular P. aeruginosa and E. coli Deactivation of enzymes and cellular proteins [158]

23 nm, S. typhimurium Interaction of NPs with membrane proteins [159]

20 nm, triangular E. coli and S. aureus Destruction of outer and inner membrane [160]

7.1 nm, spherical E. coli and P. aeruginosa Permeabilized membrane [161]

25 nm, spherical S. aureus, and E. coli Structural changes in the cell wall and nuclear
membrane [162]

Au 10 nm, spherical S. aureus and P. aeruginosa Disruption of cell membrane [163]

20 nm, spherical S. pneumoniae Disruption of cell membrane [164]

1-3 nm, spherical E. coli, P. aeruginosa, S. epidermidis and
B. subtilis

Interaction between NPs and bacteria could
induce a metabolic imbalance [165]

50 nm, spherical S. oneidensis Interaction of NPs with membrane proteins [166]

Ga 305 nm, rod M. smegmatis and HIV Disruption of cell membrane [167]

Ag/Au 30 nm, triangular, B. subtilis, E. coli, S. typhi, and S. aureus Interaction between NPs and vital components
leads to enzyme inactivation [168]

Cu/Pt 30 nm, spherical E. coli, S. aureus, P. aeruginosa, and
C. albicans Permeabilized membrane [169]

Al/Ag 200 nm, spherical E. coli, and S. aureus Adsorption and inactivation of bacterial strains [170]

Fe/Cu 68 and 82 nm,
spherical S. aureus, and P. aeruginosa Structural changes in the cell wall and nuclear

membrane [171]

Cu/Cr/Ni 100 and 200 nm,
plate E. coli and S. aureus Rupture of the membrane and denaturation of

bacterial proteins [172]

Cu/Zn/Fe 42 nm, spherical E. coli and E. faecalis. Disruption of cell membrane [173]

Au/Pt/Ag 20-40 nm, spherical,
triangle, ellipsoidal

E. coli, S. typhi, Klebsiella, E. coli and, and
E. faecalis

Interaction with the cell components such as
DNA and enzymes [174]

ZnO 20 nm, spherical S. typhimurium, and S. aureus Cell wall damage [175]

CuO 198 nm, B. cereus, P. mirabilis and A. caviae Loss of membrane integrity and increased
permeability [176]

MgO 24 nm, S. epidermidis Disruption of cell membrane [177]

TiO2 50 nm P. fluorescens and E. coli Destruction of membrane, DNA and proteins [178]
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Higher prevention of bacteria is attained by a large surface area-to-mass ratio, zeta potential,
surface morphology, crystal structure, smaller and tunable size and shape of particles, which allows
close interaction with microbial membranes. Moreover, other factors that influence antibacterial effects
of nanoparticles include bacterial strain, environmental conditions, and the exposure time. Metal
and metal oxide nanoparticles were studied for their well-known antimicrobial activities against
Gram-positive bacteria like S. aureus and B. subtilis, and Gram-negative bacteria like P. aeruginosa and
E. coli including antibiotic-resistant strains. In particular, silver NPs alone or in combination with other
nanomaterials have great potential antimicrobial activities owing to their unique chemical stability,
catalytic activity, and better contact with microorganisms. Similarly, gold NPs also exhibit significant
effects of antimicrobial activity but the chemicals used as precursor are expensive. In addition, metal
oxide nanoparticles—such as ZnO, CuO, TiO2, Al2O3, and Fe2O3—have also demonstrated significant
effects of antimicrobial activities against both Gram-positive and Gram-negative bacteria.

8. Efficiency of Nano-Encapsulated Essential Oils

It is well known that EOs have shown excellent antimicrobial activity against pathogenic
microorganisms. However, their utilization is very limited because of low water solubility and their
high sensitivity to oxygen, moisture, heat, and light. To increase their stability, water solubility,
and protect EOs from degradation, many modification technologies have emerged as solutions to
these existing challenges. Encapsulation of essential oils into nano-based delivery systems such
as nanoemulsions, microemulsions, solid-lipid nanoparticles, and liposomes are models for the
encapsulation of natural bioactive compounds to improve antimicrobial activities. Currently, the
application of nanoencapsulation technology has increased rapidly in the food industry, especially in the
EOs industry due to its interesting parameters such as size, zeta potential, and the polydispersity index.

Nanoemulsions are colloidal dispersions consisting of two immiscible solvents, oil (globules)
and water (liquid), in which one is dispersed in the other with the help of a surfactant that stabilizes
emulsions. Surfactants are required to formulate nanoemulsions and decrease the size of the droplet
and increment the inflexibility and quality of interfacial layer. The combination of Span 20 with Tween
40 was seen to be sophisticated by delivering ideal mineral oil emulsions. For instance, the clove,
cinnamon, and thyme oil nanoemulsions which were formulated with nonionic surfactants (Spans and
Tweens) were having droplet size less than 100nm. Nanoemulsions are a promising nanocarrier widely
used in drug delivery, which helps in improving biodistribution of drugs and minimizing toxicity. To
protect EOs from extrinsic and intrinsic factors such as pH, temperature, water, humidity, activity,
storage environment, and enzymatic degradation, some different delivery systems have been used as
carriers including chitosan cyclodextrin, alginate, albumin, globulin, maltodextrin, and starch. Among
the many nanocarriers, naturally occurring polymers such as chitosan and alginate are widely used in
the biomedical and pharmaceutical fields as emulsions.

Many studies in academia and industry have continued to enhance the physical stability of EOs
by encapsulating them into nanocarrriers. Recently, nanoemulsions were achieved by using low
concentrations of EOs, pectin, and surfactants with the help of pseudo-ternary diagrams [179]. Similarly,
nanoencapsulation of lime EOs with chitosan showed enhanced antibacterial activity against S. aureus,
L. monocytogenes, Shigella dysenteriae, and E. coli as nanoemulsion [180]. Soybean oil with sodium
dodecyl sulfate against S. aureus as nanoemulsion [181], Schinus molle with chitosan against Aspergillus
parasiticus as nanoprecipitation [182], Zataria multiflora with lipid phase (glyceryl monostearat) and
precirol against Aspergillus ochraceus, Aspergillus niger, Aspergillus flavus, Alternaria solani, Rhizoctonia
solani, and Rhizopus stolonifer as solid-lipid nanoparticles [183]. In addition, Gaultheria procumbens with
chitosan-cinnamic acid microgel against A. flavus as microencapsulation [184], Thymus capitatus with
sodium dodecyl sulfate against E. coli and B. subtilis as nanoencapsulation [185], cardamom EO with
chitosan against E. coli and S. aureus as nanocomposites [186], and Siparuna guianensis with chitosan
against larvicide Aedes aegypti as nanoencapsulation [187].
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9. Interaction of Essential Oils and Metallic Nanoparticles

Nanotechnology emerged significantly in pharmaceutical industry up to a considerable extent.
Nanoparticles is a combined name for any colloidal carrier like nanospheres and nanocapsules. EOs
can be enhanced by encapsulating with several nanomaterials such as polymeric NPs, liposomes, solid
lipid NPs and nano-emulsions which consists of inner liquid core surrounded by an outer polymeric
membrane called nanocapsule. Nanocapsules possess a polymeric membrane with a liquid nucleus,
in which the active compounds of EOs is confined to a cavity [188]. Similarly, nanospheres are solid
colloidal fragments in which bioactive components of EOs are diffuse, captured, encapsulated, or
adsorbed into the polymer matrix [189]. Nano-encapsulation increases the physical stability of EOs,
enhance bioactivity, reduce toxicity, and protect it from environmental interactions such as moisture,
light, oxygen, pH, and controlling the release of EO. However, only nano-encapsulation, nano-emulsion,
and monometallic nanoparticles with EOs has reported so far with limited data. Thus, EOs with their
antimicrobial activity when blended with other potent antimicrobial agents like bi- and tri-metallic
nanoparticles might be a probable source of alternative antimicrobial agents to combat multidrug
resistant pathogens.

The constituents of EOs along with bi- and tri-metallic NPs with their diverse sizes, shapes, high
surface-to-volume ratios, physical and chemical stability, and degree of selectivity can unlock the
cell membrane channels, thus opening the passage of EOs/multimetallic to reach their target sites.
These metal NPs or nanoemulsions/nanoencapsulations enclosing EOs can be adhered via electrostatic,
hydrogen bonding, and covalent interactions to produce antimicrobial packaging systems. Once NPs
adhere to cell walls, they directly effects toxicity due to larger concentration of NPs release more ions
and distributed in the environment surrounding the bacterial cell wall. The larger concentration of
generated ions disrupt cell membrane and ROS production and further helps to penetrate the cells [190].
When NPs enter inside the cell along with EOs cause damages in the structure of cell membranes,
protein dysfunction causes oxidative stress and DNA damage as shown in the schematic representation
in Figure 3.

Figure 3. Proposed antibacterial mechanisms of mono, bi-, tri-metallic NPs with EOs. Combination
of NPs and EOs can attack bacteria cell through multiple mechanisms; direct interaction with cell
membrane by generating metal ions, disruption of cell membrane, protein dysfunction, DNA damage,
inhibition of the electron transport chain, and the regulation of bacterial metabolic processes.
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There are two possible ways to combat multidrug resistant pathogens along with EOs either by
nano-encapsulation method or combination with bi- and tri-metallic NPs with EOs. Recently, Wu et al.,
prepared chitosan NPs embedded with Torreya grandis aril EOs and studied their antibacterial properties
against S. aureus found stronger antibacterial activities than chitosan NPs alone [191]. Synergistic
antibacterial activity of silver NPs with EOs of Kelussia odoratissima and Teucrium polium investigated
their enhanced effect against multidrug-resistant bacteria [192]. Chitosan NPs encapsulated with
Cymbopogon martinii EOs shows efficient and enhanced antifungal and antimycotoxin activities against
Fusarium graminearum [193]. Similarly, silver NPs with eucalyptus EO showed the synergistic effect on
the growth inhibition of E. coli, MRSA, S. enteric, and B. subtilis [194] and Nigella sativa EO coated with
gold nanoparticles effectively controlled the growth and biofilm formation of S. aureus [195]. Whereas,
rosemary and oregano EOs with silver and ZnO nanoparticles incorporated into pullulan films were
effective against S. aureus, L. monocytogenes, E. coli, and S. Typhimurium [196].

10. Synergistic Antimicrobial Activity of Essential Oils

The development of resistance to different antimicrobial agents by bacteria, fungi, viruses, and
parasites is a great challenge to the effective treatment of infectious diseases, and hence there is a need
for more intensive, new, and novel antimicrobials. Some plant extracts and EOs have been used as
medicine for the treatment of infectious diseases traditionally. However, these plant-based medicines
are not effective for severe systemic infections due to the absence of clinically applicable pharmaceutical
forms. Subsequently, many antibiotics have been developed as synthetic antimicrobial agents, but
these drugs are complicated by their high toxicity, low tolerability, and ineffectiveness against new
emerging microbes. One probable way to enhance the range and scope of current antimicrobial therapy
is the use of a combination of antimicrobials.

The combination of antimicrobial agents such as essential/volatile oils, plant extract/EOs, plant
extracts/antibiotics, EOs/EOs, EOs/antibiotics, plant extract/plant extract, EOs/monometallic NPs,
and phytochemical/antibiotics [16] has confirmed the significant effects of antimicrobial activities.
In addition, nanoencapsulation of many EOs and their antimicrobial activities have also been discussed
in the previous section. Synergy can be assessed by combining two antimicrobial compounds and
conducting antibacterial activity, whereby the sum of the antibacterial activities is greater than
antibacterial activity of the individual components due to several substances, which improves solubility.
According to Hossain et al. [197], combination of eight EOs of plants showed enhanced antimicrobial
activity against A. niger, P. chrysogenum, A. flavus, and A. parasiticus when compared to the antimicrobial
activity of a single EO. Similarly, in a study conducted by Knezevic et al. [198], it was reported that
the combination of EOs of Eucalyptus camaldulensis with conventional antibiotics such as gentamycin,
ciprofloxacin, and polymyxin B showed synergistic antibacterial effect against Acinetobacter baumannii.

Very few researchers have studied the synergistic antimicrobial effects of metal and metal oxide NPs
(monometallic NPs) along with EOs and conventional antibiotics [199,200]. Scandorieiro et al. [201]
reported that the combination of silver NPs with Origanum vulgare EO resulted in synergistic
antimicrobial activities against E. coli, A. baumannii, and S. aureus. Similarly, hydroxyapatite NPs with
peppermint EO against S. aureus, E. faecium, E. coli, P. aeruginosa, and C. parapsilosis [202], olive EO with
lipid nanoparticles against P. pyogenes and S. aureus [203], Siparuna guianensis EO with chitosan NPs
against A. aegypti [187] showed enhanced antimicrobial effects. In addition, rosemary and oregano
EOs, with silver and zinc oxide NPs incorporated into pullulan films were effective against pathogenic
microorganisms such as S. aureus, L. monocytogenes, E. coli, and S. typhimurium [196], cinnamon EO
with chitosan NPs against E. coli and S. aureus [204] also had synergistic antimicrobial activities.

