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Abstract: In the last decades, organoselenium compounds gained interest due to their important
biological features. However, the lack of solubility, which characterizes most of them, makes their
actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not
suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this
review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts,
selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of
course, it will not be a comprehensive dissertation but an analysis of what the authors think is the
cream of the crop of this interesting research topic.

Keywords: selenium; sugar; selenoglycosides; water-soluble

1. Introduction

Organoselenium compounds are gaining interest in the medicinal chemistry community due to
their promising biological activities for a wide range of clinical applications [1–7]. Starting from Ebselen,
the first compound showing the ability to function as glutathione peroxidase (GPx) mimetic [8], several
Se-bearing molecules were reported as anticancer [9–12], anti-inflammatory [13,14], antidepressant [15,16],
and antibacterial [17–19], among others. Worth mentioning, some of us developed the DiSeBAs class of
compounds [20], endowed with a potent anti-HIV activity due to their ability to inhibit the key viral
protein NCp7 [21,22]. In the antiviral research field, Ebselen was recently discovered as the most potent
inhibitor of the main protease belonging to the pandemic coronavirus SARS-Cov-2 [23].

The analysis of the physicochemical properties of investigational molecules is a pivotal aspect for
scientists involved in designing a pharmacologically active compound. In particular, a certain degree
of aqueous solubility is a feature that a compound needs to possess to become bioavailable when
administered orally [24,25]. Even if organoselenium compounds do showcase important biological
properties, their actual clinical exploitability could be hampered by the low aqueous solubility
which precludes them from reaching therapeutically relevant doses in blood. A possible strategy to
overcome this barrier is to combine the important pharmacological properties of selenium with the
physicochemical properties of sugars, leading to the class of selenosugars and their derivatives, that
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are the object of the present review article. With this in mind, we aim to review the organoselenium
compounds endowed with the highest aqueous solubility, at least from a chemical point of view. Most
of the selenosugars developed to date will be herein detailed highlighting both the pharmacological
and the synthetic aspects, in order to equip the reader with useful knowledge to introduce this useful
building block in designed compounds.

2. Selenopyranes and Selenofuranes

One of the first attempts to explore the synthesis of selenocarbohydrates is reported in the works of
Schiesser’s group, collected in a recently published perspective [26]. Their interest was mainly focused
on the synthesis of both selenopyranes and selenofuranes as potent water-soluble selenium derivatives
able to act as potential antioxidants endowed with good oral bioavailability. Based on his experience
on the selenium free-radical chemistry, Schiesser proposed the synthesis of 5-seleno-D-pentopyranose
protected sugars 1–7 (Figure 1), using two different approaches [27].
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Figure 1. Structures of the 5-seleno-pentopyranose.

As depicted in Scheme 1, compound 1 was successfully isolated as a mixture of anomers through an
intramolecular homolytic substitution mediated by samarium(II) iodide, that triggers the formation of
the radical intermediate 10 from the seleno-aldehyde 9, which was in turn obtained from D-ribose [27].
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The same strategy was applied for the synthesis of 2 and 3 starting from D-Xylose and D-Arabinose,
respectively. On the other hand, compounds 4–7 were prepared by thermolysis of the selenoformate
precursors, in which an intramolecular nucleophilic attack of the benzylselanyl group took place, followed
by the expulsion of carbon dioxide. Compound 4 was prepared starting from D-arabinose, which was
converted into 2,3,4-tri-O-benzyl-5-O-methanesulfonylarabinose 11 then reduced with NaBH4 and
selenofunctionalized through the reaction with benzylselenolate, giving the selenide 12. Compound 12
was then activated as selenocarbonate 13 and finally thermally converted into the target selenosugar 4.
The same synthetic strategy was adopted for the synthesis of 5 but starting from L-arabinose (Scheme 2).
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Scheme 2. Synthesis of compound 4.

The synthesis of protected sugars 6 and 7 required a slight modification of the synthetic route
to overcome stability issues related to D-ribose and D-xylose analogues of compound 11, hence,
the dithioacetals 14 was used instead of the unprotected aldehyde (Scheme 3).
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Unfortunately, all the above compounds were not isolated as free sugars due to several issues related
to the removal of benzyl groups, which hampered the deprotected derivatives to be obtained. Compounds
17–23 (Figure 2) were instead prepared after the authors developed a different synthetic strategy.

