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Abstract: Depression is one of the most common mental diseases, with increasing numbers of patients
globally each year. In addition, approximately 30% of patients with depression are resistant to any
treatment and do not show an expected response to first-line antidepressant drugs. Therefore, novel
antidepressant agents and strategies are required. Although depression is triggered by post-birth
stress, while some individuals show the pathology of depression, others remain resilient. The
molecular mechanisms underlying stress sensitivity remain unknown. Brain-derived neurotrophic
factor (BDNF) has both pro- and anti-depressant effects, dependent on brain region. Considering
the strong region-specific contribution of BDNF to depression pathogenesis, the regulation of BDNF
in the whole brain is not a beneficial strategy for the treatment of depression. We reviewed a novel
finding of BDNF function in the dorsal striatum, which induces vulnerability to social stress, in
addition to recent research progress regarding the brain regional functions of BDNF, including the
prefrontal cortex, hippocampus, and nucleus accumbens. Striatal BDNF is regulated by Shati/Nat8l,
an N-acetyltransferase through epigenetic regulation. Targeting of Shati/Nat8l would allow BDNF to
be striatum-specifically regulated, and the striatal Shati/Nat8l-BDNF pathway could be a promising
novel therapeutic agent for the treatment of depression by modulating sensitivity to stress.

Keywords: BDNF; dorsal striatum; stress sensitivity; depression; Shati/Nat8l

1. Introduction

In recent years, the number of patients with various psychiatric diseases, such as
mood disorders, including major depressive disorder (depression) and bipolar disorder
diagnosed by the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) [1],
has been increasing. Among these disorders, depression is one of the most serious and
common. The World Health Organization (WHO) reported more than 300 million patients
with depressive symptoms in 2018 [2]. The prevalence of depression in lifetime reached
15–18% [3], meaning that one in five people were affected by the condition in their lifetime.
The symptoms of depression include deficits in cognitive function [4,5], loss of motiva-
tion [6], and anhedonia [7]. Furthermore, depression is strongly associated with a risk
of low energy and the presence of suicidal ideation [8,9]. Considering these symptoms,
depression greatly affects the lives of its sufferers. In the last 50 years, serotonin has been
recognized as a therapeutic target for depression. Consequently, tricyclic antidepressants
have been developed to control the amount of serotonin in the brain [10]. Currently,
selective serotonin reuptake inhibitors (SSRIs) or serotonin and noradrenaline reuptake
inhibitors (SNRIs) are used as first-line therapeutic tools for depression. However, the use
of these antidepressant therapies is limited. Generally, these drugs require long periods
before the effects are seen [11] and do not show high response rates in approximately 30%
of patients with depression, who are resistant to treatment [12,13]. Furthermore, their side
effect occurs frequently in depression patients with antidepressant treatment [14]. Indeed,
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the United States Food and Drug Administration (USFDA) warned of treatment-associated
suicidality as an adverse event associated with antidepressant treatment [15]. Thus, in
the last decade, there has been an increased focus on the discovery of novel targets for
depression therapy and the establishment of treatment strategies that work for all pa-
tients, including those with treatment resistance. However, there are little progress for the
providing the attractive treatment to patients with treatment resistance.

Stress is closely related to the pathogenesis of depression [16]. Studies have shown
that depression onset is caused by stressful environments [17–19]. Depressive events
such as stress induce vulnerability to depression onset; moreover, subsequent even mild
stressful events can trigger depression onset, depending on the level of vulnerability to
stress [20–22]. However, not all individuals are vulnerable to depression onset, as some
remain resilient [23–25]. Rodents exposed to repeated social-defeat stress, which has
been used as a major stressful event, can also be classified as either stress-susceptible
(showing depression-like behaviors) or resilient (lack of depression-like behaviors) [26,27]
However, the underlying molecular mechanisms that contribute to resilience against stress
remain poorly understood. Clarifying the regulatory mechanisms of stress sensitivity could
provide novel insights for understanding the pathogenesis of depression, and modulating
stress sensitivity reduces damage from stress and accelerates the recovery as a novel
strategy for depression.

One possible factor triggering depression is the involvement of brain-derived neu-
rotrophic factor (BDNF) mediating significant atrophy and structural changes in the brain,
as part of the BDNF-hypothesis of depression. As alterations in BDNF levels directly affect
the pathogenesis of depression, the regulation of these levels might lead to the development
of treatments for depression [28]. The role of BDNF in the central nervous system (CNS) in
depression may depend on the circuit and region, with both antidepressant and antide-
pressant effects [29,30]. Recently, BDNF in the dorsal striatum was reported to regulate the
stress sensitivity.

In this review article, we first provide the background of the present situation and
recent research progress regarding the brain regional functions of BDNF, including the pre-
frontal cortex (PFC), hippocampus, and nucleus accumbens (NAc), in the pathophysiology
of depression. We also highlighted BDNF function in the dorsal striatum as a novel role in
depression as a regulator of stress sensitivity. Finally, we discussed how to regulate BDNF
dorsal striatum-specifically and the application of these findings as a novel strategy for the
treatment of depression.

2. The Role of Brain-Derived Neurotrophic Factor in the Pathology of Depression

Nerve growth factor (NGF) was identified in the early 1950s as the first member of
the neurotrophin family, which induced neuron growth and survival promotion [31]. In
1982, BDNF was discovered and purified from the pig brain as the second member of
the neurotrophin family that also includes neurotrophin-3 and neurotrophin-4 and which
facilitates neuronal survival in the dorsal root ganglion [32]. BDNF is the most abundantly
expressed member of the neurotrophin family in the CNS [33] and it plays an important role
in neuronal development, morphology, and synaptic formation and function in the whole
brain [34]. Very few BDNF knockout mice reach adulthood; those that do so show severe
sensory impairment [35]. BDNF also affects learning and memory, as well as neuronal
survival, through the regulation of synaptic plasticity [36,37].

BDNF has a high affinity for the tropomyosin receptor kinase B (TrkB) receptor,
a member of the receptor tyrosine kinase family. TrkB receptors exist both pre- and
post- synapse [38]. The phosphorylation of TrkB induced by the binding of BDNF to the
TrkB receptor can regulate at least three intracellular cascades; namely, phospholipase
C-γ (PLC-γ), Ras-mitogen-activated protein (MAP) kinase/extracellular signal-related
kinase (MAPK/ERK), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)
signaling [39–41].
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The BDNF gene has nine promoters, each of which drives the expression of distinct
BDNF transcripts [42,43]. The contribution of the region-specific BDNF effect is attributed to
the distinct BDNF transcripts [44]. The promoter of BDNF IV is the most well-characterized
promoter that responds to stress in depression pathogenesis, as rodent models of depression
exposed to social-defeat stress showed decreased mRNA levels of total BDNF and BDNF
IV but neither BDNF transcripts [45] in response to restraint stress. These findings are
consistent with those of a clinical study in which patients with depression also showed
reduced BDNF IV expression in the hippocampus and frontal cortex, as well as in animal
models of depression [46,47].

Alteration of BDNF protein levels in both the brain and serum have been observed
in patients with brain illnesses [48–50]. BDNF is also involved in psychiatric diseases
such as schizophrenia, autism, and depression [51–53]. As mentioned previously, the
function of BDNF in depression pathogenesis is heterogeneous, depending on the brain
region and individual circuits. BDNF shows an antidepressant function in the PFC [54,55]
and hippocampus [56,57] and a pro-depressant function in the BDNF in the mesolimbic
dopamine (DA) circuit, originating in ventral tegmental area (VTA) DA neurons that
project to the NAc [58]. We next review the roles of BDNF in these regions, as well as
the involvement of the dorsal striatum in depression pathogenesis, with a focus on stress
sensitivity.

2.1. Prefrontal Cortex

The PFC plays an important role in learning, memory, and decision-making pro-
cesses [59,60]. The PFC is also involved in the pathogenesis of depression. Changes in
structures and function in the PFC caused by altered dysfunction of the neuronal cir-
cuit have been reported in human studies. The methods for the treatment of depression
treatment include electrical stimulation, including transcranial direct-current stimulation
(tDCS) [61] and electroconvulsive therapy (ECT) [62], or magnetic stimulation including
magnetic seizure therapy (MST) [63] and repetitive transcranial magnetic stimulation
(rTMS) [64] to transiently induce neuronal activity. Deep brain stimulation (DBS) also
enables the invasive region-specific regulation of neuronal activity using implanted elec-
trodes [65]. All of these treatments normalize neuronal activity in the PFC and have been
shown to have antidepressant effects [66]. A rapid-acting antidepressant agent, ketamine,
an N-methyl-D-aspartate receptor (NMDAR) antagonist, also transiently activates the PFC
neuron [67], with an antidepressant effect in patients with depression, even those with
treatment resistance [68].

Clinical studies of postmortem brains have reported decreased BDNF and TrkB levels
in the PFC of subjects who committed suicide [69,70] and patients with depression [71,72].
These subjects also showed atrophy of neurons in the PFC [73], suggesting that downregu-
lation of BDNF signaling was strongly associated with atrophy of the PFC in patients with
depression.

The causal relationships between neuronal morphology in the PFC, alteration of
BDNF expression in the PFC, and depression-like behaviors have been investigated in
rodent models of depression exposed to stressors including repeated social-defeat stress
(RSDS), chronic unpredictable stress, and chronic restraint stress. The rodents exhibited
depression-like behavior due to these chronic stresses, as well as decreased numbers of
spines and branches and length of dendrites in the PFC [74,75]. These findings indicated
that chronic stress induced neuronal atrophy in the PFC of rodents, consistent with the
results of the postmortem studies described above. Chronic stress decreases levels of BDNF
and phosphorylated TrkB in the PFC, indicating the inactivation of TrkB signaling [76,77].
BDNF mutant knock-in mice exhibited decreased length and branching of apical dendrites
in PFC neurons and vulnerability to chronic stress [78,79]. These results suggested that
BDNF in the PFC contributes to the etiology of depression through neuronal atrophy. This
supposition is supported by evidence that inhibition of TrkB signaling using ANA-12, a
TrkB antagonist, restored depression-like behaviors with the recovery of dendrite abnormal-
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ities in animal models [80]. These findings are consistent with the results that microinfusion
of BDNF into the PFC has antidepressant effects [81].

