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A
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ST

R
A
C
T Several institutions have developed image feature extraction software to compute quantitative descrip-

tors of medical images for radiomics analyses. With radiomics increasingly proposed for use in
research and clinical contexts, new techniques are necessary for standardizing and replicating radio-
mics findings across software implementations. We have developed a software toolkit for the creation
of 3D digital reference objects with customizable size, shape, intensity, texture, and margin sharpness
values. Using user-supplied input parameters, these objects are defined mathematically as continuous
functions, discretized, and then saved as DICOM objects. Here, we present the definition of these
objects, parameterized derivations of a subset of their radiomics values, computer code for object gen-
eration, example use cases, and a user-downloadable sample collection used for the examples cited in
this paper.

INTRODUCTION
Radiomics approaches provide quantitative image features
computed from medical images and hold promise for improved
computer-aided diagnosis, treatment selection, and response
prediction (1–6). Radiomics features belong to 5 broad classes
of descriptors, namely, size, shape, intensity, texture, and margin
sharpness (7, 8). Recent findings strongly suggest that these
image features may hold diagnostic and predictive information,
some of which may not be visible to the human eye (3, 9, 10).

Several institutions have independently developed software
packages for the generation of radiomics features (7, 11, 12).
When different pipelines are run on the same imaging data, fea-
tures may vary significantly across institutions and pipelines
owing to differences in feature definition, software implementa-
tions, and/or parameter settings (13). This raises concerns about
the reproducibility and repeatability of both the feature computa-
tion itself and the subsequent model building (2, 4). Phantoms
with known characteristics should prove helpful for standardiza-
tion across institutions.

Multiple physical phantoms have been developed for ana-
lyzing the effect of scanner variation on the reproducibility of
quantitative image features (14–16) and for analyzing the com-
putation of specific radiomics features (eg, shape phantoms) (17).
However, physical phantoms must be designed for specific ex-
perimental questions, are difficult to share, and are subject to
the variations introduced by the physical scanning and recon-
struction process (eg, different intensity values across different
devices).

Several radiomics standardization initiatives have contrib-
uted patient cohorts as digital radiomics “phantoms.” Some pro-
ject teams asked several institutions to calculate radiomics
features on a small number of patient images and then compared
the computed values across institutions (13, 18, 19). Although
results could be compared across pipelines, the underlying
ground truth values of these features were unknown. One study
used a digital reference object (DRO) with a known standardized
uptake value to analyze variations in PET standardized uptake
value computation across institutions (20). This study showed
the utility of a “ground-truth” value in standardization across
institutions.

In addition, while recent work has already shown that radio-
mics features can be dependent on voxel size, scanner model and
acquisition/reconstruction settings, image rotation, and transla-
tion (15, 21–25), some features might be dependent on other
radiomics features themselves (like object size and shape). One
recent phantom design allowed for testing the effect of controlled
changes in object size on the calculation of shape features (17).
This work revealed that a number of shape features were unstable
with respect to changes in volume. Because many classes of
radiomics features (intensity, texture, margin, etc.) may also
show these interdependencies, phantoms are needed to address
these relationships in a controlled, hypothesis-driven fashion.

This paper presents a toolkit for the creation of DROs and a
sample collection of DROs made using it for radiomics experi-
ments and illustration. The DROs are mathematically defined and
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are output as DICOM image stacks with segmentations formatted
as DICOM segmentation objects (DSOs). The DROs’ mathematical
definitions allow the derivation of “theoretical” radiomics values
for some radiomics features, thereby allowing the accuracy of
radiomics algorithms to be verified. They can be altered along 10
axes of variation to allow for investigations into the stability and
robustness of extracted features to controlled variation of object
construction. We present the calculation of several theoretical
radiomics values for some DROs in our sample collection and
compare them to the corresponding features extracted using a
particular radiomics pipeline.

METHODOLOGY
Definition of Objects and Software
Definition of Objects. The toolkit creates DROs of chosen size,
shape, intensity, texture, and margin sharpness, sampled and em-
bedded in stacks of 300 512- � 512-Gy value images. As cur-
rently implemented, the images have a pixel spacing of 1mm in
the image (x.y) plane, a slice thickness of 1mm, and a slice spac-
ing of 1mm. Therefore, voxels are 1 mm3. These image stacks are
then saved as DICOM images and segmentation objects (26).
These DROs do not attempt to simulate computed tomography
(CT), magnetic resonance, or any specific scanner or modality
behavior. Instead, we define these objects with known, continu-
ous functions and then sample these functions as images. Each
DRO is a variation on a sphere as defined by 10 parameters di-
vided into 5 categories, as described in the following sections.
Size (1 Parameter). Mean Radius: The average radius (~r ) of

the object in millimeters.
Shape (5 Parameters). XYZ Deformation: The scaling of the

object along each Cartesian dimension [x,y,z] defined as a scalar
multiple of the radius. Therefore, [1,1,1] would be a perfect
sphere, while [2,1,1] would be an ellipsoid with twice the radius
in the x direction.

Surface Frequency and Amplitude: The frequency (v ) and
amplitude (a) of a sinusoidal variation along the surface of the
sphere, with frequency unitless and amplitude as a multiple of
the radius. Together, in spherical coordinates, the shape parame-
ters can be represented as:

r ¼ f ðu ; f Þ ¼ ~r ð1þ aÞsinðvu Þcosðvf Þ
where u is the polar angle and f is the azimuthal angle.
Intensity (1 Parameter). Mean Intensity: The mean internal

intensity (~m) of the object’s gray values. Note that the intensity
values can be converted to specific intensity values (eg,
Hounsfield unit, or HU, for CT) when desired. For the provided
objects, intensity values have been scaled to HU. That is, inten-
sities are scaled linearly with air at�1024 and water at 0.
Texture (2 Parameters). We conceptualize the texture as a 3-

dimensional sinusoidal variation of the voxel value. Therefore, 2
texture parameters control aspects of this sinusoidal model.

Texture Wavelength and Amplitude: The wavelength (l )
and amplitude (a) of the sinusoidal variation of the intensity of
the image, wavelength in (mm), and amplitude in intensity units.
In the case of these objects, these units are scaled to HU.
Together, in 3D Cartesian coordinates, we model the texture vari-
ation as:

mðx; y; zÞ ¼ ~m þ acos
2p
l

x
� �

cos
2p
l

y
� �

cos
2p
l

z
� �

Where m is the intensity at any given coordinate. Note, as
currently implemented, the wavelength is identical in all 3
dimensions. In addition, when a is set to zero, the object will
have a uniform internal value of ~m, the mean internal intensity.

Margin Sharpness (1 Parameter). We conceptualize margin
sharpness as the transition from the internal intensity value to
the external intensity value. To smoothly transition the internal
intensity to the background, we apply a Gaussian blur, with a
single parameter, to the object.

Gaussian Standard Deviation: The standard deviation (s ) of
the uniform, 3-dimensional Gaussian image blur applied to the
image. The larger the standard deviation, the greater the blurring
effect. A standard deviation of zero defaults to no blurring. This
blur can be modeled continuously as:

f ðx; y; zÞ ¼ 1

s 32p
3
2
exp� x2 þ y2 þ z2

2s2

Because the function is applied as a filter to the image, it is
centered on each pixel. Therefore, the filter blurs not only the
edges but also all internal intensity values. To repair the now-
blurred internal intensities, we replace all voxels within the origi-
nal segmentation map with their original values. Therefore, the
region outside the object is the filtered version of the image while
the interior of the object has the prefiltered intensity values.

Description of Code. We have implemented a command-line-
driven software package that allows the creation of objects
exhibiting the parameters as described above. Using a YAML
configuration file, all 10 parameters from the 5 categories
described above can be set for user-driven generation of new
DROs. Users can specify a range of values for each parameter, by
providing a minimum, maximum, and number of values. The
program will divide the range between the minimum and maxi-
mum into the number of requested values at equal intervals (eg,
minimum radius of 20, maximum radius of 40, and 3 values pro-
duces: radii 20, 30, and 40). If the user desires just 1 value for a
given parameter, the minimum and maximum should be equal
and the number of values should be 1. If the user provides ranges
for n different parameters, the program generates an n-dimen-
sional matrix of DROs for each combination of parameter values.
Each point in this matrix corresponds to a unique object pro-
duced by the code. For example, if the user requests 3 values for
3 parameters, (33), the toolkit will generate 27 DROs.

To provide unique and relevant names for every generated
DRO, the DRO name (saved in the DICOM header “Patient Name”
and “Patient ID” tags and as the enclosing folder name) is a “-”
separated list of the values of all 10 settable parameters in the
same order as listed in the “Definition of Objects” subsection. For
example, if a DRO has a radius of 100, an x-, y-, and z-deformation
of 1, a shape frequency of 9, a shape amplitude of 0.2, a mean in-
tensity of 100, a texture wavelength of 10, a texture amplitude of
50.0, and a margin sharpness Gaussian standard deviation of 10,
then the unique name of the generated object will be Phantom-
100.0-1.0-1.0-1.0-9.0-0.2-100.0-10.0-50.0-10.0. Each number
corresponds to each parameter in order.
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Once the DICOM series has been generated, the software then
produces a corresponding DSO file for each DICOM series. The
DSO file is named with the unique DRO name. The software finally
returns 2 zip files, namely, DICOMs and DSOs. The DICOM zip file
is a folder of subfolders. Each subfolder is named after a specific
DRO and contains the DICOM series for that DRO. The DSO zip file
is a folder of files. Each file is the DSO for a specific DRO.

The command line tool is open-source and available for use
from this GitHub repository: https://github.com/riipl/dro_cli.

Illustrative Use Cases
Generation of Sample Collection. To offer out-of-the-box, ready-
to-use DROs for immediate studies, we generated a collection of
DROs; each DRO consists of a DICOM image series with accompa-
nying DSO. For distribution, we also provide this specific collec-
tion of DROs in Neuroimaging Informatics Technology Initiative
(NIfTI) format segmentations (27).

For each of the 5 classes of image features (size, shape, in-
tensity, texture, and margin sharpness), we have selected 1 pa-
rameter from each class to have 2 values. We chose mean radius,
shape variation amplitude, mean intensity, texture variation am-
plitude, and Gaussian standard deviation. All other parameters
are held constant. Table 1 specifies the values we used for all 10
parameters and highlights the 5 parameters that have 2 values.
Because each chosen parameter has 2 values, we generated 25 or
32 unique objects. Note that, while all objects have a texture
wavelength of 10mm, Table 1 specifies that the texture ampli-
tude is zero for half of the 32 objects, resulting in 16 objects with
uniform intensity.
Calculation of Theoretical Radiomic Values. To show the use

of the theoretical definitions of these phantoms, we generated
the theoretical “ground truth” values for a subset of radiomics
features. Acknowledging that there are many potential radio-
mic values to compute, we chose 8 features as defined by the
Image Biomarker Standardisation Initiative (IBSI) (8, 28).
These features are volume, surface area, 2D diameter, 3D di-
ameter, sphericity, intensity mean, intensity standard devia-
tion, and intensity kurtosis. Online supplemental Appendix 1

specifies their IBSI definitions. All of the theoretical values of
the features in our DROs were computed by applying the IBSI
definitions of the features to the mathematical definition of the
continuous object. We provide the value of each of these features
for 3 objects from the collection: uniform sphere with uniform
intensity (Table 2 first bold, hereafter named “Uniform” for con-
venience), uniform sphere with texture variation (Table 2 second
bold, hereafter named “Texture Variation”), and nonuniform
sphere with uniform intensity (Table 2 third bold, hereafter
named “Shape Variation”).

Comparison of Theoretical Radiomics Values with Output of a
Pipeline. To show the utility of the theoretical values in compari-
son with pipeline output, we compared the theoretical radiomics
values defined above against radiomics values produced by the
Stanford Quantitative Image Feature Engine (QIFE) on the 3
DROs described above (7). Online supplemental Appendix 2 gives
the configuration file parameters we used for running the
Stanford QIFE. See Echegaray et al. (7) for definitions and imple-
mentation of all QIFE features.

RESULTS
Description of Sample Collection
The 32 unique objects generated for the sample collection have
every combination of the 2 values for the 5 chosen parameters
(Table 2). As the colors indicate, there are 16 objects with each
value for each parameter. This diversity of objects allows users to
explore each parameter in isolation and in the context of other
parameter changes. Figure 1 presents 8 objects sampled from the
collection. The entire collection is available in zipped folders in
the project GitHub repository: https://github.com/riipl/dro_cli.
The collection is also available in The Cancer Imaging Archive
(https://doi.org/10.7937/t062-8262).

Comparison of Theoretical Computation of “Ground
Truth” Radiomics Features to QIFE Calculated Values
We derived the theoretical values for the 8 IBSI-defined
radiomics features described above for the Uniform, Texture
Variation, and Shape Variation DROs defined above. These

Table 1. Parameters for the Sample Collection of DROs E

Feature Class Parameter Name Unit Measure First Value Second Value

Size Mean Radius mm 20 100

Shape X Deformation Multiple of Radius 1

Shape Y Deformation Multiple of Radius 1

Shape Z Deformation Multiple of Radius 1

Shape Surface Frequency Unitless 9

Shape Surface Amplitude Multiple of Radius 0 0.2

Intensity Mean Intensity HU �100 100

Texture Texture Wavelength mm 10

Texture Texture Amplitude HU 0 50

Margin Sharpness Gaussian Standard Deviation Unitless 0 10

Parameters and units are taken from the “Definition of Objects” subsection. Five chosen parameters from each feature class have 2 values. All other pa-
rameters have 1 value. Because a 0 amplitude negates a sinusoidal variation, we specify only 1 value for texture wavelength and shape frequency.
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derivations serve as a model to researchers interested in com-
paring their radiomics pipelines to “ground-truth” values.
Table 3 compares the derived theoretical radiomics values to
those produced by Stanford QIFE. Across all values, there is
<10% difference. Excluding surface area and sphericity,
there is a <1% difference. Note that for the DROs with uni-
form intensity, QIFE appropriately returns NaN for kurtosis,
as it is undefined.

Furthermore, as the Uniform DRO only differs from the
Texture Variation and Shape Variation DROs by 1 parameter
each, Table 3 also presents a simple demonstration of how QIFE
output reflects changes in individual DRO parameters. For exam-
ple, increasing the texture amplitude from 0 to 50 HU produces a
change in intensity standard deviation and kurtosis but not in-
tensity mean or any shape feature (Table 3). Similarly, increasing
the shape variation amplitude from 0% to 20% of the radius leads
to changes in all size and shape features but no change in any in-
tensity features (Table 3).

DISCUSSION
Customizable DROs allow for valuable comparisons of exist-
ing pipelines. As presented in McNitt-Gray et al. (19), DROs

can be used for large-scale, multi-institutional studies as a
tool for comparing radiomics features across many pipelines.
We narrow this work by focusing on the benefits of the DRO’s
theoretical values as a benchmark for features when no addi-
tional pipelines are available for comparison. Unlike MD
Anderson’s Credence Cartridge Radiomics (CCR) phantom
(15, 16) or the American College of Radiology CT Phantom
(ACR CT) (14, 29), our DROs have theoretically defined values
that match closely to computed values from an existing pipe-
line (Table 3).

Notably, the QIFE calculated surface area at 8% higher than
the theoretical value (with sphericity 8% lower as a result) com-
pared with the theoretical value. Limkin et al. analytically com-
puted shape radiomics features from the surface of mathematically
specified objects and compared these values to the radiomics fea-
tures computed from the images of CT scans of their 3D-printed
versions (17). In their experiments, the surface area of the images
also showed between a 5% and 15% difference from the value
computed from the mathematical description. However, many
more factors can influence radiomics values for a scanned object,
including noise, partial volume, reconstruction parameters includ-
ing voxel size, etc., which could cause differences even in repeated

Table 2. Table of All Generated DROs with Unique Parameters

While every DRO has 10 parameters, we present just the 5 parameters we varied between 2 values in the sample collection. The unique name of each
DRO is generated as described in “Description of Code” subsection. Each parameter is colored by value. Bolded objects: (1) referred to as “Uniform,”
(2) Referred to as “Texture Variation,” (3) referred to as “Shape Variation,” in Calculation of Theoretical Radiomics Values.
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scans of the same object. Although these results are important, our
DROs allow investigation of the accuracy of radiomic pipelines
before considering these confounding effects.

One limitation of the theoretical values for our DROs is that
they are computed from the continuous definitions of the objects
and not the discretized version embedded in image space. For
instance, the volume, surface area, and sphericity of a continuous
sphere are different from the corresponding values computed for
a discretized sphere with the same dimensions. Further work
could investigate the impact of discretization (number and
size of voxels) on the difference between the theoretical val-
ues and the pipeline-computed values. Nonetheless, the gen-
eral agreement between the theoretical values and the QIFE
values for the 8 features we studied confirms the theoretical
values’ accuracy and utility in checking the output of a radio-
mics pipeline.

Another limitation of this work is that, although we have
scaled the image gray values in HU, these DROs do not
attempt to simulate CT noise or any of its known artifacts.
Therefore, these DROs could be argued as being “hyperideal-
ized” objects with no relevance to feature computation in
clinical contexts. However, their idealized nature is also their
benefit because it allows for controlled studies in developing
and/or fine-tuning radiomics pipelines and comparing their
performance across institutions. In addition, not all radio-
mics features can be trivially computed from the mathemati-
cal definitions of the objects. Many second-order texture
features are the main source of disagreement between radio-
mics implementations (13, 18, 19) but must be computed
from the voxel-based embedding of the objects rather than
their continuous definitions. Further work could consider
theoretical estimations of these kinds of features from the
object definitions.

This work presents the implementations of just 10 user-de-
finable image features. We provide the code in this GitHub repos-
itory (https://github.com/riipl/dro_cli) with the hope that users
will modify and/or implement new features to resolve specific
questions of interest. There are many possible extensions of this
feature set. For example, as implemented, the sinusoidal texture
has equal wavelength in all 3 Cartesian dimensions. Future
developers could easily extend the current code to implement
different wavelengths in all dimensions allowing for a greater di-
versity in object textures. Similarly, the sinusoidal shape varia-
tion has equal frequency in both angular dimensions. This
limitation could easily be removed to develop more complex
object shapes. In addition, margin blurring is currently computed
by blurring the object and then resetting all intensity values
within the original segmentation. More sophisticated methods
could attempt to create a smooth transition between the interior
and exterior of the object.

We provide a collection of 32 DROs with a large combina-
tion of image features of interest. These objects allow for investi-
gation of image features in isolation and in the context of other
changes (eg, the impact of object shape on GLCM texture fea-
tures). Although we only analyzed 3 DROs from this collection,
we hope this collection of DROs can serve a diversity of experi-
mental questions and inspire the generation of new DROs using
the available command line tool.

Figure 1. DROCollection Subset.
Representative images of the maximum area
cross-section of 8 digital reference objects (DROs)
from the provided collection. The window level is
equivalent to�400HU, and the windowwidth is
equivalent to 800 HU. The scale of the images
indicated by the 10-cm scale bar in (A). DROs
are aligned such that all characteristics between
DROs in the same row are identical except mar-
gin sharpness. All DROs have an average radius
of 100mm and an average internal intensity of
�100HU. (A) and (B) are both uniform shape
and uniform intensity. (C) and (D) are both uni-
form shape and varying intensity. (E) and (F) are
both varying shape and uniform intensity. (G)
and (H) are both varying shape and varying
intensity.
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The presented DROs address 3 major needs in the radiomics
literature. These objects are the first digital, customizable refer-
ence objects with some mathematically derivable radiomics fea-
tures. Not relying on physical phantoms or patient images
democratizes experimental design and allows for faster image
dissemination and project collaboration. Theoretical values for
radiomics features provide pipeline-independent reference val-
ues. Finally, the multiparametric customizability of the objects

allows for controlled studies of individual radiomics features and
their stability to changes in other image features.

Supplemental Materials
Supplemental Appendix 1: https://doi.org/10.18383/j.tom.2019.
00030.sup.01
Supplemental Appendix 2: https://doi.org/10.18383/j.tom.2019.
00030.sup.02
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Intensity Stdev 0.00 0.00 0.00 17.68 17.68 �0.01 0.00 0.00 0.00

Intensity Kurtosis 0.00 NaN NaN 3.38 3.37 �0.01 0.00 NaN NaN
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