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Abstract: Naltrexone (NTX) hydrochloride is a potent opioid antagonist with significant first-pass
metabolism and notable untoward effects when administered orally or intramuscularly. Microneedle
(MN)-assisted transdermal delivery is an attractive alternative that can improve therapeutic delivery
to deeper skin layers. In this study, chitosan-NTX microspheres were developed via spray-drying,
and their potential for transdermal NTX delivery in association with MN skin treatment was assessed.
A quality-by-design approach was used to evaluate the impact of key input variables (chitosan
molecular weight, concentration, chitosan-NTX ratio, and feed flow rate) on microsphere physical
characteristics, encapsulation efficiency, and drug-loading capacity. Formulated microspheres had
high encapsulation efficiencies (70–87%), with drug-loading capacities ranging from 10–43%. NTX flux
through MN-treated skin was 11.6 ± 2.2 µg/cm2

·h from chitosan-NTX microspheres, which was
significantly higher than flux across intact skin. Combining MN-assisted delivery with the chitosan
microsphere formulation enabled NTX delivery across the skin barrier, while controlling the dose
released to the skin.
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1. Introduction

The opioid epidemic is a major public health crisis in the United States, with over 72,000 overdose
deaths recorded in 2017 and an estimated 2.1 million Americans (ages 12 and older) meeting the criteria
for a diagnosis of opioid dependence [1]. Naltrexone (NTX) is a potent opioid antagonist administered
orally and intramuscularly to manage opioid and alcohol dependence. Both routes of administration
have significant disadvantages. Orally administered NTX undergoes extensive hepatic metabolism,
can produce significant gastrointestinal upset, and results in large variations in plasma concentrations.
Intramuscular administration is costly, requires medical expertise for administration, and may cause
injection site pain; these concerns often lead to low patient compliance [2,3]. Transdermal delivery
of NTX would overcome many of the challenges of oral and injectable delivery, as transdermal
administration avoids first-pass hepatic metabolism, provides consistent drug plasma concentrations,
and favors ease of application for patients [4]. However, the hydrophilicity of NTX, in addition to
the strong barrier nature of the stratum corneum (the outermost layer of skin), limits the effective
transdermal absorption of NTX [5,6]. These challenges make NTX an ideal drug candidate for an
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alternative transdermal delivery strategy that can improve its skin permeation, reduce side effects, and
improve its ease of use.

Solid microneedles (MNs) have been demonstrated as a clinically useful method to facilitate
transdermal NTX delivery [4,7]. As a minimally invasive delivery technique, MNs subtly pierce the
skin and circumvent the stratum corneum. This results in the effective delivery of a broad range of
therapeutics into deeper skin layers, including hydrophilic small molecular weight drugs, peptides,
proteins, and other large molecules [8,9]. MNs act by creating aqueous micropores in the skin that
serve as a transport route for therapeutics into deeper skin layers. More importantly, MNs are
realistic for clinical implementation because they can be self-applied by patients and are generally
well-tolerated [6,7,10,11].

When solid MNs are applied to the skin as a pretreatment to create micropores in the epidermis,
the application of a drug formulation over the MN-treated area allows a drug to permeate through
the micropores. Despite being a two-step process, this type of MN treatment affords some additional
treatment flexibility when compared to other approaches such as coated or dissolving polymeric MNs.
Higher doses can be administered using the two-step approach, which is appropriate for drugs like
NTX. In vivo studies in humans have already shown that this MN technique effectively delivers NTX
at therapeutic concentrations and is well-tolerated, with only minor NTX side effects such as nausea
and lethargy reported [4]. Last, properties of the MNs (length and number) and the formulation (gel,
solution, particles, etc.) can be adjusted, giving more flexibility in dosing.

Microencapsulation is a method of producing particles containing active agent(s) that are
surrounded by a network of polymeric membranes to form a capsule or matrix. The particles generally
have a size between 1 and 1000 µm [12]. This technique has been used to entrap drugs into polymers,
which are used to deliver high drug concentrations, protect the drug from degradation, and provide
sustained drug release [13]. Biodegradable polymers, particularly natural polymers such as chitosan,
have attracted more interest due to their affordability, biocompatibility, low irritation, little or no
toxicity, and widespread availability [14]. Chitosan is a natural cationic linear polysaccharide that has
been used extensively for drug delivery because of the aforementioned properties and, also, because of
its mucoadhesive nature and ability for controlled drug release [15–17].