Many studies have focused on the PFC as the region displaying altered function,
potentially triggered by altered glutamatergic and gamma-aminobutyric acid (GABA)
transmission [82]. The acute antidepressant effect of ketamine has also been reported to
be involved in the PFC [83]. Preclinical studies have revealed that ketamine treatment
rapidly induced glutamate release in the PFC via regulation of synaptic plasticity [73]. This
enhancement of glutamate release is caused by the inhibition of NMDARs on GABAergic
interneurons that downregulate glutamate transmission [83]. Increased glutamate release
then stimulates postsynaptic AMPARs, and L-type voltage-dependent calcium channels
are depolarized and activated, followed by BDNF [84,85]. The antidepressant effect of
ketamine disappeared in BDNF conditional knockout mice; moreover, microinfusion of
an anti-BDNF neutralizing antibody into the mPFC also suppressed this antidepressant
effect [81].

Taken together, these findings indicate that BDNF in the PFC plays an important role
in the antidepressant effect and is essential for the use of ketamine as an antidepressant.

2.2. Hippocampus

The hippocampus controls memory and learning and emotional processing and is
susceptible to the effects of stress [86]. Neuronal plasticity in the hippocampus is altered
by stress, which increases the risk of depression [87].

We would like to introduce a clinical study examining a BDNF polymorphism (Val66Met)
in depression. The variant is involved in the onset of depression, anxiety, and increased
suicidal ideation and has been observed in the hippocampus of patients with depres-
sion [88–90]. The presence of the BDNF Val66Met polymorphism impairs BDNF release [91]
and the maturation of BDNF from proBDNF in the hippocampus [92]. Smaller hippocam-
pal volumes have also been reported in BDNF Val66Met-variant carriers [93,94], suggesting
a genetic association between the BDNF Met variant, hippocampal shrinkage, and the risk
of depression.

Neurogenesis in the hippocampus contributes to antidepressant effects [95,96]. While
impaired hippocampal neurogenesis can lead to depression [97], BDNF upregulation
stimulates hippocampal neurogenesis, followed by an induced antidepressant effect [98].
Several studies have demonstrated the relationship between BDNF and morphological
changes caused by hippocampal neurogenesis dysfunction in patients with depression.
Structural alterations, including decreased hippocampal and PFC volumes, have been
reported in patients with depression [99,100]. In addition, postmortem examinations
showed reduced BDNF protein levels in the hippocampus of patients with depression
patients; however, individuals receiving antidepressant treatment did not show a reduction
in BDNF protein levels in the same regions [101]. Similar results were also observed in
rodent experiments [102]. Decreased BDNF levels and reduced numbers and density of
dendritic spines were observed in a mouse model of depression exposed to RSDS [103].
In addition, hippocampal BDNF knockdown mice, microinjected with lentiviral vectors,
showed reduced neurogenesis and depression-like behaviors [104]. Treatment with an
antidepressant increased BDNF expression and restored the impairments of the dendritic
spine [105]. Similarly, microinfusion of BDNF into the hippocampus restored depression-
like behaviors induced by chronic stress [106].

A loss of serotonergic neurons was observed in a mouse model of depression due to
reduced BDNF in the hippocampus, since these neurons grow and survive via BDNF-TrkB
signaling cascades [107]. Antidepressant medications also activate TrkB receptors [108],
suggesting the involvement of serotonergic neurotransmission in the enhancement of
BDNF-TrkB signaling cascades. Interestingly, the conditional overexpression of BDNF
in the hippocampus also showed an antidepressant effect even in serotonin transporter
knockout rats, which showed depression-like behaviors [109]. The results of these post-
mortem and animal studies showed that BDNF in the hippocampus was involved in the
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serotonergic system and depression pathogenesis, indicating that normalizing BDNF signal
activity, followed by restoration of hippocampal atrophy and normalization of impaired
serotonergic transmission, might be a novel approach to improving the symptoms of
depression.

Taken together, these findings suggest that decreased BDNF levels in the hippocampus
are tightly linked to morphological alterations and depression pathogenesis in patients.