Compounds 17 and 18 were efficiently obtained starting from D-mannose, which was firstly
regioselectively protected and then reduced, giving the diol 24, that was successively activated by
bismesylation for the subsequent selenium nucleophilic substitution, affording 17 after deprotection
using TFA (Scheme 4). For the selenosugar 18, a C-5 double inversion strategy was necessary. The diol
24 was quantitatively protected with TBSCl and then subjected to Swern oxidation, yielding 26 in
nearly quantitative yield. The keto moiety was stereoselectively converted into the key alcohol by
employing the Luche-type reductive conditions, and then activated as mesylate in compound 27.
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Finally, its treatment with an ethanolic solution of Na2Se and the successive acidic deprotection gave
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Similarly, seleno-L-gulitol 19 was obtained starting from D-glucose following a similar synthetic
pathway, in which selenium is introduced as a nucleophile (Scheme 5) [29].
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A freshly prepared solution of Na2Se in ethanol was used also for the preparation of 5-membered
selenofurans 20–23, as depicted in Scheme 6. As example, the synthesis of the pyranose 1,4-dideoxy-
4-seleno-D-talitol 20, began from D-mannose, which was reacted with 2,2-dimethoxypropane in the
presence of catalytic p-toluenesulfonic acid to give the aldehyde 30. The reduction of 30 with sodium
borohydride in methanol, followed by reaction with MsCl gave the corresponding bismethanesulfonate
intermediate 31. Compound 31 was then converted into the protected selenosugar and finally deprotected
by treatment with trifluoroacetic acid in dichloromethane [29].
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Similarly to 20, compounds 21–23 were obtained from L-mannose, L-mannitol, and D-ribonic
γ-lactone, respectively, adopting the same synthetic protocol (Scheme 6) [26].

As previously alluded, the great interest in these compounds is related to their ability to act as
scavengers against powerful biological oxidants such as hypohalous acids (HOX, X = Cl, Br) produced
by mieloperoxidase (MPO) at inflammation sites, and peroxynitrous acid (ONOOH) produced by the
activated macrophages. All the above-mentioned oxidants are part of the cellular arsenal defense
against pathogens and at low concentrations act as a key signal for the innate immune response [30,31].
Therefore, their production is finely controlled and perfectly balanced. As these finely controlled
defense mechanisms are perturbed, the so-called “oxidative stress” status occurs [32], leading to
a number of human diseases such as asthma, metabolic disorders, cardiovascular diseases, some
neurodegenerative conditions, just to cite some [33].

The second-order rate constant of sugars 17–20 with hypohalous acid has been determined to
explore the ability of such compounds to protect sensitive biological targets (such as thiols, sulfides,
proteins, nucleic acids, etc.) against oxidative damage. The 1,4-anhydro-4-seleno-D-talitol (SeTal,
20) has revealed itself as a very interesting case study, showing good scavenger activity for several
biological relevant oxidants (HOCl, HOBr, HOSCN, ONOOH) in vitro and in human plasma [29,34].

SeTal reacts removing these dangerous chemicals and turns into the corresponding selenoxyde
derivative, which is then reduced back to selenide thanks to the abundant presence of cellular thiols,
such as glutathione (GSH, Figure 3) [35]. Given its high antioxidant profile, SeTal (20) was further
investigated regarding its potential therapeutic application in the context of the wound healing process.

Impaired wound healing is a key marker of type 2 diabetes, where endothelial disfunction is
related to high glucose levels that triggers the formation of reactive oxygen species (ROS). In vitro
studies have showed that SeTal (20) prevents high-glucose-induced endothelial dysfunction in mouse
aorta, suggesting that this selenosugar is capable of repairing endothelial dysfunction brought on by
the diabetic condition [36]. In light of this, compound 20 was tested for its ability to restore the wound
healing process in vivo. Investigations carried out on diabetic mice showed a significant increase of
wound healing from 40% to 80% after 10 days using a 1 mM solution of selenosugar. The wound-healing
properties of SeTal were found to be superior to that of other water-soluble selenides [26].



Pharmaceuticals 2020, 13, 211 6 of 27

Pharmaceuticals 2020, 13, 211 6 of 28 

 

healing process in vivo. Investigations carried out on diabetic mice showed a significant increase of 
wound healing from 40% to 80% after 10 days using a 1 mM solution of selenosugar. The wound-
healing properties of SeTal were found to be superior to that of other water-soluble selenides [26]. 

 
Figure 3. Catalytic cycle of 1,4-anhydro-4-seleno-D-talitol (SeTal) (20). 

Selenopyranoses, bioisosters of natural O or N-containing sugars, have been also investigated as 
glycosidase inhibitors. Glycosidases are a group of enzymes that catalyze the hydrolysis of glycosidic 
linkages degrading oligosaccharides and glycoconjugates [37]. Their broad activity makes them 
suitable targets for the development of anticancer, anti-type 2 diabetes, and antiviral agents [38]. 

Recently, Merino-Montiel et al. reported the synthesis of compound 32 and tested its ability to 
act as a glycosidase inhibitor in analogy with the natural, potent inhibitor isofucofagomine 33. 
Starting from L-arabinose, the synthetic strategy relies on the formation of the key activated 
intermediate 34, which reacted with nucleophilic selenium generated in situ by reduction of 
elemental selenium with NaBH4 (Scheme 7). The authors were also interested in understanding how 
the oxidation state of selenium affects its biological activity, and therefore the methylated and 
oxidized derivatives 36 and 38 were also prepared. Compounds 32, 36, and 38 were investigated for 
their ability to inhibit α- and β-glucosidase as well as α-L-fucosidase. A beneficial effect of the positive 
charge on the selenium atom reflected by the higher activity of compound 36 with respect to 32 was 
observed. Furthermore, selenoxide 38, although less active with respect to the natural iminosugar 33, 
showed high selectivity for the α-L-fucosidase. Besides, the ability to mimic the antioxidant activity 
of Gluthathione Peroxidase (GPx) was also tested by evaluating the capacity of the protected 
compound 35 for scavenging hazardous ROS, such as hydrogen peroxide. When tested at 10 mol %, 
compound 35 displayed a T50 of 32 min [39]. 

 
Scheme 7. Synthesis of Se-analogues of isofucofagomine. 

  

L- Arabinose

OMsMsO

34

Se, NaBH4, 

EtOH
O

O

Se

O
O

Se

OH
OH

Se

O
O

H3C O
TfO

35, 69%

37, 84%

H2O2

36, > 99%

MeOTf

Se

OH
OH

O

38, >99%

TFA

Se

OH
OH

3332, 67%

TFA

H
N

OH
OH

isofucofagomine

Figure 3. Catalytic cycle of 1,4-anhydro-4-seleno-D-talitol (SeTal) (20).

Selenopyranoses, bioisosters of natural O or N-containing sugars, have been also investigated as
glycosidase inhibitors. Glycosidases are a group of enzymes that catalyze the hydrolysis of glycosidic
linkages degrading oligosaccharides and glycoconjugates [37]. Their broad activity makes them suitable
targets for the development of anticancer, anti-type 2 diabetes, and antiviral agents [38].

Recently, Merino-Montiel et al. reported the synthesis of compound 32 and tested its ability to act as
a glycosidase inhibitor in analogy with the natural, potent inhibitor isofucofagomine 33. Starting from
L-arabinose, the synthetic strategy relies on the formation of the key activated intermediate 34, which
reacted with nucleophilic selenium generated in situ by reduction of elemental selenium with NaBH4

(Scheme 7). The authors were also interested in understanding how the oxidation state of selenium affects
its biological activity, and therefore the methylated and oxidized derivatives 36 and 38 were also prepared.
Compounds 32, 36, and 38 were investigated for their ability to inhibit α- and β-glucosidase as well as
α-L-fucosidase. A beneficial effect of the positive charge on the selenium atom reflected by the higher
activity of compound 36 with respect to 32 was observed. Furthermore, selenoxide 38, although less
active with respect to the natural iminosugar 33, showed high selectivity for the α-L-fucosidase. Besides,
the ability to mimic the antioxidant activity of Gluthathione Peroxidase (GPx) was also tested by evaluating
the capacity of the protected compound 35 for scavenging hazardous ROS, such as hydrogen peroxide.
When tested at 10 mol %, compound 35 displayed a T50 of 32 min [39].
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3. Selenonium Salts

Selenonium salt derivatives of selenosugars are surely worth mentioning. They were initially
prepared as a result of the pioneering work of Pinto and colleagues, who first developed the synthetic
protocol for their preparation.
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The interest of Pinto’s group was related to the development of selenium isosters of the active
sulfonium salt derivatives, largely distributed in the plants of Salacia species. In particular, the root,
leaf, and stem extracts from Salacia reticulata have been widely used in the Ayurvedic and traditional
medicine for the treatment of diabetes and as a food supplement due to its ability to prevent obesity,
especially in Japan and the USA [40,41]. Diabetes is a complex metabolic disease often associated with
cardiovascular complications and other pathologies. The WHO (World Health Organization) has esteemed
60 million people affected by diabetes in the European area, with a large increase in different age groups.
Type 2 diabetes is considered one of the main causes of morbidity and mortality worldwide which,
unfortunately, is predicted to increase its spread, and more importantly, it is the fourth cause of death
in most of the developed countries [42]. Therefore, the prevention, as well as the development of good
therapeutic strategies able to control the high levels of glucose and all of the diabetes complications, are
highly desirable.

The active compounds from Salacia species are displayed in Figure 4. Salaprinol (39), salacinol
(41), ponkoranol (43), kotalanol (45), and the corresponding de-O-sulfonated derivatives 40, 42, 44,
and 46 (Figure 3) have been correlated with the ability to modulate both lipidic and carbohydrate
metabolism, in the latter case because of their glycosidases inhibitory property [41,43].
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Over a decade, Pinto and co-workers largely contributed to the structural elucidation of the cited
active components of Salacia species [44]. In addition, they widely explored the structural modifications
of such compounds and the effect on the inhibitory activity of maltase-glucoamylase (MGAM) and
sucrase-isomaltase (SI) [45–47]. Both MGAM and SI are intestinal α-glucosidase enzymes responsible for
the hydrolysis of polysaccharides resulting in the glucose release and absorption, therefore considered
suitable targets for the development of anti-diabetes drugs [48].

