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Abstract

Na+–K+–Cl− cotransporter 2 (NKCC2; SLC12A1) is an integral membrane protein

that comes as three splice variants and mediates the cotranslocation of Na+, K+, and

Cl− ions through the apical membrane of the thick ascending loop of Henle (TALH).

In doing so, and through the involvement of other ion transport systems, it allows

this nephron segment to reclaim a large fraction of the ultrafiltered Na+, Cl−, Ca2+,

Mg2+, and HCO3
− loads. The functional relevance of NKCC2 in human is illustrated

by the many abnormalities that result from the inactivation of this transport system

through the use of loop diuretics or in the setting of inherited disorders. The fol-

lowing presentation aims at discussing the physiological roles and molecular char-

acteristics of Na+–K+–Cl− cotransport in the TALH and those of the individual

NKCC2 splice variants more specifically. Many of the historical and recent data that

have emerged from the experiments conducted will be outlined and their larger

meaning will also be placed into perspective with the aid of various hypotheses.
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1 | INTRODUCTION

Na+–K+–Cl− cotransporter 2 (NKCC2; SLC12A1) is a cation‐Cl− co-

transporter (CCC) that shares high homology in residue sequence

with two of its family members, that is, with NKCC1 (SLC12A2) and

Na+–Cl− cotransporter (NCC; SLC12A3). Its main role is to mediate

the cotranslocation of Na+, K+, and Cl− through the apical pole of the

thick ascending loop of Henle (TALH) in the mammalian kidney

(Kaplan et al., 1996; Nielsen, Maunsbach, Ecelbarger, & Knepper,

1998). Because of this transport mechanism, NKCC2‐expressing cells

can reclaim up to 25% of the ultrafiltered NaCl load and sustain the

reabsorption of other solutes, such as Ca2+, Mg2+, and HCO3
−. In the

distal TALH, they are also involved in a process known as

tubuloglomerular feedback (TGF). NKCC2 is expressed in a number

of extrarenal tissues as well but at lower levels.

NKCC2 was cloned just before the mid‐1990s by two different

research groups. It was initially found to come as three main splice

variants that exhibit different functional traits, distributions, and

physiological roles along the TALH (Gamba et al., 1994; Payne &

Forbush, 1994). After its discovery, NKCC2 was linked to an antenatal

form of salt‐losing nephropathy called classical Bartter syndrome and

to blood pressure (BP) variations in the population (Acuna et al., 2011;

Simon et al., 1996; Starremans, Kersten, Knoers, van den Heuvel, &

Bindels, 2003). In the TALH, other ion transport systems that provide

NKCC2 with the required driving force to sustain the coupled uptake

of ions have also been linked to disorders of renal salt handling.
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The following review aims at presenting and discussing the phy-

siological roles and molecular characteristics of the NKCC2 splice

variants along the TALH and in extrarenal cell types. As will be seen,

much progress has been made in these regards over the last 40 years.

However, many challenges still need to be overcome for new and

potentially exciting developments to take place in the field of renal

Na+–1K+–Cl− cotransport. Such challenges include the development of

protein probes and pharmacological inhibitors that are specific to each

of the splice variants. A recent publication on the high‐resolution
structure of NKCC1 should become quite helpful to this end.

2 | MAIN TEXT

2.1 | Characterization of Na+–1K+–Cl− cotransport
in the TALH before the molecular era

2.1.1 | Early identification and localization

In the late 1970s, an electrically silent furosemide‐sensitive
1Na+–1K+–2Cl− cotransport mechanism was identified in

Ehrlich–Lettre ascites carcinoma cells by Geck, Pietrzyk, Burckhardt,

Pfeiffer, and Heinz (1980) and reported to differ from the Na+/K+‐
ATPase pump in many aspects. For instance, this mechanism was

found to be ouabain‐insensitive, to allow the movement of ions in the

absence of ATP hydrolysis, and to promote cell swelling. It is now

known to be mediated by NKCC1 or SLC12A2 and to be widely dis-

tributed. Ion translocation by this transport system was later char-

acterized in duck red blood cells and reported to be ordered according

to a model of glide symmetry (Lytle, McManus, & Haas, 1998).

Soon after the discovery of NKCC1, a furosemide‐sensitive
Na+–1K+–Cl− cotransport mechanism in the TALH was formally iden-

tified by Greger and Schlatter (1981) through renal tubule micro-

perfusion studies and shown to be functionally similar to the

cotransport mechanism of Ehrlich–Lettre cells. Importantly, an active

Cl− transport system had already been uncovered on the luminal side of

the TALH in the early 1970s and found to be the primary target of

furosemide or other high ceiling diuretics (Burg, Stoner, Cardinal, &

Green, 1973; Rocha & Kokko, 1973). However, its requirement for K+

had not been demonstrated during that time. In the TALH, this trans-

port system is now known to be mediated by NKCC2 or SLC12A1.

During its initial characterization in the kidney, the K+‐
dependent Cl− cotransport mechanism was found to be deployed

along the entire TALH and in the macula densa (MD) but to operate

at higher capacity in the medulla (Greger & Schlatter, 1981; Koenig,

Ricapito, & Kinne, 1983). In the early 1970s, interestingly, rates

of luminal fluid dilution by the TALH had also been found to be

higher in the cortex (Burg, 1982; Burg & Green, 1973; Greger &

Schlatter, 1981; Koenig et al., 1983; Rocha & Kokko, 1973). These

findings were, thus, already consistent with the existence of dif-

ferent forms of NKCCs in the kidney, that is, with a cotransporter of

high capacity in the medullary TALH and a cotransporter of high

affinity in the cortical TALH.

2.1.2 | Stoichiometry of ion transport

The stoichiometry of the renal Na+–1K+–Cl− cotransport mechanism

was characterized more precisely in the mid‐1980s through 86Rb

influx studies in ion‐free membrane vesicles isolated from the apical

domain of LLCPK1 cells (Brown & Murer, 1985). The kinetic para-

meters obtained—a Hill coefficient of 1.63 for Cl− transport and Vmax

of similar magnitudes for Na+ and K+ transport—were also consistent

with a 1Na+:1K+:2Cl− coupling mode. Noticeably, LLCPK1 cells had

not been treated before the measurements to have their cAMPi le-

vels rise above background levels (see Section 2.3.2). Otherwise, no

studies have been carried out thus far to determine whether ion

binding by the renal cotransporter was ordered.

2.1.3 | Regulation

During the 15 years that followed the identification of a K+‐
dependent Cl− transport system in the TALH, further renal tubule

microperfusion studies allowed to gain key insight into the me-

chanisms of carrier regulation. In particular, vasopressin and calci-

tonin were found to exert a stimulatory effect on ion cotransport by

increasing cAMPi, and PGE2 to exert the opposite effect (Di Stefano

et al., 1990; Dublineau, Pradelles, de Rouffignac, & Elalouf, 1992;

Torikai & Kurokawa, 1983; Wittner, Di Stefano, Mandon, Roinel, & de

Rouffignac, 1991). In one study, vasopressin was also shown to

change the stoichiometry of ion cotransport from a 1Na+:0K:1Cl−

to 1Na+:1K+:2Cl− coupling mode (Sun, Grossman, Lombardi, &

Hebert, 1991). As for the potential cAMP‐dependent downstream

effectors at play, F‐actin was identified as one of the candidates

based on transport assays in primary cultures of mouse (ms) TALH

cells (Wu, Bens, Cluzeaud, & Vandewalle, 1994).

2.1.4 | Evidence for a new isoform

From the early‐1980s to mid‐1990s, many investigators felt that the

protein responsible for Na+–1K+–Cl− cotransport in the TALH was

not the same as the protein responsible for Na+–1K+–Cl− cotransport

in extrarenal tissues. Even if this possibility was suggested by a

number of indirect observations, there was no evidence to the con-

trary. Moreover, both the renal and extrarenal transport mechanisms

could have differed in functional properties because of cell‐specific
factors.

2.2 | Identification of NKCC2 and of several NKCC2
splice variants

2.2.1 | Cloning of NKCC2

The residue sequence of the TALH cotransporter was identified in

the mid‐1990s and found to differ from that of the extrarenal
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cotransporter as suspected. It was uncovered more specifically by

two independent research groups, that is, by Payne and Forbush

(1994) who termed the protein NKCC2—as they had discovered the

sequence of the extrarenal isoform just before—and by Gamba et al.

(1994) who termed it bumetanide‐sensitive cotransporter type 1

(BSC1)—as they had not yet discovered the sequence of the extra-

renal isoform. As it stands, the terms BSC1 and BSC2, which refer to

NKCC2 and NKCC1, respectively, have been largely abandoned.

For Payne and Forbush (1994), the identification strategy was

based on the premise that the renal and ubiquitous carriers would

share similar residue sequences as they shared similar transport

functions. By probing an RNA blot of Squalus acanthias tissues with a

radiolabeled NKCC1‐specific complementary RNA (cRNA) in pre-

vious studies, Xu et al. (1994) had also identified an RNA transcript of

a smaller size in the kidney. Two rabbit (rb) kidney complementary

DNA (cDNA) libraries (one from the medulla and one from cortex)

were thus screened at low stringency with an rbNKCC1‐derived
probe and found to include the sequences of interest. These ex-

periments had also allowed revealing that NKCC2 came as three

main splice variants that were then called NKCC2B, NKCC2A, and

NKCC2F.

For Gamba et al. (1993), the identification strategy was based on

similar premises except that the sequence used as a query consisted

of the NCC. This other carrier had been cloned from Pseudopleur-

onectes americanus by the same research group a year before and was

also known to share similar transport functions with the extrarenal

NKCC. A rat (rt) kidney size‐selected cDNA library from the outer

medullary inner stripe (OMIS) was thus screened with rtNCC‐derived
radioactive probes and found to include the sequences of interest.

However, the only variant identified in this library was NKCC2F.

The open‐reading frame of both rbNKCC2 and rtNKCC2 was

eventually predicted to code for a 1,095‐amino acid protein that

forms a central core of 12 transmembrane domains (TMD) flanked by

cytosolically disposed extremities (Figure 1a). The translation pro-

duct was also found to share over 60% identity with NKCC1 and over

50% with NCC with maximal levels of conservation over the

membrane‐associated domain. Western blot analyses further re-

vealed that NKCC2 migrated at a ∼160‐kDa landmark and was thus

likely to consist of a glycoprotein.

In their initial publication on the cloning of NKCC2, Payne and

Forbush (1994) demonstrated that the rbNKCC2A variant acted as a

heterologous bumetanide‐sensitive 86Rb+‐transport carrier system in

HEK‐293 cells. However, protein expression at the surface of these

cells could only be achieved through the use of a chimera in which

the first 104 N‐terminal residues of NKCC2A were replaced by those

of human (hu) NKCC1. Since then, it appears that most investigators

have failed to obtain heterologous expression of a functional

wildtype NKCC2 in extrarenal mammalian cells. To be functional, the

renal isoform must presumably interact in most species with a

TALH‐specific accessory protein through its proximal N‐terminus.

As for Gamba et al. (1994), the initial characterization of ms

NKCC2F was achieved in Xenopus laevis oocytes, an amphibian ex-

pression system that proved invaluable in the following years to

characterize the various properties of the individual splice variants.

The data obtained by this group showed that the sequence identified

in the rt library did code for an NKCC. In particular, 86Rb+ influx in

NKCC2F‐expressing oocytes was seen to be clearly above back-

ground under isotonic condition but not when the extracellular

F IGURE 1 Hydropathy plot model of NKCC2 and phylogram of

CCC family. (a) Residues are shown as round or square forms (one
form per residue) and putative glycosylation sites as branched lines.
Residues in yellow are those of the alternatively spliced exon, residue

in blue differ among the variants, and residues in green correspond to
known phosphoacceptor sites in the N‐terminus. The model was
drawn using the program PLOT. (b) The tree was constructed through
the programs Clustal Omega and FigTree v1.4.3 (Sievers et al., 2011)

using the longest human (hu) residue sequences for each of the CCCs
shown. Members of this family belong to four different subclasses. The
scale corresponds to a genetic distance. Sequences used: NKCC1,

NP_001037.1; NKCC2, NP_000329.2; NCC, NP_000330.2; KCC1,
NP_005063.1; KCC2, NP 001128243.1; KCC3, NP_598408.1; KCC4,
NP_006589.2; CCC8, NP_064631.2; CCC9, NP_078904.3. CCC,

cation‐Cl− cotransporter; KCC1, K+–Cl− cotransporter 1; NCC,
Na+–Cl− cotransporter; NKCC2, Na+–K+–Cl− cotransporter 2
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medium was added with bumetanide in the extracellular medium or

devoid of Na+ or Cl− ions. NKCC2F‐mediated 86Rb+ transport was

also seen to be metolazone‐ and DIDS‐insensitive.

2.2.2 | Splice variants

The rbNKCC2 splice variants identified were seen to be produced

from the alternative usage of a single exon among three different ones

in the primary transcript (Payne & Forbush, 1994). These exons (called

4B, 4A, and 4F) occur in that order from 5′ to 3′, share substantial

homology in residue sequence among each other, and are all flanked

by intronic sequences. As such, they probably arose during evolution

through replication slippage. Importantly, they each code for a

32‐residue segment that forms the second TMD2 and part of the

following connecting loop (CL1) of the transporter. The exon–intron

organization of the encoding gene is illustrated through Figure 2.

An alignment of the TMD2–CL1 domains of NKCC2B, NKCC2A,

and NKCC2F in rt, ms, rb, and hu is shown in Figure 3. As can be

observed, the TMD2 segment per se is predicted to have 18 residues

of which 8 are identical among variants and species. Those that differ

(at Positions 213–215, 217, 219–221, 224, 225, and 228 in the

figure) are still highly conserved based on Grantham scores. As for

CL1, it is predicted to have 14 residues of which 11 are identical

among variants and species. Those that differ (at Positions 230, 234,

and 238) are also highly conserved. As will be discussed later, the

TMD2–CL1 domain of NKCC2 has now been found to play a key role

in ion transport and carrier expression at the cell surface.

NKCC2 can also be processed into a mature transcript that en-

closes both exons 4A and 4F in tandem with no disruption of the

open‐reading frame. In rb kidney, this transcript (NKCC2AF) was

found to account for ∼3% of the variants produced such that it was

considered to be a splicing artifact (Payne & Forbush, 1994). How-

ever, it was found to account for as much as ∼30% of the variants in

Squalus acanthias kidney, and as will be discussed further below, to

exert a dominant‐negative effect on the other variants in X. laevis

oocytes (Brunet et al., 2005; Gagnon et al., 2002). For these reasons,

the role of NKCC2AF in the TALH should be viewed as uncertain.

Additional splice variants can also be produced in ms through

partial retention of intron 16 and usage of an alternative poly-

adenylation site in this noncoding nucleotide segment (Mount,

Baekgaard et al., 1999). The resulting protein contains a unique

55‐residue stretch from the retained intronic sequence, is devoid of

exons 17–26 (that codes for most of the intracellular C‐terminus),

and can contain either of exons 4B, 4A, and 4F. As will be discussed

below once again, Mount, Mercado et al. (1999) and Plata et al.

(2001) have shown that these variants (called NKCC2ΔCT

henceforth) could also play a physiological role in vivo by exerting a

cAMPi‐dependent dominant‐negative effect on the WT variants in X.

laevis oocytes.

2.2.3 | CCC family

The residue sequences of NKCC1, NKCC2, and NCC were uncovered

at about the same time in the early 1990s. They were also predicted

to share homology with another protein that was known to act as an

F IGURE 2 NKCC2 splice variants. The primary transcript counts
97,776 nucleotides from the start of exon A (before exon 1) to the
end of exon 26. It is represented in this figure by boxes (for the

exons) and lines (for the untranslated regions) that are drawn to scale
on the horizontal axis. Regions in orange correspond to
neosequences before a polyadenylation site in intron 16. Because of

this polyadenylation site, the NKCC2ΔCT transcripts should thus
form typical polyA‐tailed mRNA. Variants NKCC2B, NKCC2A, and
NKCC2F are found in several species such as hu, rabbit (rb), and

mouse (ms) kidney while variants NKCC2BΔCT, NKCC2AΔCT, and
NKCC2FΔCT are only found in ms kidney (Mount, Baekgaard
et al., 1999). I, residues encoded from intronic sequences; mRNA,
messenger RNA; NKCC2, Na+–K+–Cl− cotransporter 2; ΔCT, variants

in which exons 17–26 (corresponding to most of the C‐terminus) are
missing; *, stop codon

F IGURE 3 Residue sequences of exon 4 in Na+–K+–Cl−

cotransporter 2 (NKCC2). Blue is used to indicate that residues differ
among variants (NKCC2B, NKCC2A, and NKCC2F) and species (rb,

hu, and ms). Residues in the gray box belong to transmembrane
domain 2 and residues in the white box to composite site 1
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electroneutral Na+‐independent K+–Cl− cotransporter. When this

protein was identified in the late 1990s, it was not only found to bear

similitude with the three other ones, but also to come as four iso-

forms that were called K+–Cl− cotransporter 1 (KCC1), KCC2, KCC3,

and KCC4 (Gillen, Brill, Payne, & Forbush, 1996; Hiki et al., 1999;

Mount, Mercado et al., 1999; Payne, Stevenson, & Donaldson, 1996;

Race et al., 1999). The term CCC is now commonly used as the family

name under which the NKCCs, NCC, and the KCCs are regrouped.

As it stands, nine CCCs have now been uncovered (Garneau

et al., 2017; Garneau, Marcoux et al., 2019; Garneau, Slimani

et al., 2019; Marcoux et al., 2017). As shown in Figure 1b, they fall

into four phylogenetic clades. NKCC2 belongs to one of these clades

along with NKCC1 and NCC, that is, to the Na+‐dependent CCC

clade, the KCCs belong to the Na+‐independent CCC clade and the

two remaining CCCs (CCC8 and CCC9) each belong to an individual

clade. Overall, the Na+‐dependent CCCs share ∼50% identity in

amino acid sequence among each other.

2.2.4 | A new era

The cloning of NKCC2 and of its three main splice variants more than

25 years ago has allowed a great deal of knowledge to be gained on

the functional characteristics, regulation, and physiological roles of

this transport system along the TALH. It did so by providing the

necessary information and tools to produce NKCC2‐ or variant‐
specific probes, to express each of the variants in foreign cells as

wildtype or mutated proteins, to generate NKCC2‐null ms models,

and to link sequence variations in the encoding gene with specific

traits or disorders in hu.

For reasons that have already been alluded to, the cell type

exploited for the heterologous characterization of NKCC2 has con-

sisted of the X. laevis oocyte almost exclusively. As will be shown

later, it still played an important role in the progress attained. In the

oocyte of X. laevis, moreover, foreign proteins commonly adopt their

native functional characteristics and achieve high levels of activity

(Long, O'Neill, & Cheeseman, 2018; Pike, Matthes, McSteen, &

Gassmann, 2019; Wagner, Friedrich, Setiawan, Lang, & Broer, 2000).

2.3 | Characterization of NKCC2 during the
molecular era

2.3.1 | Localization of NKCC2 in animal species

Thick ascending loop of Henle

Localization of the NKCC2 variants in the kidney has relied solely on

the detection of the encoding transcripts in the absence of available

exons 4B‐, 4A‐ and 4F‐specific antibodies. In fact, these exons are

probably not sufficiently immunogenic and divergent to allow for the

production of sensitive and variant‐specific antibodies. Transcript‐
based localization of the variants has still proved informative. It has also

yielded comparable results among various studies and various species.

The renal distribution of the variants was assessed initially

by Northern blot analyses of dissected rb kidney slices (Payne &

Forbush, 1994) and microdissected rt TALH subsegments (T. Yang,

Huang, Singh, Schnermann, & Briggs, 1996). These studies, which led

to similar results, showed that NKCC2F was expressed in the medulla

exclusively, NKCC2A in both the medulla and cortex and NKCC2B in

the cortex exclusively. However, the microdissected tissues offered

the advantage of demonstrating localization of NKCC2 in the TALH

and of NKCC2B in the MD.

Distribution of the variants along the ms TALH was also assessed

by in situ hybridization in two studies to obtain a better spatial re-

solution of the expression sites. The first study, which was by Igar-

ashi, Vanden Heuvel, Payne, and Forbush (1995), showed that

NKCC2F was expressed in the OMIS, NKCC2A in the outer medul-

lary outer stripe (OMOS) and cortex, and NKCC2B in the periglo-

merular cortex (see Figure 4). The signal distribution also suggested

the presence of both NKCC2B and NKCC2A in MD cells and the

presence of all variants in both short and long nephrons. The second

study, which was by Oppermann et al. (2006), showed similar results

except that the localization of NKCC2B and NKCC2A in MD cells

was more convincingly demonstrated.

As for the subcellular localization of NKCC2 along the TALH, it

was assessed in rt by immunofluorescence (Kaplan et al., 1996) and

ultrastructural studies (Nielsen et al., 1998). Interestingly, it was

found that ∼5% of the carrier pool was expressed at the membrane

and that the rest lied a large subapical reservoir. In these studies,

NKCC2 was also identified in MD cells. The subcellular localization of

NKCC2ΔCT was also assessed in mice by immunofluorescence stu-

dies. Here, it was found that the truncated variant was present along

F IGURE 4 Distribution of Na+–K+–Cl− cotransporter 2 (NKCC2)
splice variants in adult ms kidney by in situ hybridization. Exon 4 was
detected for each variant with a specific radioactive riboprobe on a

sagittal tissue section, signals were converted to colors (red for
NKCC2B, green for NKCC2A, and blue for NKCC2F) and images
were superimposed. Adapted with permission from Igarashi et al.

(1995). The color mount was generated by Dr Biff Forbush (Yale
University, CT)
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the entire TALH but that it was expressed at the apical membrane in

predominance (Mount, Baekgaard et al., 1999).

The abundance of each splice variant was also determined by

Castrop and Schnermann (2008) in ms TALH through RNase pro-

tection assays using radiolabeled exon 4B‐, 4A‐, and 4F‐specific
cRNA probes. The data obtained, which were only discussed in a

review paper (Castrop & Schnermann, 2008), showed that the ratios

of variant expression levels were ∼7NKCC2F:2NKCC2A:1NKCC2B.

They were thus consistent with those of Igarashi et al. (1995) who

had observed similar ratios in rb TALH by in situ hybridization (see

Figure 4). However, the question of whether the same held true in

both short and long nephrons does not appear to have been ad-

dressed in these studies or later on.

To date, the question of how the NKCC2 variants achieve dif-

ferential localizations along the TALH remains unanswered. The

mechanisms at play could involve exons B‐, A‐, and F‐specific pre‐
messenger RNA sequence elements that can act as 3′ splice site

enhancers upon their interaction with cell‐specific DNA‐binding
proteins to prevent exon skipping. This hypothesis would imply that

the exon‐specific inducible 3′ splice site enhancers are naturally si-

lent or minimally active in the absence of such cofactors.

Other tissue

Just after its discovery, NKCC2 was said to be kidney‐specific based

on the localization studies carried out (Gamba et al., 1994; Payne &

Forbush, 1994). In the following years, however, it was found to ex-

hibit a much wider distribution. This finding did not come as a surprise

given that the detection of gene products has become progressively

much more sensitive over the past 2 decades and that a large number

of gene promoters appear to exhibit some degree of leakiness.

As of now, NKCC2 has been detected in ms pancreatic β‐cells
(Alshahrani, Alvarez‐Leefmans, & Di Fulvio, 2012; Kelly et al., 2019),

rt intestinal epitheliocytes and nervous plexus along a substantial

portion of the gut (Xue et al., 2009), hu colonic epitheliocytes (Zhu,

Xue, Ji, & Xing, 2011), rt, hu, and ms parietal and mucous gastric

gland cells (T. Ji et al., 2012; Xue et al., 2009), and rt hypothalamic

and neurohypophyseal cells (Konopacka et al., 2015). In the epithelial

cell types where it was found, NKCC2 was generally localized on the

apical side, and in ms pancreatic β‐cells, it consisted of the A variant.

Through real‐time polymerase chain reaction studies, we have re-

cently observed that NKCC2B and NKCC2A were also present in hu

white blood cells (not shown).

On the basis of hu EST and RNA‐seq databanks1,2, the distribu-

tion of the so‐called renal Na+–1K+–Cl− cotransport appears to be

even wider. These databanks show indeed that in addition to kidney,

pancreas, intestine, and brain, NKCC2‐expressing tissues include (by

alphabetical order) adrenal glands, bone, connective supports, eye,

fat, liver, lung, muscle, parathyroid glands, spinal cord, testis, and

vessels. In all of the extrarenal tissues listed, however, transcript

abundance is much lower than in kidney with the notable exception

of the pancreas. The hu protein atlas database3 further reveals that

NKCC2 expression is upregulated in renal, liver, ovarian, and breast

cancers.

Despite the wide distribution of NKCC2, the functional re-

levance of this isoform outside of the kidney has yet to be demon-

strated or understood. In particular, the presence of functional

Na+–K+–Cl− cotransport uptake mechanisms on both the apical and

basolateral membranes of the same epithelial cell would not call for

an efficient arrangement to promote net vectorial transport of NaCl

in one direction. For such an arrangement to make sense, one of the

isoforms would have in fact to act as a low‐capacity housekeeping ion

carrier system or the activity of the coexpressed isoforms would

have to be differentially regulated. In the latter scenario, the or-

ientation of transepithelial salt transport could vary as a function of

the physiological needs to be met.

2.3.2 | Transport characteristics of NKCC2 in animal
species

Stoichiometry

The variants have still not been characterized individually to confirm

that they all couple the movement of ions in a stoichiometric rapport

of 1Na+:1K+:2Cl−, harbor less or no more than four binding sites and

are electrically silent. However, their transport dependence on ex-

tracellular [Na+], [K+], and [Cl−] was studied by different research

groups and found to be consistent with a one ion‐binding site model

for each cation and a two ion‐binding site model for Cl− (Gagnon

et al., 2004; Gagnon, Forbush, Caron, & Isenring, 2003; Gimenez &

Forbush, 2007; Gimenez, Isenring, & Forbush, 2002). It should be

nonetheless remembered that such models were inferred from Hill

coefficients and that they thus only provide an estimate of the

minimal number of binding sites involved (Garneau et al., 2017;

Garneau, Marcoux et al., 2019; Garneau, Slimani et al., 2019;

Marcoux et al., 2017).

There are in fact reasons to consider the possibility of alternate

ion‐coupling models. As mentioned, for instance, renal tubule micro-

perfusion studies have revealed the existence of a furosemide‐
sensitive K+‐independent Na+–Cl− cotransport mechanism in ms TALH

(Sun et al., 1991). Along the same line, NKCC1 was shown to act as a

2Na+:1K+:3Cl− cotransport system in certain cells such as squid neu-

rons and ferret erythrocytes (Hall & Ellory, 1985; Russell, 1983).

Lastly, we have found that the dependence of NKCC2A on extra-

cellular [Cl−] in Cl−‐depleted X. laevis oocytes was best described by a

model of anion binding at three or more sites (personal observations).

On the basis of transport assays in oocytes, the furosemide‐
sensitive K+‐independent cotransport moiety that had been observed

in ms TALH (Sun et al., 1991) was eventually attributed to the

truncated NKCC2ΔCT variants by a group of the investigator (Plata

et al., 2001). These studies showed more specifically that when

cAMPi was reduced pharmacologically or when extracellular osmol-

ality was changed from 200 to 100mOsM, 22Na+ influx by

NKCC2ΔCT‐expressing oocytes was much higher compared to con-

trol oocytes even in the absence of extracellular K+. The NKCC2ΔCT

variants were thus considered to act as Na+–Cl− cotransport systems

under these circumstances.
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Although interesting, the data of Plata et al. on the character-

istics of NKCC2ΔCT are difficult to interpret given that 22Na+ influx

was actually seen to decrease importantly when extracellular os-

molality was changed from 200 to 150mOsM and that the kinetics of

NKCC2ΔCT activity as a function of [Na+], [K+ or Rb+], and [Cl−] were

not reported. The data of Plata et al. are also difficult to interpret in

the light of other studies. For instance, NKCC2ΔCT was detected in

ms TALH (Mount, Baekgaard et al., 1999) but not tested for its

subcellular localization at low cAMPi levels. In previous studies, the

NKCC2 of LLCPK1 cells was also found to be K+‐dependent while no

measures had been applied to alter cAMPi (Brown & Murer, 1985).

The reported characteristics of NKCC2ΔCT are also difficult to

reconcile with known models of ion translocation by carrier systems.

They imply that NKCC2 could sustain ion translocation even if its K+

transport site is no longer functionally active. Among various possi-

bilities, NKCC2ΔCT could do so if its K+ transport site was also able

to translocate Na+ or if its translocation pocket was able to face the

extracellular side even when it is not completely emptied (Lytle

et al., 1998). These possibilities would still not explain how the ab-

sence of the distal C‐terminus would affect the properties of the ion‐
binding sites or would elicit partial reactions during the transport

cycle.

Kinetics of ion transport

The apparent ion affinity (Km) and maximal transport capacity (Vmax)

of the NKCC2 splice variants have been determined by at least three

research groups in the oocyte expression system (Gimenez

et al., 2002; Marcoux et al., 2019a, 2019b; Plata, Meade, Vazquez,

Hebert, & Gamba, 2002). Among the experiments carried out by

these research groups, the NKCC2 analyzed were not all from the

same species and the conditions used differed to some degree. Yet,

each of the variants was found to share similar transport features. It

is in fact between the variants themselves that most of the differ-

ences were observed.

The data reported are reproduced in Figure 5 for the ion affi-

nities as normalized Km values to provide an outlook of how the

variants differed among each other. In either study, normalized Km(Na+),

Km(Rb+), or Km(Cl−) are seen to be higher for NKCC2F (especially in the

case of Km(Na+)) such that this variant appears to exhibit the lowest

affinities for all three ions. In Figure 5, the normalized Km values are

also seen to be substantially lower for NKCC2B and NKCC2A but still

quite similar between the two variants. As for the Vmax values, they

were not reported in either of the studies. From our own experiments

(Marcoux et al., 2019b), however, they were found to be much higher

for NKCC2F and relatively similar between the other two variants

(data not published).

Residues involved in ion transport

Given that the main splice variants are identical to each other except

for the residue sequence of the TMD2–CL1 domain, their individual

functional characteristics have to be explained by the variable com-

position of exon 4 specifically. In this regard, and as can be seen in

Figure 3, 10 out of 18 residues in TMD2 and 3 out of 11 residues in

CL1 differ among the variants of rb and the same is true for those of

many other animal species. However, differences in physicochemical

properties among the nonconserved residues still translate into re-

latively low Grantham distances (∼80 or less). In shark, the TALH is

devoid of NKCC2B but the sites and degree of residue divergence

between NKCC2A and NKCC2F are still the same.

Mutagenic analyses did confirm the role of exon 4 as an affinity‐
specifying domain and allowed to identify the sites at play. The first

series of analyses were designed to study the effect of interchanging

divergent residues between shark NKCC2A and NKCC2F on the ion‐
dependence of 86Rb+ transport (Gagnon, Bergeron, Daigle, Lefoll, &

Isenring, 2005; Gagnon et al., 2004). They showed that while the sites

of functional relevance were localized in the middle portion of the

TMD2–CL1 segment (Figures 1a and 3), those of TMD2 were key in

specifying Na+, Rb+, and Cl− affinity and those in CL1 in specifying Cl−

affinity for one of the binding sites. Another series of similar analyses

were designed to study the effect of interchanging divergent residues

between three rbNKCC2 variants. They led to analogous findings but

further revealed that the kinetic characteristics of NKCC2B were

similar to those of NKCC2A (Gimenez & Forbush, 2007).

2.3.3 | Structure of NKCC2

The predicted structural model of NKCC2 was initially found to be very

similar to that of NKCC1 but not surprisingly so as both carriers share

F IGURE 5 Apparent affinities of Na+–K+–Cl− cotransporter 2

(NKCC2) splice variants for Na+, Rb+, and Cl−. The data shown
correspond to mean Km ratios ± standard error among three
independent studies (as described in the text). In each study, these
ratios were obtained by dividing the mean Km determined for either

variant with the mean Km determined for NKCC2F. These constants
are all seen to be higher for NKCC2F and analogous between
NKCC2A and NKCC2B. On the basis of our observations, Vmax was

also found to be higher for NKCC2F and similar between NKCC2A
and NKCC2B (not shown)
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over 60% identity in residue sequence (Gamba et al., 1994; Igarashi

et al., 1995; Payne & Forbush, 1994). Since then, these models have been

confirmed for NKCC1 through a variety of indirect approaches and low‐
resolution imaging studies (Gerelsaikhan & Turner, 2000; Jacoby,

Gagnon, Caron, Chang, & Isenring, 1999; Monette, Somasekharan, &

Forbush, 2014; Pedersen, Carmosino, & Forbush, 2008; Somasekharan,

Monette, & Forbush, 2013; Somasekharan, Tanis, & Forbush, 2012). Both

NKCC1 and NKCC2 were also found to assemble as homodimers

(Moore‐Hoon & Turner, 2000; Parvin & Turner, 2011; Simard

et al., 2007, 2004; Starremans et al., 2003) through the involvement at

least four self‐interacting domains in their C‐termini (Brunet et al., 2005;

Simard et al., 2004).

More recently, Xu et al. (1994) have reported the first three‐
dimensional cryo‐electron microscopy density map of zebrafish

NKCC1 at a ∼3‐Å resolution (Figure 6). This map confirmed that

NKCC1 was a 12‐TMD protein and that two of the formerly identi-

fied self‐interacting domains (corresponding to linker helix α0 after

TMD12 and strand β3/helix α3 before the middle C‐terminus in

Figure 6a) acted as dimerization contact points. The map was also

unexpected to some extent (Garneau & Isenring, 2019). For instance,

it showed that the membrane domains adopted an inverted repeat

architecture arrangement in each monomer, interacted with the in-

tracellular C‐terminus of the opposite monomer in a domain swap

configuration, and took the form of a horseshoe in their joint state

(Figure 6a,b). The density map suggested thus that the ion‐binding
sites of each monomer were not sufficiently close to form a unique

translocation pocket.

In simulation analyses Chew et al. further showed that the CL1

domain of one monomer could interact with the C‐terminus of the

opposite monomer. This finding was of special interest in view of the

role that the TMD2–CL1 domain of NKCC2 was found to play

(Gagnon et al., 2004, 2005, 2002; Gimenez et al., 2002; Marcoux

et al., 2019a, 2019b; Plata et al., 2002). Similar analyses also showed

that the ion‐binding sites were contained within a solvent‐accessible
vestibule that was delineated by TMD1, TMD3, TMD6, and TMD8.

On the basis of these findings, it would thus appear that affinity

specification is not coordinated by the ion‐binding sites themselves.

Otherwise, evidence was also provided that ion binding by NKCC1

was cooperative and that each of the monomers harbored more than

one Cl− transport site.

2.3.4 | Regulation of NKCC2

NKCC2 is activated through phosphorylation of an S/T residue cluster

(Figure 1a) in its N‐terminus (Gimenez & Forbush, 2005; Loureiro,

Barros, Matos, & Jordan, 2019). Yet, a little is known regarding the

mechanisms through which the addition of PO4
2‐ groups to this cluster

causes ion cotransport to increase. Among other possibilities, such

mechanisms could involve a change in the conformation, abundance,

or quaternary structure of NKCC2 at the cell surface. Whether the

F IGURE 6 Structure of zebrafish Na+–K+–Cl− cotransporter 1
based on a cryo‐electron microscopy density map. (a) Topology
model of a monomer. Are shown: the transmembrane domains,

extracellular loops (ELs), intracellular loops (ILs; also called
connecting loops [CLs] in the text), linker helix (α0), as well
as α‐ and β‐helices in the C‐terminus. (b) Structural model of a

dimer. Are seen: the membrane‐associated domain (MAD)
and the C‐termini (CTs). Adapted with permission from Xu
et al. (1994)
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termini could harbor additional phosphoacceptor sites of importance is

also possible (Loureiro et al., 2019).

On the basis of in vitro studies, oxidative stress‐responsive ki-

nase 1 (OSR1) and STE20/SPS1‐related proline/alanine‐rich kinase

(SPAK) are two of the enzymes that were found to phosphorylate

NKCC2 at the N‐terminus (Patel & Gelman, 1980; Richardson

et al., 2011). However, they must rely on other phosphorylating en-

zymes to acquire an active state (Ferdaus et al., 2016; Richardson &

Alessi, 2008), on Ca‐binding protein 39 to assemble into a functional

homodimer (Filippi et al., 2011; Mehellou, Alamri, Dhiani, &

Kadri, 2018; Ponce‐Coria, Gagnon, & Delpire, 2012) and on the

protein‐related receptor with A‐type repeats 1 to reach the mem-

brane (Reiche et al., 2010). Note that SPAK could play a more minor

role in vivo as it is expressed at much lower levels than OSR1 in

TALH cells (Grimm et al., 2012).

Among the effectors that can phosphorylate NKCC2 directly,

OSR1/SPAK have received most of the attention. However, there is

evidence to suggest that NKCC2 can be N‐terminally phosphorylated

by PKA at T96 and S126 in rt (Gunaratne et al., 2010), by SYK at Y45 in

ms (Loureiro et al., 2019) and by AMPK at S126 in rb (Fraser

et al., 2007) and that it can be C‐terminally phosphorylated by PKA

at S874 in rt (Gunaratne et al., 2010). PP1 could also act on the

phosphoacceptor sites of NKCC2 given that it has been found to play

a key role in the regulation of other CCCs and that a relevant PP1

interacting site has been identified in the N‐terminus of NKCC1

(Darman, Flemmer, & Forbush, 2001).

The WNK kinases have received great attention as well but were

found to act through phosphoactivation of OSR1/SPAK rather than

on NKCC2 itself (Alessi et al., 2014; Richardson & Alessi, 2008;

J. Zhang, Siew, Macartney, O'Shaughnessy, & Alessi, 2015). Their role

as indirect effectors was suggested most convincingly by the ob-

servation that in the TALH of OSR1+/− mice (where OSR1 activity is

reduced) and of knockin SPAKT243A/T243A mice (where SPAK cannot

be activated by the WNK kinases), NKCC2 phosphorylation was

impaired (Lin et al., 2011; Rafiqi et al., 2010). On the basis of loca-

lization or functional studies, however, only two of the WNK kinases

(WNK1 and WNK3) are likely to play a role in NKCC2 regulation

along the TALH (Cheng, Truong, Baum, & Huang, 2012; Ponce‐Coria
et al., 2014, 2008; Rinehart et al., 2005).

Previous studies in isolated TALH have provided key insight into

the mechanisms of NKCC2 activation by signaling enzymes. In parti-

cular, they revealed that NKCC2 could be recruited at the cell surface

from subapical vesicles (Ares, 2019; Ares, Caceres, Alvarez‐Leefmans,

& Ortiz, 2008; Caceres, Ares, & Ortiz, 2009; Caceres, Mendez, Haque,

& Ortiz, 2016; Ortiz, 2006) and that it underwent phosphorylation

under such circumstances (Gimenez & Forbush, 2003; Gunaratne

et al., 2010). Even if these studies were conducted to understand the

bases of NKCC2 regulation by cAMP or cGMP, they still pointed to-

wards a key role for the trafficking machinery in response to carrier

phosphorylation.

There are now new lines of evidence to indicate that the

WNK–OSR1/SPAK pathway stimulates NKCC2‐mediated Na+–K+–Cl−

cotransport by acting on the trafficking machinery. Indeed, Marcoux

et al. (2019b) have recently exploited the oocyte expression system to

show that cell shrinkage increased NKCC2 expression to the mem-

brane in the presence of WNK kinases. These results were in keeping

with previous observations that SPAK regulates NKCC2 expression at

the surface of TALH cells (Rafiqi et al., 2010; J. Zhang et al., 2015) and

that it is activated during the hypertonic condition through phos-

phorylation of a Ser residue in its kinase domain (Vitari, Deak, Morrice,

& Alessi, 2005; Zagorska et al., 2007).

Marcoux et al. (2019b) were also the first research group to

show that the NKCC2 splice variants were differentially regulated by

the WNK–OSR1/SPAK pathway and that the mechanisms of carrier

upregulation varied as a function of the WNK at play. In the presence

of WNK3, for instance, activation of this pathway increased cell

surface expression of NKCC2A and NKCC2B much more than of

NKCC2F. In the presence of WNK1, however, it increased ion co-

transport by all of the variants but led to minimal changes in carrier

expression or distribution (Marcoux et al., 2019b). These findings

also suggested that exon 4 harbored specific residues that allow the

CL1 domain to interact with a component of the trafficking

machinery.

Through subsequent studies, a mutagenic approach allowed

Marcoux et al. (2019a) to identify variants residues in CL1 (at Posi-

tions 230 and 238) that endowed each of the variants with unique

trafficking and ion transport characteristics. From these studies, it

was concluded that CL1 could be part of a key regulatory motif that

was not only involved in carrier trafficking but that also contributed

to the differential properties of Na+–K+–Cl− cotransport along the

TALH. From a broader perspective, it was furthermore concluded

that the N‐terminus of NKCC2 could play a role in carrier trafficking

by regulating the access of CL1 to the trafficking machinery.

There are additional lines of evidence to suggest that the traf-

ficking machinery plays an important role in NKCC2 regulation by

various hormones. While, for instance, aldosterone has been shown

to downregulate NKCC2 expression in the TALH as part of the so‐
called escape phenomenon (Madala Halagappa, Tiwari, Riazi, Hu, &

Ecelbarger, 2008; Turban, Wang, & Knepper, 2003) and to exhibit

purinergic‐dependent activity (Y. Zhang, Listhrop, Ecelbarger, &

Kishore, 2011), both this hormone and purinergic agonists have also

been shown to affect the abundance of other ion transport systems

at the surface of the renal epithelium (Raghavan & Weisz, 2015;

Ware, Rasulov, Cheung, Lott, & McDonald, 2020). In this regard,

additionally, aldosterone has been found to increase phosphorylation

and membrane abundance of NCC (van der Lubbe et al., 2011) and to

coordinate WNK activity in several nephron segments (Susa

et al., 2012).

2.3.5 | Physiological roles of NKCC2

Primary roles of the variants along the TALH

NKCC2F is expressed in the OMIS portion of the TALH, is approxi-

mately twice as abundant as the other variants and is a low‐affinity
high‐capacity carrier (Gagnon et al., 2003; Gimenez & Forbush, 2007;
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Gimenez et al., 2002; Igarashi et al., 1995; Itoh et al., 2014; Marcoux

et al., 2019b; Plata et al., 2002). In a nephron segment where the

luminal salt concentration is very high, NKCC2F is thus well adapted

to ensure high levels of NaCl reabsorption (Marcoux et al., 2019b). Its

importance in this matter is supported by the observations

that NKCC2‐null mice die soon after the birth of severe polyuria

(Takahashi et al., 2000) while NKCC2B‐ or NKCC2A‐null mice exhibit

mild phenotypes (Oppermann et al., 2006, 2007).

As for NKCC2A, it is expressed in the OMOS, cortical, and MD

portions of the TALH, is approximately twice as abundant as

NKCC2B, and is a high‐affinity low‐capacity carrier (Carota

et al., 2010; Gimenez et al., 2002; Igarashi et al., 1995; Itoh

et al., 2014; Marcoux et al., 2019b). In a nephron segment where

luminal salt concentration has decreased from the activity of

NKCC2F and will further decline up to MD cells, NKCC2A is thus

well suited to ensure ion reabsorption along all of the cortical TALH

(Ares, Caceres, & Ortiz, 2011; Castrop & Schnermann, 2008) and

prevent excessive NaCl delivery to the MD, a structure where solute

reabsorption must be fine‐tuned (Ares et al., 2011; Bailly, 2000;

Maack, 1996). Given, moreover, that the cortical collecting duct en-

sures higher levels of water reabsorption than the medullary col-

lecting duct in response to vasopressin (Itoh et al., 2014), NKCC2A

could also play a particularly important role during antidiuretic

states.

A question that comes to mind is whether NKCC2A could have

been substituted for by NKCC2F along the TALH. If it had, that is, if

its affinity for Na+ and Cl− ions had been much lower compared to

that of NKCC2B, salt sensing by NKCC2F‐expressing MD cells would

have probably not been as sensitive at the lower range of ion con-

centration (Carota et al., 2010; Itoh et al., 2014; Orlov & Mongin,

2007). Even if its transport capacity is not as high as NKCC2F,

importantly, NKCC2A is still predicted to operate at near‐saturation
along the entire cortical TALH such that it has the potential of acting

as an efficient carrier system from OMOS to periglomerular cortex.

Intriguingly, Oppermann et al. (2006, 2007) found that NKCC2A‐
null mice exhibited no more than a mild decrease in steady‐state
urine osmolality and concentrating ability. At the same time, these

mice also expressed higher levels of NKCC2B in the cortex and

probably developed a less striking phenotype as a consequence. Cl−

absorption by their TALH was still impaired based on microperfusion

studies under high‐flow conditions, confirming that NKCC2A prob-

ably does not play a redundant role. In and of themselves, however,

these studies did not inform on the transport capacity of NKCC2A as

NKCC2B probably allowed Cl− to be fully reabsorbed under low‐flow
conditions.

As for NKCC2B, it is expressed in the late cortical TALH, MD

included and is also a high‐affinity low‐capacity carrier (Carota

et al., 2010; Gimenez et al., 2002; Igarashi et al., 1995; Itoh

et al., 2014; Marcoux et al., 2019b). In a nephron segment where the

luminal salt concentration is maximally reduced, NKCC2B should

thus be able still to ensure net ion retrieval. At the same time, it

would unlikely act as a sensitive salt sensor by MD cells given that its

activity saturates far below the luminal concentration of Na+ and

Cl− ions in the distal TALH (Orlov & Mongin, 2007). There is also the

possibility that the in vivo kinetic traits of NKCC2B differ from those

reported in oocytes.

An NKCC2B‐null ms model was also characterized by Oppermann

et al. (2006) and found to exhibit a mild decrease in urine con-

centrating ability. In this model, however, the ablated variant was not

compensated for by NKCC2A and NKCC2F, confirming that the

NKCC2A‐null model would have probably exhibited a more severe

phenotype in the absence of compensation by NKCC2B (Oppermann

et al., 2007). Microperfusion studies further showed that Cl− absorp-

tion along the NKCC2B‐null TALH was decreased once again but

under low‐flow condition only, thereby implying that NKCC2A is not a

high‐capacity carrier system either.

To study more specifically the role of NKCC2 in TGF, Opper-

mann et al. (2006, 2007) used their ms models to carry out proximal

tubular flow measurements in response to TALH perfusion and ser-

um renin measurements in response to intravenous saline infusion.

The first approach showed that TGF was markedly altered in both

models but under the low‐flow conditions in NKCC2B‐null mice and

high‐flow conditions in NKCC2A‐null mice. As for the second ap-

proach, it showed (somewhat surprisingly) that renin suppression

was only blunted in the NKCC2A‐null mice. However, it should be

kept in mind that differences in compensatory expression of the

nonablated variants could have accounted for these divergent re-

sponses and increased even further over time.

They are still uncertainties as to how NKCC2 could contribute to

TGF. On the basis of previous work, the variants at work could act by

inducing changes in the release of vasoactive substances by juxta-

glomerular cells through changes in MD volume such as occur in the

case of renin (Gonzalez, Salomonsson, Muller‐Suur, & Persson, 1988;

Hanner et al., 2008; Komlosi, Fintha, & Bell, 2006; Peti‐Peterdi,
Morishima, Bell, & Okada, 2002). According to this possibility, higher

concentrations of Na+ and Cl− in the distal TALH would cause MD

cells to swell (through increased NaCl uptake by NKCC2) and renin

release to decrease, while NKCC2A or NKCC2B inhibition by fur-

osemide would cause MD cells to shrink (through decreased NaCl

uptake) and renin release to increase.

As for the NKCC2AF and NKCC2ΔCT variants, their potential

roles have already been discussed to some extent. Although they

have been found to exert dominant‐negative effects on other NKCC2

variants, there is still little evidence to suggest that they could affect

TALH function under normal, adaptive, or pathological conditions. Be

that as it may, it is noteworthy that while NKCC2AF is expressed at

high levels in shark kidney, it is not transcriptionally poised in other

species under all circumstances (see subsection below).

Secondary roles along the TALH and systemic repercussions

As partly illustrated through Figure 7, NKCC2 plays many of its

systemic roles by allowing or driving the reabsorption of Na+, Cl−,

Ca2+, and Mg2+ by the TALH, the excretion of K+ and H+ by the initial

collecting duct and the reabsorption of water throughout the col-

lecting duct (Carmosino et al., 2015; Di Stefano, Roinel, de

Rouffignac, & Wittner, 1993; Quamme, 1989; Simon et al., 1996;
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Xu et al., 1994). The importance of Na+–K+–Cl− cotransport in these

processes is illustrated by the potential of loop diuretics to cause

volume contraction, water disorders (by lowering the urinary osmolar

range), hypomagnesemia, hypokalemia, and metabolic alkalosis.

NKCC2 plays many other important systemic roles. Through its

ability to act as a Na+–NH4
+–Cl− cotransport mechanism, it prevents

NH4
+ from building up in the general circulation during states of

enhanced renal ammoniogenesis (as occur in acidemic states) and

increases the buffering power of urine by driving the delivery of NH3

to the lumen of the collecting duct (Weiner & Verlander, 2011).

Through its involvement in the TGF mechanism, along the same line,

it regulates the release of renin and of angiotensin II from the jux-

taglomerular apparatus to other tissues including the adrenal glands

and resistive arteries (Oppermann et al., 2006, 2007).

The importance of NKCC2 in ECVF maintenance, water

homeostasis, and acid‐base balance is suggested further by the

observation that NKCC2 expression increases in response to a low‐
salt diet, water restriction, or acidosis and decreases in response to

high‐salt diets or water loading (Hao, Hao, & Ferreri, 2018; Hao,

Salzo, Hao, & Ferreri, 2020; Karim, Attmane‐Elakeb, Sibella, &

Bichara, 2003; L. Yang et al., 2018). In this regard, however, Brunet

et al. (2005) have observed that expression of the NKCC2 variants

along the ms TALH was differentially altered in response to water

loading (↓F; ↔A; ↓AF) and furosemide administration (↑A; ↓F; ↓AF).

In a subsequent study, another group of investigators (Schiessl

et al., 2013) came to similar conclusions. Taken together, these

findings are once more consistent with the idea of regulatable cell‐
specific proteins that act along the TALH on inducible 3′ splice site

enhancers in exon 4.

Genotype–phenotype correlation studies have also pointed to

the key contribution of NKCC2 in BP control. For instance, one study

showed that NKCC2A‐to‐NKCC2F expression ratios were higher in

salt‐sensitive Dahl kidney than they were in salt‐resistant Dhal

kidney (Herrera, Lopez, & Ruiz‐Opazo, 2001). Given that such ratios

should be inversely proportional to NaCl reabsorption by the TALH,

the NKCC2 variants in these models could have adapted to salt

sensitivity rather than have been the cause of it. Another study

showed that loss‐of‐function variants in Nkcc2 were associated with

lower BPs in a subcohort of 2,492 subjects from the Framingham

Heart Study (Acuna et al., 2011; W. Ji et al., 2008; Monette, Rinehart,

Lifton, & Forbush, 2011; Nandakumar, Morrison, Grove, Boerwinkle,

& Chakravarti, 2018) and gain‐of‐function variants in UMOD with an

NKCC2‐mediated increase in salt sensitivity (Graham et al., 2014;

Mutig et al., 2011; Trudu et al., 2013).

2.3.6 | Hereditary forms of NKCC2 dysfunction

As mentioned earlier, the activity of NKCC2 is affected by that of

many ion transport systems along the TALH. In particular, it is sti-

mulated under conditions where luminal‐to‐cytosol [Na+], [K+], and

[Cl−] gradients are increased. As such, a decrease in luminal K+ se-

cretion (through primary ROMK inactivation), an increase in [Cl−]i

(through primary CLCNKB or BSND inactivation), and an increase in

[Na+]i (through primary Na+/K+‐ATPase pump inactivation) should all

lead to a decrease in ion cotransport. Should also be associated with

lower levels of NKCC2 activity, a defect in any of the factors that

F IGURE 7 Model of ion transport and causes of NKCC2

dysfunction in the TALH. Ion transport: K+ recycling through K+

channels (b) in the apical TALH and through K+ channels (not shown)
and the Na+/K+ ATPase pump (f) in the basolateral TALH cause both

the luminal and serosal fluid to be positively charged (Greger, 1985;
Greger & Schlatter, 1981; Hamilton & Devor, 2012; Hebert &
Andreoli, 1984; Hebert, Culpepper, & Andreoli, 1981; Hurst, Duplain,

& Lapointe, 1992). However, outwardly directed Cl− conductive
pathways (c–e) in the basolateral TALH decreases the effect of K+

recycling on the serosal side such that active NaCl reabsorption in

this nephron segment causes the luminal‐to‐serosal transepithelial
potential to increase along with the paracellular reabsorption of
certain cations (Gu et al., 2009; Guinamard, Chraibi, & Teulon, 1995;
Winters, Zimniak, Mikhailova, Reeves, & Andreoli, 2000; Yoshitomi,

Koseki, Taniguchi, & Imai, 1987). NKCC2 dysfunction: Different types
of Bartter syndromes (BS) are listed along with an overview of their
clinical manifestations (see Cunha and Heilberg (2018) as to why

these manifestations vary among the types). The color of the
headings “BS” match those of the proteins affected. BSIVB appears in
various shades given that it is associated with pathogenic mutations

in both CLCNKA and CLCNKB. In this figure, the salt‐losing
nephropathy that has been linked to melanoma antigen D2 has term
BSVI arbitrarily. The proteins shown are (a) NKCC2 (SLC12A1), (b)

ROMK2 or ROMK3 (KCNJ1), (c) CLCNKB, (d) Barttin, (e) CLCNKA,
(f) the Na+/K+ ATPase, (g) Ca2+‐sensing receptor, (h) melanoma
antigen D2, and (i) claudins (isoforms 14, 16, or 19). N, normal;
NKCC2, Na+–K+–Cl− cotransporter 2; TALH, thick ascending loop of

Henle
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allow these transport systems to be expressed or conformationally

active at the cell surface.

In light of such considerations, NKCC2 dysfunction could

thus arise from a number of different anomalies along the TALH.

In our opinion, and as laid out in Table 1, this type of dysfunction

could be usefully designated as either primary, secondary, or

tertiary, that is, under three etiologic groups where the anoma-

lies are in the carrier itself, in other ion transport systems, or in

regulatory factors, respectively. The various clinical presenta-

tions associated with a dysfunction of NKCC2 are also summar-

ized in Figure 7.

3 | CONCLUSION AND PERSPECTIVES

In this review, we have seen that NKCC2 is of crucial importance to

the normal operation of the TALH as it contributes to extracellular

fluid volume maintenance, urinary concentration/dilution, TGF, Mg2+

homeostasis, and acid‐base balance. We also provided new insights

and hypotheses on the purposes of each variant, the functional

characteristics and structural determinants of ion translocation by

these carriers, and the mechanisms through which ion cotransport is

regulated.

A remaining challenge in the field NKCC2‐mediated ion cotran-

sport is the obtaining of protein probes and inhibitors that are specific

to each of the variants. A recent publication on the high‐resolution
structure of NKCC1 could become quite useful to this end by aiding in

the design of such ligands. While the probes and inhibitors required

could consist of pharmacologic agents or small peptides, prey sites

would probably have to be included in the TMD2–CL1 domains.

The various clinical conditions that could benefit from the use of

variant‐specific inhibitors include salt‐sensitive and glomerular hy-

pertension (by targeting NKCC2F), inappropriate antidiuretic hor-

mone secretion (by targeting NKCC2A), and excessive TGF response

in the setting of acute tubular injury (by targeting NKCC2B). By

contrast to loop diuretics, NKCC2F and NKCC2A inhibitors would

also offer the advantage of preserving TGF and anti‐NKCC2B in-

hibitors of minimizing natriuresis.

Since it was cloned in the mid‐1990s, NKCC2 has been the object

of ∼20 publications per year and has thus elicited continued interest

over a long period of time. It will soon find a place of honor among

the various ion transport systems of the TALH as further insight on

the structural determinants of Na+–K+–Cl− cotransport will be gained

in the near future. It would be especially enlightening to study these

determinants while the activity or phosphorylation of NKCC2 is al-

tered through various maneuvers, drugs, or mutagenesis.

TABLE 1 Classification of Bartter
syndromes

NKCC2

dysfunction

Genes linked to

phenotype

Mechanisms of abnormal renal salt handling along

the TALH

Primary NKCC2 (SLC12A1) Decreased Na+–K+–Cl− uptake via apical membranea

Secondary ROMK (KCNJ1) Decreased K+ secretion via apical membraneb

CLCNKB Decreased Cl− absorption via basolateral membranec

Barttin (BSND) Decreased Cl− absorption via basolateral membraned

CLCNKA+B Decreased Cl− absorption via basolateral membranee

Na+/K+ ATPase Decreased Na+ absorption from lack of ATPf

Tertiary CaSR Decreased expression/activity of ROMKg

MAGED2 Decreased expression of NKCC2h

UMOD Decreased expression of NKCC2i

Note: At least nine different defects have been associated with the hereditary forms of Bartter

syndrome. They are classified here into primary NKCC2 dysfunction, where the defect is in NKCC2

itself, secondary NKCC2 dysfunction, where the defect is in another NKCC2‐dependent ion transport

system, and tertiary NKCC2 dysfunction, where the defect is in a protein that regulates NKCC2

expression.

Abbreviations: CaSR, calcium‐sensing receptor; MAGED2, melanoma‐associated antigen D2; NKCC2,

Na+–K+–Cl− cotransporter 2; TALH, thick ascending loop of Henle; UMOD, uromodulin (also known

as Tamm–Horsfall protein).
aSimon et al. (1996); Starremans et al. (2003); Vargas‐Poussou et al. (1998).
bFiner et al. (2003); Peters et al. (2002); Simon et al. (1996).
cBirkenhager et al. (2001); Kramer, Bergler, Stoelcker, and Waldegger (2008); Schlingmann et al.

(2004); Scholl et al. (2006); Simon et al. (1997).
dBirkenhager et al. (2001); Kramer et al. (2008); Schlingmann et al. (2004); Scholl et al. (2006); Simon

et al. (1997).
eBirkenhager et al. (2001); Kramer et al. (2008); Schlingmann et al. (2004); Scholl et al. (2006).
fDimke, Hoenderop, and Bindels (2009); Finsterer and Scorza (2017).
gGamba and Friedman (2009); Hebert, Brown, and Harris (1997); Watanabe et al. (2002).
hKleta and Bockenhauer (2018); Laghmani et al. (2016).
iMutig et al. (2011); Renigunta et al. (2011); Trudu et al. (2013).
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