2.3. Mesolimbic Pathway

Mesolimbic BDNF function is also reportedly involved in the pathogenesis of depres-
sion [110]. In contrast to the antidepressant effect of BDNF in the PFC or hippocampus,
BDNF signaling in the mesolimbic regions has the opposite, pro-depressant, effect. A
clinical study showed increased BDNF protein levels in the NAc in patients with depres-
sion [111]. Furthermore, the reduction of BDNF expression in the ventral tegmental area
(VTA) by electroconvulsive therapy has an antidepressant-like effect [112]. In animal ex-
periments, chronic stress, including chronic unpredictable mild stress and RSDS, induced
increased BDNF protein levels and activation of BDNF-TrkB signaling [29]. Ablation of
BDNF in the NAc induced an antidepressant effect in the social defeat session [29]; the
inhibition of BDNF-TrkB signaling in the NAc with a truncated mutant with TrkB overex-
pression also showed the same results [113]. In addition, mice with BNDF knockout in
the VTA showed resilience to RSDS and induced anti-depressant-like effects [29]. These
results suggest that BDNF in the mesolimbic regions, especially the VTA–NAc circuits, are
involved in the pathophysiology of depression and have antidepressant effects.

BDNF and TrkB are expressed in the mesolimbic dopamine (DA) circuit, which projects
from the VTA to the NAc [114,115]. This mesolimbic dopaminergic system was first con-
sidered to contribute to drug addiction [116]. Recent studies have provided evidence
of an association between the mesolimbic dopaminergic system and motivation- and
mood-related behaviors, including social interaction [117,118]. Considering the loss of
happiness and motivation as the main symptoms in patients with depression [119], it is
quite likely that abnormalities of the mesolimbic DA system are involved in depressive-like
outcomes [58,120]. This circuit is activated by some chronic stress; importantly, the activa-
tion of DA neurons was observed in stress-susceptible but not stress- resilient mice [110].
Optogenetic activation of the VTA to NAc DA neurons rapidly induced depression-like
phenotypes in mice previously classified as resilient that were exposed to RSDS and also
showed vulnerability to RSDS, and even subthreshold social-defeat stress (microdefeat
stress) [121]. In contrast, optogenetic inhibition of the VTA in NAc DA neurons induced
resilience to social stress. In the VTA-to-PFC circuits, decreased and increased firing activi-
ties were observed in the susceptible and resilient groups, respectively [121], suggesting a
region-specific function of DA neurons in depression pathogenesis.

Notably, we emphasized that BDNF-TrKB but not DA signaling in the VTA–NAc
circuits is important for the development of depression-like behaviors. While microinfusion
of the TrkB antagonist, ANA-12, into the NAc inhibited the induction of decreased social
ability in RSDS, microinfusion of a DA receptor antagonist did not have this effect [122].
In addition, the vulnerability to social stress induced by optogenetic activation of the
VTA–NAc circuits disappeared with the inhibition of BDNF-TrkB signaling in the NAc by
a TrkB antagonist [122], suggesting that increased BDNF release, rather than DA, in the
NAc is essential for the development of depression pathology.

Taken together, these findings suggest the pro-depressant effect of BDNF in the
mesolimbic region, especially the VTA–NAc pathway.

2.4. Dorsal Striatum

The dorsal striatum is classically described as playing a key role in motor function.
The dorsal striatum is a part of the basal ganglia, which is important for the adjustment
of the execution of motor habits [123]; thus, deficits in motor automaticity are a charac-
teristic of basal ganglia-related illnesses, such as Parkinson’s disease [124]. The striatum
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mainly receives direct excitatory input from the primary motor and sensory cortices [125],
suggesting the involvement of the striatum and motor function. Recent studies have also
reported that the striatum also plays an important role in the reward and learning systems,
especially in decision-making [126–128]. Initiation and choice of action and motivational
and emotional behaviors are regulated by specific dorsal–striatal circuits [129]. Lesions in
the dorsal striatum affect the establishment of habitual behaviors [130] and inactivation
of the dorsal striatum weakens the reward system and induces goal-directed action even
in the absence of a reward [131,132]. Thus, the dorsal striatum plays an essential role in
decision-making, learning, and reward systems.

Although there are no reports on the relationship between the dorsal striatum and
depression, anxiety, which is one of the main symptoms of depression, may be regulated by
the dorsal striatum [133]. As the striatum-related circuit mechanisms underlying anxiety,
the striatal-prefrontal pathway is involved and becomes less connected, the cortico-striatal
connections are also impaired, and anxiety is expressed [134].

Our previous study was the first to report the role of the dorsal striatum in the
pathogenesis of depression, except for anxiety [135]. We recently showed BDNF function
in the dorsal striatum of patients with depression. We found that stress-susceptible but
not stress-resilient mice showed increased BDNF mRNA and protein levels after RSDS
compared to stress-naïve mice [136]. The reported hypertrophy of the dorsal striatum
in response to chronic stress is supported by our results showing increased BDNF in the
dorsal striatum by RSDS, as BDNF is required for neurogenesis [137]. We also revealed that
the expression levels of BDNF mRNA are correlated with social interaction behaviors [136].
To investigate whether BDNF in the dorsal striatum induced depression-like behaviors,
ANA-12 was microinfused into the dorsal striatum 15 min before each social-defeat stress
session for 10 days. ANA-12 treated mice showed stress resilience to RSDS in all behavioral
experiments, including social-interaction, sucrose-preference, tail-suspension, and forced-
swimming tests [136]. These results suggested that BDNF-TrkB signaling in the dorsal
striatum regulates stress sensitivity. Notably, an antidepressant effect was not observed
in stress-naive mice infused with ANA-12 into the dorsal striatum, indicating that striatal
BDNF reflects sensitivity to stress and not to depression-like behaviors.

A recent study proposed a double-hit hypothesis for the onset of depression. This
hypothesis is composed of two combined factors of genetic and environmental elements
in the development of a psychiatric illness, including depression [138,139]. Vulnerability
to the onset of depression is caused by a hereditary factor (first hit; abnormal depression-
related genes), followed by an environmental factor (second hit; life stress) to induce the
onset of the pathogenesis. The RSDS method is used as the environmental factor (second
hit) and classify two groups of mice as vulnerable to the onset of depression or stress
resilience. The results of our study show that vulnerability to social stress in mice, elevated
dorsal striatal BDNF mRNA levels, and local inhibition of BDNF-TrkB signaling induced
resilience to social stress [136], suggesting that BDNF in the dorsal striatum is involved
in the sensitivity to social stress as a hereditary factor related to the onset of depression.
Although BDNF expression requires confirmation in future human studies, these results
support the double-hit hypothesis and provide a novel aspect of stress sensitivity in
depression pathogenesis.

At the end of this section, we summarize the alteration of BDNF levels in the brain,
including PFC, hippocampus, NAc, and dorsal striatum in depression individuals in
Figure 1 and Table 1.



Pharmaceuticals 2021, 14, 889 7 of 17
Pharmaceuticals 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

 
Figure 1. BDNF levels in rodent model of depression. BDNF expression in the PFC and hippocam-
pus was decreased in the RSDS-induced depression model mice. BDNF in the PFC and hippocam-
pus has an anti-depressant effect. BDNF expression in the NAc and dorsal striatum (dSTR) increased 
in a repeat social-defeat stress (RSDS)-induced depression mouse model. BDNF in the NAc and 
dorsal striatum shows a pro-depressant effect. Red arrows: upregulation of BDNF levels. Blue ar-
rows: downregulation of BDNF levels. 
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to have N-acetyl transfer activity and is a protein that synthesizes N-acetylaspartate 
(NAA) from acetyl-CoA and aspartate [141]. NAA is distributed at high concentrations in 
the CNS, and is biosynthesized to N-acetylaspartylglutamate (NAAG) by condensation 
with glutamic acid [142]. NAAG is widely present in the brains of mammals [143] and 
functions as a highly selective neurotransmitter for group II metabotropic glutamate re-
ceptor 3 (mGluR3) [144]. NAAG is metabolized to NAA and glutamate by glutamate car-
boxypeptidase II (GCPII) [145], which are then metabolized to aspartate and acetylate and 
finally converted to acetyl-CoA by aspartoacylase (ASPA) [146]. NAA levels are altered 
in the brains of patients with mental disorders, including depression, schizophrenia, and 
bipolar disorder [147]. 

Shati/Nat8l and NAA have various functions in the CNS. We show that Shati/Nat8l 
in the PFC was related to the reward system. Shati/Nat8l overexpression in mouse PFCs 
(PFC-Shati OE mice) was generated using an adeno-associated virus (AAV) vector. An in 
vivo microdialysis study showed reduced extracellular DA levels and suppression of the 
methamphetamine-induced elevation of DA in the NAc of these mice. These mice also 
showed attenuation of METH-induced conditioned place preference (CPP); however, lo-
comotor activity was not changed [148,149]. 

Figure 1. BDNF levels in rodent model of depression. BDNF expression in the PFC and hippocampus
was decreased in the RSDS-induced depression model mice. BDNF in the PFC and hippocampus has
an anti-depressant effect. BDNF expression in the NAc and dorsal striatum (dSTR) increased in a
repeat social-defeat stress (RSDS)-induced depression mouse model. BDNF in the NAc and dorsal
striatum shows a pro-depressant effect. Red arrows: upregulation of BDNF levels. Blue arrows:
downregulation of BDNF levels.

Table 1. List of studies on depression that investigated BDNF mRNA and/or protein function in the brain.

Brain region Speceie Trials Effect to Depression
Pathogenesis

Alteration of Expression Levels
in Depression Individuals

PFC
Human [69–72]

pro-depressant increasing
Animal [76–81]

Hippocampus
Human [93,94,101,108]

pro-depressant increasing
Animal [30,102–106,109]

Mesolimbic pathway
Human [111]

anti-depressant decreasing
Animal [29,58,110,112,113,122]

Dorsal striatum
Human None

anti-depressant decreasing
Animal [136]

PFC: Prefrontal cortex

3. Shati/Nat8l

We demonstrated that Shati/Nat8l, a mental disorder-related gene, is upstream of
BDNF in the dorsal striatum and upregulates striatal BDNF expression by promoting
epigenetic modification.