Spray-drying is a physical microencapsulation method of dry particle production through the
rapid conversion of a fluid or slurry into dried powder by taking advantage of the gaseous hot-drying
medium within the spray-dryer system. Spray-drying has found a wide range of applications in the
pharmaceutical, food, pigment, and ceramics industries. The properties of the final products from a
spray-drying process are often influenced by a variety of formulation and process parameters [13,18,19].

In this study, we used a quality-by-design (QbD) approach to design chitosan-NTX microspheres.
Spray-drying was used to encapsulate NTX into chitosan microspheres because the technique is
economical and can achieve a high drug-loading capacity. Using NTX as a model hydrophilic drug
that is normally unable to permeate intact skin in clinically relevant amounts, we aimed to: (1) design
and characterize spray-dried NTX-loaded chitosan microspheres, (2) quantify the influence of select
formulation and process variables on microsphere characteristics, and (3) evaluate NTX in vitro skin
permeation from the microspheres when delivered with MN skin pretreatments.

2. Materials and Methods

2.1. Materials

Naltrexone HCl was purchased from Mallinckrodt Pharmaceuticals (Webster Groves, MO, USA).
Trifluoroacetic acid (TFA); triethylamine (TEA); HPLC grade water; acetonitrile; and low (50–190 kDa,
75–85% deacetylated), medium (190–310 kDa, 75–85% deacetylated), and high (310–375 kDa, > 75%
deacetylated) molecular weight chitosan were purchased from Sigma Aldrich (St Louis, MO, USA).
HEPES balanced salts, sodium bicarbonate, acetic acid, and SnakeSkin® dialysis membrane (10,000 Da
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molecular weight cutoff) were purchased from Thermo Scientific (Watham, MA, USA). Porcine ear
skin was purchased from a local slaughterhouse.

2.2. Design of Experiment (DoE)

To control chitosan-NTX microsphere quality attributes, critical process parameters that may
affect the quality of the microspheres were selected based on a carefully researched knowledge space.
Chitosan molecular weight (MW), polymer concentration, chitosan-NTX ratio, and spray-dryer feed
flow rate were selected as critical formulation and process variables that may influence microsphere
properties. Chitosan MW and concentration were selected because increased polymer MW and
concentration have been shown to influence particle size and drug encapsulation efficiency [20],
chitosan-NTX ratio was chosen as it impacts drug-loading capacity [21,22], and feed flow rate was
selected for its proven influence on parameters such as yield and particle size in a spray-drying
process [23]. Each variable was tested at 3 levels in a randomized 27-experiment Box Behnken design
(Table 1), with variables at level −1, 0, and +1 depicting low, medium, and high levels, respectively
(Table 2). Chitosan was used at low (50–190 kDa), medium (190–310 kDa), and high (310–375 kDa) MW;
chitosan concentration was used at low (0.5% w/v), medium (0.7% w/v), and high (0.9% w/v) levels;
chitosan:NTX ratio was used at low (1, one-part chitosan to one-part NTX), medium (3, three-parts
chitosan to one-part NTX), and high (5, five-parts chitosan to one-part NTX); and feed flow rate
was used at low (4 mL/min), medium (6 mL/min), and high (8 mL/min) levels. The influence of
these variables on selected critical quality attributes (CQA) of chitosan-NTX microspheres were
assessed using ANOVA analysis and general linear modeling to estimate parameters. The selected
CQAs that described chitosan-NTX microspheres were yield, hydrodynamic diameter, zeta potential,
encapsulation efficiency, drug-loading capacity, and percent cumulative NTX in vitro release. The inlet
air temperature, atomizer flow rate, and aspirator pressure were kept constant at 190 ◦C, 750 mL/min,
and 30 mbar, respectively; these values were efficient for spray-drying based on previous reports [23].

Table 1. Responses for randomized 27-experiment Box Behnken design of chitosan-naltrexone (NTX)
microspheres. n = 3 and data represented as mean ± SD. EE = encapsulation efficiency.

Run A B C D Yield (%) