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Deep convolutional neural networks (DCNN) nowadays can match human performance

in challenging complex tasks, but it remains unknown whether DCNNs achieve

human-like performance through human-like processes. Here we applied a

reverse-correlation method to make explicit representations of DCNNs and humans

when performing face gender classification. We found that humans and a typical DCNN,

VGG-Face, used similar critical information for this task, which mainly resided at low

spatial frequencies. Importantly, the prior task experience, which the VGG-Face was

pre-trained to process faces at the subordinate level (i.e., identification) as humans

do, seemed necessary for such representational similarity, because AlexNet, a DCNN

pre-trained to process objects at the basic level (i.e., categorization), succeeded in

gender classification but relied on a completely different representation. In sum, although

DCNNs and humans rely on different sets of hardware to process faces, they can

use a similar and implementation-independent representation to achieve the same

computation goal.

Keywords: deep convolutional neural network, face recognition, reverse correlation analysis, face representation,

visual intelligence

INTRODUCTION

In recent years, deep convolutional neural networks (DCNN) have made dramatic progresses
to achieve human-level performances in a variety of challenging complex tasks, especially visual
tasks. For example, DCNNs trained to classify over a million natural images can match human
performance on object categorization tasks (Krizhevsky, 2014; Simonyan and Zisserman, 2015;
Krizhevsky et al., 2017), and DCNNs trained with large-scale face datasets can approach human-
level performance in face recognition (Taigman et al., 2014; Parkhi et al., 2015; Schroff et al., 2015;
Ranjan et al., 2017). However, these highly complex networks have remained largely opaque, whose
internal operations are poorly understood. Specifically, it remains unknown whether DCNNs
achieve human-like performance through human-like processes. That is, do DCNNs use similar
computations and inner representations to perform tasks as humans do?

To address this question, here we applied a reverse correlation approach (Ahumada and Lovell,
1971; Gold et al., 2000; Mangini and Biederman, 2004; Martin-Malivel et al., 2006), which has been
widely used in psychophysical studies to infer internal representations of human observers that
transform inputs (e.g., stimuli) to outputs (e.g., behavior performance). This data-driven method
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allows an unbiased estimate of what is in observers’ “mind” when
performing a task, rather than manipulating specific features that
researchers a priori hypothesize to be critical for the task. Here
we applied this approach to both DCNNs and human observers
to investigate whether the DCNNs and humans utilized similar
representations to perform the task of face gender classification.

Specifically, a gender-neutral template face midway between
the average male and the average female faces was superimposed
with random noises, which rendered the template face more
male-like in some trials or more female-like in other trials. The
noisy faces were then submitted to human observers and the
VGG-Face, a typical DCNN pre-trained for face identification
(Parkhi et al., 2015). Based on the output of an observer that
a noisy face was classified as a male but not as a female,
for example, we reasoned that the noise superimposed on the
template face contained features matching the observer’s internal
male prototype. Therefore, the difference between noise patterns
of trials classified as male and those as female revealed the
facial features diagnostic for gender classification, and provided
an explicit and unbiased estimate of the representation used
by the observer for gender classification. Finally, we directly
compared the similarity of the inner representations of human
observers and the VGG-Face obtained from identical stimuli
and procedures, and examined the hypothesis that different
intelligent information-processing systems may use similar
representations to achieve the same computation goal (Marr,
1982).

RESULTS

The VGG-Face and Humans Utilized Similar
Information for Gender Classification
We used the reverse correlation approach to reconstruct the
inner representations used by the DCNN and human observers
for gender classification. Specifically, both the DCNN and human
observers were asked to classify noisy faces from a gender-neutral
template face embedded with random sinusoid noises as male or
female (Figure 1A).

For the DCNN, we first trained the VGG-Face to classify
gender using transfer learning with 21,458 face images of 52
identities (35 males) from the VGGFace2 dataset (see Methods),
and the test accuracy of gender classification of the new
network achieved 98.6% (see Supplementary Tables 1, 2 for
more details). The gender-neutral template face was roughly
equally classified as male and female by the VGG-Face (female:
54%). The noise patterns were constructed from 4,092 sinusoids
at five spatial scales, six orientations, and two phases. We
presented the template face embedded in 20,000 noise patterns
to the VGG-Face, of which 11,736 (58.7%) images were classified
as male and 8,264 (41.3%) images as female. The noise patterns
from trials classified as male or female were averaged separately
(Figure 1B), and the difference between the two average noise
patterns yielded a “classification image” (CI) that makes explicit
the information used by the VGG-Face for gender classification
(Figure 1C). A visual inspection of the CI showed that regions
around the eyes, nose, and mouth were of high contrast in the

CI, indicating the critical regions employed by the VGG-Face to
classify male from female faces.

Then, we reconstructed the representation used by human
observers in a similar way. In our study, 16 human observers
performed the gender classification task, each presented with
1,000 noisy faces. Altogether, 16,000 images were presented to the
human observers, of which 7,969 (49.8%) images were classified
asmales and 8,031 (50.2%) images as females. Similarly, the CI for
human observers was obtained (Figure 1C). Visual inspections
of the CIs for the VGG-Face and human observers revealed good
agreement between them, and Pearson’s correlation between the
two CIs was high (r = 0.73). This result suggested that the
VGG-Face and human observers utilized similar information to
classifying gender.

Further, we reconstructed inner male and female prototypes
by adding or subtracting the rescaled CI to or from the template
face for the VGG-Face and humans, respectively (Figure 1C). As
expected, the male and female prototype faces are perceptually
male-like and female-like, and highly similar between the VGG-
Face and human observers.

The Shared Representation Was Mainly
Based on Low Spatial-Frequency
Information
Having found that the VGG-Face and human observers utilized
similar information for gender classification, next we asked
whether the VGG-Face and human observers employed similar
information in all spatial frequencies. In our study, the noise
patterns were constructed from sinusoid components of five
scales of spatial frequencies (2, 4, 8, 16, and 32 cycles/image),
which enabled us to reconstruct the CIs for each scale separately
(Figure 2) and examined the similarity at each scale. We found
that the similarity was the highest at low spatial frequencies (r
= 0.87 and 0.76 at 2 and 4 cycles/images), and then decreased
sharply at high spatial frequencies (r = 0.25, 0.19, 0.11 at 8, 16,
and 32 cycles/image). Consequently, male and female prototypes
reconstructed with the noise patterns at low spatial frequencies (2
and 4 cycles/image) were more similar between human observers
and the VGG-Face than those at high spatial frequencies (8, 16,
and 32 cycles/images) (Supplementary Analysis 1). Therefore,
the shared representation for gender classification was mainly
based on information at low spatial frequencies, consistent with
previous findings that face gender processing relies heavily on low
spatial frequencies (Sergent, 1986; Valentin et al., 1994; Goffaux
et al., 2003b; Mangini and Biederman, 2004; Khalid et al., 2013).

To further quantify the contribution of different spatial
frequencies for gender classification, we calculated the
contribution of each of the 4,092 parameters from all five
spatial frequencies. For each parameter, we performed an
independent sample t-test (two-sided) between the parameter
values from the male trials and those from the female trials,
and calculated the absolute value of Cohen’s d as an index of
the contribution of each parameter to gender classification.
One hundred and four parameters in the VGG-Face and 12 in
human observers contributed significantly for the classification
(Bonferroni corrected for multiple comparisons, Figures 3A,B).
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FIGURE 1 | (A) Experiment procedure. A gender-neutral template face was superimposed with noises to create a set of gender-ambiguous faces, which were

submitted to the VGG-Face and human observers for gender classification. (B) Exemplars of noises extracted from noisy faces classified as either female or male,

(Continued)
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FIGURE 1 | respectively. The noises were then averaged to reconstruct images that contained the critical information for classifying the noisy faces as male or as

female. (C) Classification images (CI) were the difference of the average noise of female by that of male. For visualization, values in each CI were normalized separately

to the range from 0 to 1, denoted by colors. By adding or subtracting the rescaled CI to or from the gender-neutral template face, female or male prototype of human

observers (Left), and the VGG-Face (Right) were created. Brain icon made by Smashicons from www.flaticon.com.

FIGURE 2 | Correspondence in representation at different scales of spatial frequencies. For visualization, values in each CI were normalized separately to the range

from 0 to 1, denoted by colors. Note that the correspondence was the highest at the low-spatial frequencies, and then decreased sharply at the high-spatial

frequencies. Scale number denotes cycles per image.

Of the 12 parameters in human observers, 9 were at the
scales of 2 and 4 cycles/images. Similarly, most of the 104
parameters in the VGG-Face were also at low-frequency
scales (7 at 2 cycles/images, 33 at 4 cycles/images, and 30 at 8
cycles/images), and the percentage of the significant parameters
at low frequencies (58 and 69% at 2 and 4 cycles/images) were
much higher than those at high frequencies (4 and 0% at 16
and 32 cycles/images). That is, both the VGG-Face and human
observers mainly relied on information at low spatial frequencies
for gender classification.

Another way is to select parameters that made the most
contributions indexed by the absolute values of Cohen’s d.
We found that the 1,885 most contributing parameters of
all 4,092 parameters already made up to 80% of the total
contribution for the VGG-Face; importantly, these parameters
also made up 48% of the contribution for human observers.
Then, we examined the similarity of parameters’ contribution
by calculating the Spearman’s correlation between Cohen’s
d of the VGG-Face and human observers for the highly-
contributing parameters at each scale of spatial frequencies. We
found that the correlation was high at low spatial frequencies
(r = 0.79 and 0.74 at 2 and 4 cycles/images), and then
declined sharply at high spatial frequencies (r = 0.21, 0.27,
and 0.17 at 8, 16, and 32 cycles/images). In contrast, there
were more parameters at high than low spatial frequencies
that contributed differently between the VGG-Face and human
observers (Supplementary Analysis 2). Taken together, at low

spatial frequencies, not only were the representations more
similar, but also the parameters underlying the representation
contributed more significantly to the task.

Human-Like Representation Requires Prior
Experience of Face Identification
Where did the representational similarity come from? One
possibility is that information at low spatial frequencies is
critical for face processing, and therefore both DCNN and
human observers were forced to exact information at low spatial
frequencies to successfully perform the task. An alternative
hypothesis is that the VGG-Face and human observers share
similar prior experiences of processing face at the subordinate
level where faces are identified into different individuals. To test
these two hypotheses, we examined another typical DCNN, the
AlexNet, that also has abundant exposure to face images but
is pre-trained to classify objects into 1,000 basic categories. We
trained the AlexNet to perform the gender classification task
with the same transfer learning procedure as that for the VGG-
Face. The testing accuracy of gender classification of the AlexNet
reached 89.3% (see Supplementary Tables 1, 2 for more details),
indicating that it was able to perform the task. However, the CIs
obtained from the Alexnet (Figures 4A,B) were in sharp contrast
to the CIs of human observers (Figures 1C, 2) as a whole (r =
−0.04) and at different scales (r = −0.28, 0.03, 0.25, 0.10, and
0.03 at the scales of 2, 4, 8, 16, and 32). We also reconstructed
the female and male prototype faces of AlexNet (Figure 4A),

Frontiers in Computational Neuroscience | www.frontiersin.org 4 January 2021 | Volume 14 | Article 601314

www.flaticon.com
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Song et al. Implementation-Independent Face Representation

FIGURE 3 | Manhattan plot of the contribution (the absolute values of Cohen’s d) of the parameters used to construct noises in the VGG-Face (A) and in human

observers (B). Each dot denotes a parameter, and the horizontal blue line indicates the significance level after Bonferroni correction.

and they appeared quite distinct from those of human observers
and the VGG-Face (Figure 1C). This finding was unlikely due to
the differences in architecture between the VGG-Face and the
AlexNet, because the VGG-16, which has the same architecture
as the VGG-Face but is pre-trained for object categorization
as the AlexNet, showed a CI largely different from human
observers (Supplemental Analysis 3). Therefore, although the
AlexNet succeeded in performing the gender classification task,
it relied on a set of information completely different from
human observers to achieve the goal. Therefore, mere exposure
to face stimuli or large categories of stimuli is not sufficient
for the DCNNs to construct similar representations for gender
classification as human observers; instead, the task requirement
of face identification during prior experience was required.

Given that the training sample contained more male than
female faces, we also trained the VGG-Face and AlexNet for face-
gender classification with balanced training sample to exclude
the possibility that our results was caused by unbalanced training
sample (Supplementary Analysis 4).

In addition, to examine whether our results could transfer
to other face databases, we trained the VGG-Face and AlexNet
for face-gender classification using face images from another
database FairFace, the Face Attribute Dataset for Balanced
Race, Gender, and Age (Kärkkäinen and Joo, 2019), and
the main findings were replicated with this new dataset
(Supplementary Analysis 5).

Finally, to further illustrate that the CIs obtained here reflected
representations for face gender classification, we built a simple
new network that used the CIs to perform gender classification.
Specifically, we first aligned each of 26,902 face images (13,738
females) to the neutral face template and convolved each aligned
face with the CI to get an activation value (Figures 5A,B). This
procedure is equivalent to using each aligned face as an input
image and the CI as connected weights of a one-layer network

with one output unit. If the CI does represent the differences
between female and male faces, the activation distributions
of male and female faces would be dissociated. As shown in
Figure 5C, after convolving with the CI obtained from VGG-
Face, the activation distribution of female faces dissociated from
that of male faces (cohen’s d = 1.62). A similar trend of
dissociation was observed when using the CI obtained from
humans (cohen’s d = 1.58). As a baseline, we randomized the
CI image and convolved each face with the randomized CI
image, and the two activation distributions largely overlapped
(cohen’s d = 0.30). These results indicated that the CIs revealed
the information used for face gender classification, and similar
information was used by VGG-Face and humans. When using
the CI obtained from AlexNet, the two activation distributions
also largely overlapped (cohen’s d = −0.35), and the difference
between female andmale activations was in an opposite direction
to the results of VGG-Face and humans. Again, this result was
consistent with our main finding that the CI of AlexNet differed
from that of VGG-Face and humans.

DISCUSSION

Marr (1982) has proposed a three-level framework to understand
an intelligent information-processing system. At the top is the
computational level that defines the goal of the system, and in our
study, the computation goal is face gender classification; at the
bottom is the implementation level that is the physical substrate
of the system, which are the DCNNs and human brain in our
study. Most critically, in the middle is the representational and
algorithmic level that establishes approaches through which the
implementation achieves the computation goal. Despite dramatic
differences in the physical implementations between the artificial
and biological intelligent systems, similar representations may
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FIGURE 4 | (A) AlexNet’s CI for gender classification. For visualization, values in each CI were normalized separately to the range from 0 to 1, denoted by colors. Note

that the female prototype (left) and the male prototype (right) were not perceptually female-like and male-like, respectively. (B) Normalized CI at different scales of

spatial frequencies. Note that they were significantly different from those of human observers.

FIGURE 5 | Using CIs in a simple network. (A) Each of 26,902 face images was aligned to a neutral face template. (B) Each aligned face was convolved with the CI to

get an activation value. (C) Activation distributions of the female and males faces after convolving with the CIs.

be used by different systems to achieve the same computation
goal. Our study provides one of the first direct evidence to
support this hypothesis by showing that the DCNNs and humans
used similar representations to achieve the goal of face gender
classification, which were revealed by highly similar CIs between
the VGG-Face and humans. Admittedly, the present study

examined face perception which is highly domain-specific in
human visual cognition. Future study is needed to examine
whether implementation-independent representation can also be
observed in less specialized perceptual processes.

The shared representation, on one hand, may come from the
critical stimulus information needed to achieve the computation

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 601314

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Song et al. Implementation-Independent Face Representation

goal. Previous human studies on gender classification suggest
that the critical information humans used to solve the task
is embedded mainly in low spatial frequencies (Sergent, 1986;
Valentin et al., 1994; Goffaux et al., 2003b; Mangini and
Biederman, 2004; Khalid et al., 2013). Here we found that the
VGG-Face also relied heavily on low spatial frequencies of faces
for gender classification. Further, it was the information only
in this band that showed similarity to that of humans, but not
in high spatial frequencies. In other words, one reason that
the VGG-Face and humans established similar representations
based on low spatial frequencies might be that this stimulus
information is critical for the task of face gender classification.

On the other hand, the prior task experience before the gender
classification task may also play a deterministic role for DCNNs
to use a similar approach to achieve the goal as humans. Previous
studies have shown that humans usually process faces at the
subordinate level, that is, to recognize faces as individuals. Similar
to humans, the VGG-Face is also pre-trained to recognize faces
at the individual level, that is, to classify face images into different
identities (e.g., John’s face). Therefore, the similar task experience
in the past likely led the similar approaches in achieving the new
goal of gender classification.

In contrast, the AlexNet is pre-trained to recognize objects
at the basic level, that is, to classify objects into categories (e.g.,
dogs) but not individuals (John’s dog). Therefore, although the
AlexNet experiences abundant exposure to face images during
the pre-training, it processes faces as objects, different from
humans and the VGG-Face. Previous studies on humans have
shown that object recognition does not selectively rely on low- to
middle- spatial frequencies as face recognition does (Biederman
and Kalocsais, 1997; Goffaux et al., 2003a; Collin, 2006; Collin
et al., 2012). Thus, it is not surprising that although the AlexNet
also achieved a high performance (accuracy around 90%) in face
gender classification, an approach significantly different from
that of humans was adopted. Taken together, the similarity in
representation between DCNNs and humans was not guaranteed
by the common computational goal or by the passive experiences
with stimuli; instead, it was constrained by the combination
of experiences on the pre-training task in the past and critical
stimulus information needed in performing the task in the
present. The finding also suggests that DCNN can be used as a
model of biological brains to experimentally investigate the effect
of visual experience and task demands on human cognition.

The present study also brought insight from an engineering
perspective. In history, two main approaches have been proposed
to achieve and even excel human vision in artificial intelligence
(Kriegeskorte and Douglas, 2018). The neuroscience approach
adheres to biological fidelity at the implementation level,
which simulates neural circuits of brains, whereas the cognitive
approach emphasizes on cognitive fidelity, which focuses on
goal-directed algorithms and disregards implementation. Our
study suggests an intermediate approach lying in between these
two. By simulating human intelligence at the representation
level in Marr’s framework, this approach provides an abstract
description of how a system extracts critical features to construct
representation for a specific task. Because the representation
is relatively independent of implementation, the knowledge

acquired in biological systems can be easily adopted by artificial
systems with completely different substrates. Therefore, the
simulation of representation may shed light on building new AI
systems in a feasible way.

MATERIALS AND METHODS

Transfer Learning
We used the pre-trained VGG-Face network (Parkhi et al., 2015)
that consists of 13 convolutional layers and 3 fully connected (FC)
layers. Each convolutional layer and FC layer were followed by
one or more non-linearities such as ReLU and max pooling. The
VGG-Face network was pre-trained for face identification with
the VGG-Face dataset containing over two million face images of
2,662 identities.

In our study, we trained the VGG-Face for face-gender
classification using transfer learning. The final FC layer of the
VGG-Face has 2,662 units, each for one identity.We replaced this
layer with a two-unit FC layer for the binary gender classification.
All weights of the network were frozen except the weights
between the penultimate FC layer and the new final FC layer.
The training sample contains 21,458 face images (male: 14,586)
of 52 identities (male: 35) randomly selected from the VGGFace2
dataset (Cao et al., 2018). The validation sample contains other
666 face images (male: 429) from the same 52 identities. The
testing sample contains 1,000 face images (male: 500) from 24
new identities from the VGGFace2 dataset. All face images were
resized to 224×224 pixels to match the model input size. We
used in-house python package DNNbrain (Chen et al., 2020) to
train the network. The loss function was cross-entropy, and the
optimizer was Adam. The learning rate was 0.03, and the network
was trained for 25 epochs. After training, the accuracy of gender
classification reached 100% on both the training and validation
samples, and 98.6% on the testing sample.

The same training procedures were applied to AlexNet pre-
trained for object categorization (Krizhevsky et al., 2017). The
model consists of five convolutional layers and three FC layers.
The AlexNet was pre-trained on ImageNet to classify 1.2 million
images into 1,000 object categories. We also replaced the final
layer of AlexNet with a two-unit FC layer for the binary gender
classification. After transfer learning, the accuracy for gender
classification reached 92.6% on the training sample, 93.2% on the
validation sample, and 89.3% on the testing sample.

Reverse Correlation Approach
After the transfer learning on gender classification, we made the
representation explicit with the reverse correlation approach on
noisy faces. All stimuli consisted of a gender-neutral template
face superimposed with sinusoid noise patterns. The template
was a morphed face between a female average face and a male
average face (Figure 1A). The female and male average faces
were computed as a mathematical average of all female and all
male faces of the training sample after they were aligned and
wrapped into the same space with 68 landmarks using an open-
access toolbox face_morpher (https://github.com/alyssaq/face_
morpher). The average faces were 8-bit grayscale and 512 × 512
pixel images. We further created 500 morph faces that gradually
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changed from the female average face to the male average face
using face_morpher. Then we presented 500 morphed faces
evenly distributed between the female and the male average faces
to the VGG-Face to find the face most equally classified as male
and female in gender classification. The 250th morphed face,
which was classified as female with a probability of 54% by the
VGG-Face, was chosen as the gender-neutral template face in
our study.

A random noise pattern was generated for each trial. Each
noise pattern was composed of sinusoid patch layers of five
different scales of spatial frequencies (2, 4, 8, 16, and 32
cycles/image), with each patch layer made up of 1, 4, 16, 64,
and 256 sinusoid patches, respectively (Mangini and Biederman,
2004). For each sinusoid patch, sinusoids of six orientations (0,
30, 60, 90, 120, and 150 degrees) and two phases (0 and pi/2)
were summed. The amplitude of each sinusoid came from a
random sampling of a uniform distribution of values from−1 to
1. Therefore, each noise pattern was determined by 4,092 random
amplitude parameters (12, 48, 192, 768, and 3,072 parameters for
2, 4, 8, 16, and 32 cycles/image). We use the R package rcicr to
generate the sinusoid noises (Dotsch, 2017). We created 20,000
noise patterns for the DCNNs and 1,000 noise patterns for each
human observer. Each noise pattern was then superimposed on
the template face to create a different noisy face.

We resized the noisy face images to 224 × 224 pixels and
submitted them to the VGG-Face and AlexNet, and obtained
their classification prediction for each image. For VGG-Face, a
noisy face was classified as male when the activation of the male
unit was higher than the female unit. Note that the AlexNet
showed a bias toward male faces when classifying the noisy faces;
therefore, wemodified the classification criterion for the AlexNet.
That is, for AlexNet, a noisy face would be classified as male
when the activation of the male unit to the to-be-classified face
was higher than its average activation to all noisy faces. Note
that the choice of criterion would not affect the results pattern of
the VGG-Face and hence the dissociation between AlexNet and
VGG-Face, because the two criteria lead to literally identical CIs
for VGG-Face (r = 0.99).

To generate corresponding female or male prototype faces,
each CI was separately rescaled to have the same maximum pixel
value and then added or subtracted from the template face.

Participants
Sixteen college students (12 females, age 19–33 years, mean
age 22 years) from Beijing Normal University, Beijing, China,
participated in the gender classification task. All participants were
right-handed and had normal or corrected-to-normal vision. The
experiment protocol was approved by the Institutional Review
Board of the Faculty of Psychology, Beijing Normal University.
Written informed consent was obtained from all participants
before the experiment.

Experimental Procedures
Before the experiment, participants were told that they would
perform a difficult gender classification task because the faces
were superimposed with heavy noises. The template image was
not shown to participants in the experiment. The stimuli were

255-bit grayscale and 512 × 512 pixel images. PsychoPy (Peirce
et al., 2019) was used to display the stimuli and record responses.
The stimuli were presented on the screen of a Dell precision
laptop at a distance of 70 cm. The stimuli subtended a visual angle
of ∼8.2 degree. In each trial, a noisy face image was presented in
the center of the screen for 1 s, and then the screen cleared until
the participant made a response. The participants were instructed
to provide one of four responses with a key press for each trial:
probably female, possibly female, possibly male, or probably
male. No feedback was provided. Each participant performed
1,000 trials. The participants could rest every 100 trials. The total
experiment duration was about 1 h for each participant. In data
analysis, the CI was calculated by subtracting the average noise
patterns from all trials classified as male (probably male and
possibly male) from those classified as female (probably female
and possibly female).
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