The introduction of selenium as a replacer of sulfur in the aldose skeleton of salacinol (compound 41,
Figure 4) resulted in blintol (47, Figure 5), which showed a really good inhibitory activity against
human intestinal glucosidases. The activity was explained by a perfect superimposition of 1,4-anhydro-
4-seleno-D-arabinitol ion with the oxacarbonium intermediate from the transition state of the glycoside
bond breakage [49]. Starting from blintol, Pinto’s group has synthesized and investigated a great
variety of derivatives that will be hereafter briefly summarized in two main groups:

• Modifications of the heterocyclic ring, and
• Modification on the polyhydroxylated chain.
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3.1. Modification of the Heterocyclic Ring

The replacement of sulfur by the heavier chalcogen selenium positively affected the inhibition
activity against glycosidase enzymes, showing also the ability to be selective on some of them. Indeed,
compound 47 was capable of inhibiting three glycosidase enzymes, namely glucoamylase G2, porcine
pancreatic R-amylase, and barley R-amylase, beside the human MGAM [50,51]. The synthesis and
investigation of the six-member analogue, 1,5-anhydro-1-seleno-L-gulitol derivative 48 and a different
heterocycle configuration, 1,4-anhydro-1-seleno-D-talitol 49, was also reported (Figure 5).

Worth mentioning, the ring-expansion negatively affected the inhibitory activity. As a result,
compound 48 is a worse glycosidase inhibitor than 47, highlighting that the five-member ring is a key
structural element for the activity. Furthermore, it has been demonstrated that the configuration of the
D-arabinitol ring is another key feature, determinant for the activity [52,53].

3.2. Modification on the Polyhydroxylated Chain

Considering the good activity of the C-7 extend chain derivative kotalanol (compound 45, Figure 4)
attention has been dedicated to the synthesis of different C-5′, C-6′, C-7′ polyhydroxylated chain
derivatives, in which also the stereochemistry of the substituents and the sulfonate group have been
modified. In Figure 6 some selected examples are reported.
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As a general trend, it can be concluded that the elongated chain does not significantly increase
the interaction with the active site of the enzyme. The stereochemistry of C-2′ and C-4′ is pivotal for
the activity, indeed only the (2S,4R)-isomer 50 is capable of inhibiting the enzyme. The shifting of
the sulfonate group from C-3′ to C-4′ resulted in a less potent compound, while the de-O-sulfonated
derivative 53, showed an increased inhibition activity against C-terminal sucrase isomaltase [49,54,55].

Envisioning the need for a large amount of the potential drug candidate in a prospective clinical
application, Pinto and co-workers developed an optimized, cost-effective, synthetic protocol able to
yield a gram-scale synthesis of blintol (47). From a retrosynthetic perspective, compound 47 can be
achieved by linking the two key syntones, namely 2,3,5-tri-O-p-methoxybenzyl-1,4-anhydro- 4-seleno-
D-arabinitol (54) and 2,4-O-benzylidene-L-erythritol-1,3-cyclic sulfate (55), the latter can be in turn
prepared in five steps starting from D-glucose instead of the more expensive L-glucose (Scheme 8) [56].Pharmaceuticals 2020, 13, 211 9 of 28 
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Focusing on the synthesis of intermediate 54, that is displayed in Scheme 9, there are several points
of interest, such as the proper choice of the protecting groups, for example, p-methoxybenzyl instead
of benzyl ether, which can be easily removed under mild acid conditions; moreover, the use of boric
acid in the first step allows to push the equilibrium toward the formation of the furanoside structure,
giving access to the protected derivative 56 in a one pot, two steps procedure. A careful investigation
was also made to select n-pentenyl as the selective protecting group of the anomeric-hydroxyl group in
compound 57, which was then easily converted to compound 59, using N-bromosuccinimide (NBS).
Finally, the treatment with NaBH4, followed by the reaction with MsCl gave the activated intermediate
60, that reacted with nucleophilic selenium generated in situ, affording the desired key intermediate 54
in a 20% overall yield [56].
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4. Selenoglycosides

Selenoglycosides are a class of selenosugars that appeared in the literature in the early 1950s [57],
in which the bridging oxygen of the glycosidic bond is replaced by selenium [58]. While their main
biological property is the inhibition of glycosidase enzymes, which are unable to break the Se-glycosidic
bond, they find synthetic applications in glycosylation procedures for oligosaccharides synthesis [59–62].
Selenoglycosides are used in crystallography thanks to the anomalous dispersion of selenium in
response to X-ray irradiation; in this context, the methylselenoglycoside of N-acetylglucosamine was
employed as a ligand mimetic for the structural determination of carbohydrate-binding protein F17-G
adhesin [63]. More recently, the human galectin-9 N-terminal carbohydrate recognition domain was
crystallized with the aid of selenosugars [64]. In the same context, dodecyl-β-selenomaltoside has been
successfully utilized as a detergent for stabilizing membrane proteins in water [65].

As reported in the general Scheme 10, selenoglycosides 61 can be prepared by installing the
selenium at the anomeric carbon through a classic Koenigs–Knorr type procedure, where the chalcogen
belongs to the aglycone that reacts with a protected sugar containing a leaving group (62, path A).
Usually, the nucleophilic selenolate is used as such, as pioneeringly reported by Bonner and Robinson in
the reaction of benzenselenol with peracetyl-α-d-glucopyranosyl bromide [57], and more recently by Di
Bussolo and co-workers [66]. Alternatively, it is prepared in situ by the reduction of the corresponding
diselenides, far more stable and easy-to-handle [67,68]. Examples of this kind of chemistry were
reported by Misra, who has developed efficient, indium iodide and zinc-promoted Se-Se bond cleavage
procedures [69,70]. These reactions proceed with inversion of the configuration at the anomeric carbon
and, sometimes, it is not compatible with the protecting groups already present in the sugar.

Alternatively, selenoglycosides can be obtained following path B, where the leaving group-containing-
protected sugar reacts with potassium selenobenzoate through, supposedly, a SN2 mechanism, affording
compound 63 that, after the treatment with MeONa, gives the glycosilselenol 64, which is a good
precursor to prepare 61 and other derivatives [71]. The potassium analogue of 64, compound 66, can be
prepared from the potassium hydroxide-promoted decomposition of the selenopseudoureido derivative
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65, that was in turn prepared through the reaction between selenoureas and 62 (path C). Interestingly,
the potassium salt 66 was further evolved into the diselenides 67 [72], valuable compounds per se, but also
precursors of nucleophilic (Scheme 10), electrophilic [73], or radical selenium- centered reagents [74].
Sugar diselenides were awfully prepared by Braga and Ludtke using Li2Se2 as selenylating agent [75,76].
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A recent evolution of the path C methodology was reported by Kumar et al., who prepared
selenonucleosides starting from commercially available, activated sugars (69, Scheme 11) and selenourea.
The resulting isoselenuronium salts 70 were isolated and then functionalized with various alkyl, aryl,
and acyl moieties or monosaccharides [77]. The authors prepared more than 30 compounds, all deprotected
under basic conditions (compounds 72).Pharmaceuticals 2020, 13, 211 11 of 28 
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Scheme 11. Synthesis of compound 72.

More recent approaches to prepare these selenocompounds are summarized in Scheme 12. Kiso
and co-workers reported a transacetalization reaction between benzyloxymethyl alkyl selenide (73)
and the glicosylimidate 74, leading to the selenoglycosides 75 in high yields. The selenoacetals 73 were
obtained by nucleophilic displacement of 76 with freshly prepared selenolates [78].

Very recently, Townsend and Guan reported the SN2 reaction between peracetylated α-glucosyl
(69a) and α-galactosyl bromides and the selenolate formed in situ through the NaBH4 promoted
reduction of arylselenocianates 77. The reaction afforded stereoselectively the β−anomer as a result of
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the bimolecular nucleophilic displacement. Worth mentioning, the stated selenocyanates were smartly
obtained by arylation of potassium selenocyanate using as electrophilic partner variously functionalized
diaryliodonium salts 78 [79].
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OtherexoticSe-centerednucleophilesusedinthepreparationofselenoglycosidesare theselenocarboxylate
anions 79. They can be prepared by reacting carboxylic acids with Woollins’ reagent [80] or by the
nucleophilic activation of p-methylselenobenzoic anhydride 80 [64]. Examples of their reactivities
in the synthesis of selenoglycosides are reported in Scheme 13. Compound 79 adds to the benzyl
protected glucal 81, yielding cleanly and stereoselectively the α-adduct 82. The nucleophilic displacement
of the α-bromo- peracetyl-d-Glucose gave the protected β-selenosugar 83 [80]. The removal of the
p-methylbenzoyl group is feasible and gives the selenolate anion 84, that acts as synthetic handle
to further modify the selenosugars with alkyl and aryl groups, or to prepare selenodisaccarides
or, finally, aminoacyl decorated selenosugars [81]. Selenolactose derivatives, obtained through the
above-mentioned methods, were used to solve the crystal structure of the human galectin-9 N-terminal
carbohydrate recognition domain. Interestingly the X-ray structure of the selenosugar containing
protein was almost the same of the lactose-containing one highlighting that the introduction of the
heavier chalcogen did not affect the relative positions of either the protein or the ligands but made the
analysis easier [64].Pharmaceuticals 2020, 13, 211 12 of 28 
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Using the piperidine-promoted activation of compound 80, Davies and colleagues prepared the
selenoester 86, that was converted into the sugar diselenides 87 for the synthesis of glycoconjugated
molecules bearing the unusual Se-S linkage (Scheme 14). Compound 89, derived from the reaction
between 87 and reduced glutathione 88, is known as “Hepatic Se metabolite A”, which was prepared
synthetically because it was just observed, but never isolated from living systems. More complex
peptides were also decorated with selenosugars exploiting the same approach [82,83].
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Compound 83 (R = p-MeC6H4, Scheme 13) was reported as inhibiting melanin synthesis in the
context of a wider study aimed to identifying selenocarbohydrates endowed with the ability to modulate
the melanin production in melan-a cells through the inhibition of tyrosinase, an enzyme which regulates
the melanogenesis. The discovery of tyrosinase inhibitors is important for developing whitening products
in both cosmetics and medicine [84].

Selenoglycosides found application in oligosaccharide synthesis. As shown in Scheme 15, Yamago
proposed a sort of armed and disarmed glycosylation strategy based on the ability of alkylarylselenides
to react with molecular bromine affording the corresponding aryldiselenides and the sugar bearing a
bromo group in the β-anomeric position. The installation of the bromo group served for the reaction
with a second selenosugar, that acts as glycosyl acceptor thus forming the disaccharide 93. Once formed,
93 undergoes activation with the bromo group and then reaction with further selenosugars in order to
obtain polysaccharides [85]. This approach was later extended to the combinatorial synthesis of a library
of oligosaccharides [86].
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Starting from diselenoglycosides, Braga and Ludtke reported the functionalization of selenolates formed
in situ with protected aziridines, affording more complex selenocarbohydrates, named neoglycoconjugates [87].
As depicted in Scheme 16, the furanose derived diselenide 95, prepared through the reaction of Li2Se2
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and tosyl furanose 94, was reduced to the corresponding selenol 96, which was not isolated but rapidly
reacted with variously functionalized, protected aziridines, giving the target compound 97.
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Pseudodisaccharides, where selenium links the two monosaccharides in a position different from
the anomeric one, were also obtained [88,89] and the synthetic methods for their preparation were
recently collected in a review article in which also their biological properties are discussed. Briefly,
selenopseudo disaccharides were studied as lectin binders, that may have a number of potential
therapeutic applications such as antibacterial (inhibitors of bacterial lectins), anti-inflammatory
(selectins inhibitors), or anticancer (galectins inhibitors) agents [90].

5. Phosphoroselenoate Oligonucleotides

Several papers and procedures in the literature report the synthesis and the biological properties
of phosphoroselenoates, nevertheless, to the best of our knowledge, no review articles have covered
this specific topic. The first report focused on the synthesis of phosphoroselenoate oligonucleotides
(Figure 7) can be traced back to 1984, with the paper of Stec and colleagues [91]. Five years later,
Mori et al. studied their biological properties as anti-HIV agents [92]. The synthetic methodology
mainly relied in the late stage functionalization of phosphite intermediates with KSeCN, giving in
general poor yields, even if in the context of an automated procedure [91].
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Figure 7. Structures of the phosphoroselenoates synthesized by Stec and studied by Mori.

More recently, Conlon and co-workers proposed the synthesis of phosphoroselenolate oligomers
using a multi-step protocol with better yields [93]. As shown in Scheme 17, the first step is the substitution
of the tosyl group in the nucleoside 99 at the C-5 position by using an excess of potassium selenocyanate
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under microwave irradiation, in order to obtain the 5′-selenocyanate nucleoside 100 in 75% yield.
The key step of the synthesis is the Michaelis–Arbuzov reaction of the methyl-protected nucleoside
3′-H-phosphonate 101 with compound 100, that afforded the phosphoroselenolate-bridged dimer 102
with high efficiency. The presence of 2,6-lutidine served to improve the solubility of 100 in CH3CN, and all
the dimers were obtained as diasteroisomers. Finally, the phosphitylation of the dimers allowed the
preparation of the corresponding phosphoramidites 103, which were then used as starting materials for
the successive solid-state synthesis of oligomers, the actual target of these studies [93,94]. These selenium
containing oligomers were used to observe conformational changes within nucleic acids during folding,
recognition, and processing by applying the selenium single wavelength anomalous diffraction.
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Scheme 17. Synthetic pathway to obtain the phosphoroselenolates through Michaelis–Arbuzov reaction.
R is 4,4′-dimethoxytrityl (DMTr) or 4-methoxytrityl (MMTr); CE: 2-cyanoethyl, and B is one of the DNA
bases Cyt, Thy, Gu, Ad.

Alternatively, the phosphoroselenoate fragment can be obtained using H-phosphonoselenoate
monoester 104 as starting material, as described by Bartoszewic et al. (Scheme 18). After an iodine-
mediated oxidative pathway, 104 was converted to the intermediate iodoselenyl 105, with a P(III).
Under basic conditions, the phosphorus oxidation takes place with the concomitant elimination of
iodide, forming the compound 106. The target compound 107 was finally obtained by the treatment
of 106 with water (R2 = H) or alcohols. The general concept was then applied to the synthesis of
dinucleosides. In particular, compound 110 was prepared as a 1:1 diasteromeric mixture, as determined
by 31P NMR, in 77% yield [95].

In 2009, Kowalska and co-workers reported the synthesis of asymmetric phosphoroselenolates,
useful as synthetic RNA Cap analogue, and a valuable tool for studying mRNA translation and
turnover. As reported in Scheme 19, the treatment of tris(trimethylsilyl)phosphite with elemental
selenium in pyridine led to the unstable tris(trimethylsilyl)phosphoroselenoate 111 that, in the presence
of the nucleoside 112 and an excess of ZnCl2 as Lewis acid, gives the more stable and easy-to-handle
intermediate 113. This latter was then converted into the target compound 115, after its reaction with
the imidazole-containing nucleotide 114.

Compound 115 was obtained as a mixture of diasteroisomers, both submitted to biological
evaluation for the binding affinities with the eukaryotic initiation factor 4E (elF4E), a protein responsible
for rRNA Cap recognition during the initiation of translation. The presence of selenium generally
stabilized the interaction with elF4E, and, as a result, compound 115 binds with higher affinity than the
O-containing Cap analogues, and similarly to sulfur-containing ones. The mRNA sequences having
incorporated compounds 115 at their 5′ends were efficiently translated, proving that the presence
of phosphoroselenoates does not disturb the mRNA’s functionality [96]. These derivatives can be
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exploited to RNA-based gene therapy where mRNAs encoding viral- or tumor-associated antigens are
transfected in the host dendritic cells triggering an autoimmunization process.
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6. Se-Nucleosides

6.1. Selenium in the Sugar Backbone

Selenium-containing nucleosides are conceived as the next generation of nucleosides that may
serve as starting point for the development of antiviral and anticancer drugs [97–105]. Indeed,
the modification of the furanose ring has resulted in many marketed drugs [106]. To the best of our
knowledge, the most recent example of 4′-selenonucleoside synthesis was reported in 2019 by Lee and
co-workers, who described a procedure to obtain pyrimidine and purine 4′-selenonucleosides meant
to act as anti-HCV agents [107].

As reported in Scheme 20, the authors have chosen the 2-C-methyl-D-ribono-γ-lactone 116 as
starting material that, in a three steps telescopic reaction, was converted into the protected lactone 117
with an inverted configuration at the C-4. In the next step, 117 was protected at the primary alcohol
with TBDPSCl, generating the intermediate 118, which was subjected to a ring-opening reaction under
reductive conditions to give 119. In the sequence, the diol 119 was activated as mesylate and subjected to
double nucleophilic substitution with freshly prepared Na2Se, leading to 121 in fairly good overall yield.Pharmaceuticals 2020, 13, 211 17 of 28 
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Scheme 20. Synthetic pathway to obtain the selenosugar 121.

With the protected selenosugar synthon 121 in hands, it was converted in both pyrimidines and
purines nucleosides. The pyrimidine analogues 124 were prepared converting the selenosugars into a
glycosyl-donor (122) and then decorated with the base through the Pummerer reaction [108], affording
the compounds 123, which were deprotected under acidic conditions. The target purine compound
128 was prepared converting the synthon 121 into the acetoxyl derivative 125, through a Lewis acid
catalyzed Vorbrüggen condensation. Compound 125 was then functionalized with 6-chloropurine,
deprotected and aminated at the C-6, affording the target selenosugar 128 (Scheme 21).

In the same work, the authors converted purine and pyrimidine derivatives into phosphoramidate
prodrugs, in order to obtain products more likely to have anti-HCV activity. Unfortunately, none of the
synthesized compounds showed appreciable antiviral activity.

The big issue associated to the replacement of oxygen with selenium in the furanose ring is that the
resulting nucleoside cannot be converted into the corresponding nucleotide because the cellular kinase is
sterically hindered by the presence of the bulky selenium with its 4p orbitals, and the phosphorylation at
the 5′ position is hampered [99,100]. As a result, such compounds lack biological activity. Among the
exceptions, a selenonucleoside (LJ-2618) developed by Lee and colleagues, and biologically profiled in
2018, showed antitumoral potential in vivo and in vitro against paclitaxel-resistant prostate cancer cells.
The plausible mechanisms by which LJ-2618 inhibits the growth of cancer cells may be a Skp2-dependent
p27 stabilization [109].
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Scheme 21. Synthetic pathway to obtain the selenosugars 124 and 128.

In order to relieve the steric clash which prevents the cellular phosphorylation, Sahu and co-workers
developed a synthetic route to obtain one carbon homologue of 4′-selenonucleosides, namely 5′-homo-
4′-selenonucleosides with improved antiviral activity, thus better substrates of cellular kinases when
compared to the regular 4′-selenonucleosides. The synthetic route, depicted in Scheme 22, started with
the Wittig reaction on the 2,3-O-isopropylidene-l-erythrofuranose 129, followed by the activation of the
OH group as mesylate, affording 130 in a mixture with its E-isomer. In the presence of sodium selenide,
130 undergoes concomitant mesyl displacement and intramolecular Se-Michael addition, affording 131
in good yield but as a D/L mixture. Smartly, to isolate the target D compound 131a, the D/L mixture was
hydrolyzed with aqueous TFA and then treated with 2,2-dimethoxypropane in the presence of p-TsOH.
In this way, the undesired L diasteroisomer was separated and discarded as the lactone 132. In the same
article, efforts were made to shift the stereoselectivity toward the D-isomer, by placing bulky groups
such as TBS or TBDPS on the 2′ and 3′ positions of the starting sugar obtaining the target D compound
in fourfold excess with respect to the undesired one [110].

With the desired selenosugar 131a in hands, the target carbon chain-extended nucleosides 136 and
139 were prepared by an initial lithium aluminum hydride reduction of the ester and protection with
the tert-butyldiphenylsilyl group (TBDPS) yielding compound 133 that was converted into the key
glycosyl-donor 134 by oxidation with m-CPBA. The intermediate 134 was condensed with the uracil
base, and finally deprotected to afford 136 or, alternatively, it reacted with acetic anhydride to give the
key synthon 137, that was condensed with silylated chloropurine and finally deprotected to obtain the
compound 139 (Scheme 23). The biological evaluation of compounds 136 and 139 clearly revealed that
the homologation beneficially influenced the pharmacological properties, indeed they were far more
potent than the corresponding 4′selenonucleosides when tested against human herpes simplex virus
(HSV-1). Indeed 5′-homo-4′-selenonucleosides 136 and 139 displayed anti-HSV-1 activity in the low
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micromolar range (EC50 = 2.3 and 2.9 µM, respectively) whereas the corresponding 4′-selenonucleosides
were completely inactive [110].
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6.2. Selenium in the Nucleobase

Nucleosides bearing Se-containing bases were prepared and incorporated in oligonucleotides in
order to study the pairing capabilities of the strains. One pioneering example is the one reported by
Huang et al., who prepared 2-Se-uridine, its incorporation into oligonucleotides, and the investigation
of their pairing capabilities [111].

For the synthesis of the desired RNA oligonucleotide incorporating the selenouridine nucleoside,
the authors used as starting material the sulfur-containing nucleobase nucleoside 140, that was methylated
to promote the substitution reaction with the NaSeH, generated in situ, to obtain the seleno-uridine
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nucleoside 142. Successively, the C-2 OH group was protected as TBDMS in the derivative 143,
unfortunately with low chemoselectivity. The selone functional group was then functionalized with a
cyanoethyl moiety that permitted the successive incorporation into the nascent RNA oligonucleotide 146,
through solid phase synthesis (Scheme 24).Pharmaceuticals 2020, 13, 211 20 of 28 
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Additionally, Braga contributed to this field by preparing uridine derivatives bearing chalcogen in
the C-5 position [112], while Knapp reported an electrophilic aromatic selenylation for the synthesis of
5-uridinyl derivatives then tested for their ability to inhibit malarial orotate phosphoribosyltransferase,
a key enzyme in the Plasmodium falciparum life cycle [113].

Examples of the selenium incorporation into purine nucleobases can be found in the works of
Huang and co-workers. They prepared compound 150, useful for investigating nucleoside transportation,
nucleic acid–protein interaction, and nucleic acid folding, and studied the optical properties as well as its
crystal structure [114,115]. The preparation entails first the introduction of the cianoethylselenyl moiety
into the purine scaffold by aromatic nucleophilic displacement with cianoethylselenol, prepared in situ
through the reduction of the corresponding diselenide. Compound 148 was then converted into the
target selenonucleoside 150 via a two steps deprotection (Scheme 25).

Despite the advantages offered by the introduction of Se-containing nucleotides into nucleic
acids, their synthesis is often complicated by the preparation of the selenium-containing nucleobase.
As shown in Scheme 24, at least five steps are needed for the preparation of Se-uridine, with low
overall yield. In an attempt to solve this issue, in 2019 Huang’s group proposed a new, biocatalytic
method to obtain selenonucleosides [116]. This new strategy entails the combined action of two enzymes:
pyrimidine nucleoside phosphorylase from Thermus thermophilus (TtPyNP), and purine nucleoside
phosphorylase from Geobacillus thermoglucosidasius (GtPNP), which are involved in a transglycosilation
reaction. Pyrimidine derivatives were prepared using TtPyNP as enzyme and urididine as furanose
donor and a 1:5 molar ratio of selenium-containing nucleobases in phosphate buffer, while the purine
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derivatives were achieved through the tandem action of both TtPyNP and GtPNP (Scheme 26). Of course,
the reactions have been carried out in aqueous solution at 60 ◦C without the need of organic solvents.

Noteworthy, the resulting nucleotides being negatively charged, all the reactions were followed
by capillary electrophoresis analysis.
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7. Conclusions

In this minireview, the selenosugars and the selenosugar-containing classes of compounds were
analyzed in order to give fruitful insights to those interested in this research field or who are just
approaching it. Different synthetic pathways were analyzed highlighting, where possible, the pros and
cons and suggesting useful alternatives.

SeTal, compound 20, is a clear example of an organoselenium compound endowed with antioxidant
activity not only in vitro but also in vivo thanks to its water-solubility, which makes it suited for such
kinds of studies. Selenonucleosides in which selenium is embedded in the sugar ring structure do
display sufficient water-solubility but their biological activity is poor due to the lack of activation
by cellular kinase. This issue was partially relieved by the synthesis of Se-homonucleosides. Finally,
selenonucleosides were also detailed from a synthetic and applicative standpoint. In the author’s
opinion, the spread of knowledge regarding this specific research field could help researchers to find
solutions for the problem of the low aqueous-solubility, which hampers the actual clinical exploitability
of many organoselenium compounds.
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