Shati/Nat8l was previously identified in the NAc of a mouse model of psychosis
administered repeated methamphetamine treatment [140]. Shati/Nat8l was later recog-
nized to have N-acetyl transfer activity and is a protein that synthesizes N-acetylaspartate
(NAA) from acetyl-CoA and aspartate [141]. NAA is distributed at high concentrations
in the CNS, and is biosynthesized to N-acetylaspartylglutamate (NAAG) by condensa-
tion with glutamic acid [142]. NAAG is widely present in the brains of mammals [143]
and functions as a highly selective neurotransmitter for group II metabotropic glutamate
receptor 3 (mGluR3) [144]. NAAG is metabolized to NAA and glutamate by glutamate
carboxypeptidase II (GCPII) [145], which are then metabolized to aspartate and acetylate
and finally converted to acetyl-CoA by aspartoacylase (ASPA) [146]. NAA levels are altered
in the brains of patients with mental disorders, including depression, schizophrenia, and
bipolar disorder [147].

Shati/Nat8l and NAA have various functions in the CNS. We show that Shati/Nat8l
in the PFC was related to the reward system. Shati/Nat8l overexpression in mouse PFCs
(PFC-Shati OE mice) was generated using an adeno-associated virus (AAV) vector. An
in vivo microdialysis study showed reduced extracellular DA levels and suppression of
the methamphetamine-induced elevation of DA in the NAc of these mice. These mice
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also showed attenuation of METH-induced conditioned place preference (CPP); however,
locomotor activity was not changed [148,149].

Learning and memory are also involved in Shati/Nat8l expression in the hippocampus.
Shati/Nat8l overexpression in the mouse hippocampus (HIP-Shati OE mice) was generated
using an AAV vector; these mice were then subjected to learning and memory tests. In the
novel object test, the HIP-Shati OE mice preferred to approach the novel object in the trial
session compared with control mock mice [150].

Shati/Nat8l and Depression

A recent study in our laboratory provides a deep understanding of the crucial role
of Shati/Nat8l in depression pathogenesis and stress sensitivity, in addition to previous
findings on the function of Shati/Nat8l.

A previous human study showed that Shati/Nat8l was a diagnostic biomarker for
depression [151]. Miyamoto et al. demonstrated increased Shati/Nat8l in the dorsal
striatum following repeated forced-swimming stress [135]. Uno et al. also demonstrated
upregulated striatal Shati/Nat8l expression by RSDS [152]. The expression of Shati/Nat8l
in regions other than the dorsal striatum was not altered in these studies. Furthermore, the
elevation of Shati/Nat8l by chronic stress was observed in stress-susceptible, non-resilient
mice [136]. To investigate the role of Shati/Nat8l in the dorsal striatum in depression,
striatal Shati/Nat8l overexpression (STR-Shati OE mice) and knockdown (STR-Shati cKD
mice) mice were generated. The STR-Shati OE mice were vulnerable to social-defeat
stress. The ratio of stress-susceptible mice after RSDS increased three-fold with Shati/Nat8l
overexpression compared with control mock mice. Furthermore, these mice also showed
susceptibility to microdefeat stress [152]. Decreased serotonin levels were observed in
the brains of STR-Shati OE mice [135]. The impairment of stress sensitivity in these mice
was recovered by treatment with the selective serotonin reuptake inhibitor (SSRI), fluvox-
amine [152], suggesting that the serotonergic system is downstream of the Shati/Nat8l
pathway in depression pathogenesis. In contrast, resilience to RSDS was established by
conditional knockdown of Shati/Nat8l in the dorsal striatum. Unlike in the STR-Shati
OE mice, the ratio of stress-resilient mice increased in STR-Shati cKD mice. In addition,
the Shati cKD mice did not show depression-like behaviors even after strong RSDS, while
almost all control mock mice showed depression-like behaviors after this stress [136]. We
also found increased BDNF and Shati/Nat8l levels in the dorsal striatum in the stress-
susceptible but not stress-resilient mice, as well following RSDS. The expression of dorsal
striatal BDNF was correlated with the expression of Shati/Nat8l in the dorsal striatum,
and BDNF protein levels were suppressed in the Shati cKD mice, suggesting that BDNF in
the dorsal striatum is downstream of Shati/Nat8l [136]. This result supports the alteration
of BDNF mRNA levels in some brain regions of genetic Shati/Nat8l KO mice [153].

To strengthen the evidence of BDNF regulation by Shati/Nat8l in the dorsal striatum,
we investigated BDNF levels in STR-Shati OE mice. BDNF mRNA levels in the dorsal
striatum were shown to increase by overexpression of dorsal striatal Shati/Nat8l compared
to those in mock mice (Miyanishi et al., unpublished data). Considering the function
of dorsal striatal BDNF in stress sensitivity [136], the Shati/Nat8l-BDNF pathway in the
dorsal striatum determines resilience or vulnerability to stress.

As mentioned above, before our previous study, no other study had demonstrated the
role of dorsal striatal function in stress sensitivity. Many studies have shown that networks
control the functions of emotional behaviors, motivation, and negative decision-making
with other brain regions [133,154]. The contribution of the dorsal raphe nucleus (DRN) as a
modulator of stress sensitivity among networks within the dorsal striatum is considerable.
Neurons in the DRN are abundant in serotonin and a lack of serotonin is strongly involved
in depression. The hereditary reduction of serotonin in the brain induced vulnerability to
social stress in mice [155] and the replenishment of serotonin by SSRI is used as the first-line
treatment for depression. These considerations are consistent with our report that dorsal
striatal overexpression of Shati/Nat8l induced vulnerability to stress accompanied by a



Pharmaceuticals 2021, 14, 889 9 of 17

decline in serotonin [135]. The impairment of sensitivity to stress by the overexpression
of Shati/Nat8l in the dorsal striatum was attenuated by activation of DRN or systemic
administration of SSRI [152]. These findings suggested that Shati/Nat8l overexpression in
the dorsal striatum inactivates serotonergic systems from the DRN, thereby suppressing
serotonin release. In this context, the stress resilience observed in STR-Shati cKD mice
was probably induced by the activation of serotonergic neurons from the DRN. As the
Shati/Nat8l-BDNF pathways are involved in sensitivity to stress, these results suggest that
the serotonergic system from the DRN could be downstream of the Shati/Nat8l-BDNF
pathways in the dorsal striatum, indicating that the regulation of serotonin release in the
brain by dorsal striatal Shati/Nat8l-BDNF pathways determines stress sensitivity.

One possible mechanism of BDNF regulation in the dorsal striatum by Shati/Nat8l is
epigenetic regulation. Previous studies have reported that BDNF in the brain is regulated
by epigenetic mechanisms, including histone methylation and acetylation and DNA methy-
lation. Histone methylation and acetylation are generally considered to inhibit and activate
gene transcription, respectively [156,157]. DNA methylation is also a major epigenetic
modification that regulates gene expression [158]. Alterations in histone methylation in
the promoter region of BDNF by stress were associated with depression-like behaviors
in mice [159]. BDNF production was altered by stress via histone acetylation, which then
induced depression-like behaviors in mice [46]. DNA methylation levels in the promoter
region of BDNF also increased after stress exposure [160]. These findings suggested that
epigenetic modifications regulate BDNF and play an important role in depression. In the
dorsal striatum, we found increased acetylation levels at histone H3K9, but not histone
and DNA methylation, in the BDNF promoter regions in stress-susceptible but not stress-
resilient mice [136]. This result is consistent with the upregulation of dorsal striatal BDNF
expression in stress-susceptible mice because histone acetylation generally promotes gene
transcription. In addition, decreased H3K9ac levels were observed in Shati cKD mice, indi-
cating stress resilience. By performing chromatin immunoprecipitation assay, in contrast, it
is showed that overexpression of Shati/Nat8l in the dorsal striatum induced histone H3K9
acetylation (Miyanishi et al., unpublished data). These results indicate that dorsal striatal
BDNF expression is regulated by Shati/Nat8l, which mediates histone H3K9 acetylation.
Shati/Nat8l predominantly produces NAA [161], which is ultimately converted to acetyl-
CoA [146]. Elevation of NAA production via the upregulation of Shati/Nat8l after RSDS in
susceptible mice, followed by an increase in acetyl-CoA, a substrate of histone acetylation,
might cause enhanced H3K9acetylation. NAA levels in the dorsal striatum were increased
in STR-Shati OE mice [152], which were vulnerable to social stress, consistent with our
hypothesis.

To summarized this section, BDNF expression in the dorsal striatum, not but other
regions, is regulated by Shati/Nat8l via epigenetic regulation, followed by determining
the stress sensitivity by modulating serotonergic systems in the DRN. Focusing the region-
specific BDNF regulation by Shati/Nat8l and modulating the DRN by Shati/Nat8l-BDNF
pathway, we review the application of these findings as a novel therapeutic strategy for the
depression in below.

4. Future Prospects

Finally, we discuss the prospects for a novel antidepressant treatment, from a clinical
standpoint. BDNF has been reported to play an important role in depression pathogenesis
in a region-specific manner. BDNF has both pro- and anti-depressant effects; therefore,
the regulation of BDNF in the whole brain is not a beneficial strategy for the treatment of
depression. As the regulation of BDNF by Shati/Nat8l is caused specifically in the dorsal
striatum in response to stress, the downregulation of Shati/Nat8l would allow reduction
of BDNF levels specifically in the dorsal striatum. Our series of studies demonstrated that
the Shati/Nat8l-BDNF pathway in the dorsal striatum controls the DRN, which regulates
the serotonergic system in the brain. Recently, R-ketamine has been used as an appealing
approach for treating depression. A single administration of ketamine induced rapid and
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sustained antidepressant effects, even in patients with treatment resistance [162]. The
effect of R-ketamine was mediated by the activation of serotoninergic systems in the DRN
through the projection from the PFC via AMPA receptor stimulation in the PFC [163].
However, long-term treatment safety requires consideration as ketamine has psychological
side effects such as dissociation, psychotomimetics, and abuse potential [164]. Directly
targeting the DRN, which regulates serotonin in the whole brain, by Shati/Nat8l, showed
a potent antidepressant effect similar to that of ketamine.

5. Conclusions

The reinforcement of resilience to stress suppresses the progression of depression
Reducing stress-induced damage may synergize with therapy for depression and accel-
erate the recovery. The results of our study demonstrate the pro-depressant function of
dorsal striatal BDNF and its relationship to Shati/Nat8l in the biological mechanisms of
stress-sensitivity determination (Figure 2). Decreased of the dorsal striatal BDNF-induced
stress resilience via regulation of Shati/Nat8l may be a beneficial therapeutic strategy for
depression. Taken together, the findings regarding Shati/Nat8l-BDNF pathway in the dor-
sal striatum have provided important insights into the molecular mechanisms underlying
resilience and susceptibility in response to stress; thus, this could be a promising novel
candidate as a therapeutic agent for depression by modulating sensitivity to stress.
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158. Bogdanović, O.; Lister, R. DNA methylation and the preservation of cell identity. Curr. Opin. Genet. Dev. 2017, 46, 9–14. [CrossRef]
159. Xu, H.; Wang, J.; Zhang, K.; Zhao, M.; Ellenbroek, B.; Shao, F.; Wang, W. Effects of adolescent social stress and antidepressant

treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology 2017,
88, 92–101. [CrossRef] [PubMed]

160. Dong, E.; Tueting, P.; Matrisciano, F.; Grayson, D.R.; Guidotti, A. Behavioral and molecular neuroepigenetic alterations in
prenatally stressed mice: Relevance for the study of chromatin remodeling properties of antipsychotic drugs. Transl. Psychiatry
2016, 6, e711. [CrossRef]

161. Toriumi, K.; Mamiya, T.; Song, Z.; Honjo, T.; Watanabe, H.; Tanaka, J.; Kondo, M.; Mouri, A.; Kim, H.-C.; Nitta, A.; et al. Deletion
of SHATI/NAT8L decreases the N-acetylaspartate content in the brain and induces behavioral deficits, which can be ameliorated
by administering N-acetylaspartate. Eur. Neuropsychopharmacol. 2015, 25, 2108–2117. [CrossRef]

162. Zarate, C.A.; Singh, J.B.; Carlson, P.J.; Brutsche, N.E.; Ameli, R.; Luckenbaugh, D.A.; Charney, D.S.; Manji, H.K. A Randomized
Trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 2006, 63, 856–864.
[CrossRef]

163. Fukumoto, K.; Iijima, M.; Chaki, S. The antidepressant effects of an mGlu2/3 receptor antagonist and ketamine require AMPA
receptor stimulation in the mPFC and subsequent activation of the 5-HT neurons in the DRN. Neuropsychopharmacology 2015, 41,
1046–1056. [CrossRef]

164. Shin, C.; Kim, Y.-K. Ketamine in major depressive disorder: Mechanisms and future perspectives. Psychiatry Investig. 2020, 17,
181–192. [CrossRef] [PubMed]

http://doi.org/10.1016/j.neulet.2012.08.028
http://doi.org/10.1016/j.pnpbp.2019.109797
http://www.ncbi.nlm.nih.gov/pubmed/31669508
http://doi.org/10.1073/pnas.1416866112
http://www.ncbi.nlm.nih.gov/pubmed/25675490
http://doi.org/10.1007/s10620-017-4538-6
http://doi.org/10.2174/1574888X12666170817141921
http://doi.org/10.1016/j.gde.2017.06.007
http://doi.org/10.1016/j.psyneuen.2017.11.013
http://www.ncbi.nlm.nih.gov/pubmed/29195162
http://doi.org/10.1038/tp.2015.191
http://doi.org/10.1016/j.euroneuro.2015.08.003
http://doi.org/10.1001/archpsyc.63.8.856
http://doi.org/10.1038/npp.2015.233
http://doi.org/10.30773/pi.2019.0236
http://www.ncbi.nlm.nih.gov/pubmed/32209965

	Introduction 
	The Role of Brain-Derived Neurotrophic Factor in the Pathology of Depression 
	Prefrontal Cortex 
	Hippocampus 
	Mesolimbic Pathway 
	Dorsal Striatum 

	Shati/Nat8l 
	Future Prospects 
	Conclusions 
	References