11. Challenges and Future Directions

EOs have great potential for the promotion of health and preventing and treating infectious
diseases. However, EOs have some drawbacks due to their low solubility, stability, and high volatility
in medicinal applications. Hence, the encapsulation of EOs increases their solubility and stability, and
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maintains controlled release, which makes them more bioavailable; protects them from air, humidity,
light; and lead to volatilization, increasing their biological activities. To date, there are limited studies
on synergistic antimicrobial effects of metal and metal oxide NPs along with EOs. Bi-and tri-metallic
NPs have recently attracted more attention because of their unique catalytic, optical, electronic, and
magnetic properties [19], and their utilization is associated with their well-defined properties when
compared to their monometallic counterparts [205,206].

Bi- and tri-metallic NPs are formed by the combination of two or more different metals or materials
into a single system, and they exhibit special properties which are not observed in the case of the
monometallic forms [207]. Moreover, these bi- and tri- metallic NPs are used as catalysts for many
organic transformations [23] with excellent selectivity and activity. In addition, altering the shape,
size, and/or surface chemistry of NPs as core–shell, heterodimer, and nano-alloys [23,28,29] enhance
their catalytic performance. As discussed earlier in the previous section, several studies on of the
nanoencapsulated EOs and metal and metal oxide NPs have demonstrated potential antimicrobial
activities and synergistic effects, which have already been documented.

The present study acknowledged more findings on in vitro studies of EOs, and nanoencapsulation
of EOs, however, more efforts are required to conduct studies on the synergistic effects of bi- and
tri-metallic NPs along with different EOs. Tuning into different size, shape, and/or surface chemistry of
NPs allows their functionalities to be more enhanced for better applications. Furthermore, the use
of multi-component nanoparticles like bi- and tri-metallic NPs comprised of three or more metals
have also intervened as hybrid materials that can upgrade optical and magnetic properties. However,
the inertness of these materials with respect to the environment, health, and safety concerns must be
considered due to their potential hazards and toxicity. Thus, EOs along with mono, bi-, and tri-metallic
NPs might be a prospective source of alternative antimicrobial agents, and may play an important
synergistic role in the discovery of new drugs for the treatment of a wide range of pathogenic infections
in the near future. Finally, we will continue to see creative advances in the synthesis of these unique
dual-component and multi-component nanomaterials and their antimicrobial activities along with
EOs individually or in combinations.

12. Conclusions

The increasing number of clinical complications related to multidrug resistant microorganisms
has inspired researchers to focus their interest on alternative antimicrobial agents, which are an
appropriate solution to treating infections that are more serious to human health. There are several
types of EOs, which have individual components with diverse bioactivities including antimicrobial
potential. However, EOs have certain limitations, including low solubility and stability, and currently
they have reduced clinical applications owing to the development of resistance. Nanotechnology is
expected to have a significant impact on the therapeutics of antimicrobial agents at the nanoscale level
to develop nanomedicines. As the size of a particle decreases, the specific surface area, reactivity,
and bioavailability increases, allowing greater interaction with the surrounding environment that
enhances the antimicrobial effects. Indeed, nanoparticles are able to solve the major inconvenience of
EO components by increasing the chemical stability in the presence of moisture, air, light, and high
temperatures, factors which can lead to the rapid evaporation and to the degradation of the active
components. Encapsulation simultaneously increases the antimicrobial potency of EOs by controlled
or sustained release and facilitating close interaction with the microorganisms.

Metal and metal oxide NPs like Ag, Au, Ga, FeO, ZnO, TiO, MgO, and CuO act as promising
antimicrobial agents. Bi-metallic or multimetallic nanostructures such as hybrid, core–shell, or alloy
structures like FePd, AuPd, CuPd, PtPd, AuFeAg, and FeAgPt enhance antimicrobial activities and
catalytic performance. For this reason, it is necessary to find an alternative method to combat multidrug
resistance pathogens by using EO encapsulation with suitable metal or metal oxide NPs or combination
of EOs with different bi- and tri-metallic NPs. The present study revealed more information on
the extraction methods, chemical composition, nano-encapsulation, and antimicrobial activities of
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EOs and antimicrobial potential of some metal and metal oxide NPs. The future biotechnological
perspective to stabilize EOs using nanostructured materials might establish a valuable prerequisite for
obtaining functionalized materials with modified surface, inhibitory effects and ability to adhere on
the microorganisms for targeting and/or controlled release. However, more research is required to
explore the mechanism of individual essential oil components along with bi- and tri-metallic NPs with
an initiation in systematically conduct experiments on the synergistic mechanisms among different
components. Therefore, new or alternative strategies for EOs with bi- and tri-metallic NPs and
synergistic studies can provide an interesting platform in the future to combat multidrug resistance
pathogens with greater activity. In addition, it is necessary to control the toxicity, risk assessment, and
safety aspects, and to avoid the passage of such nanomaterials into the human body.
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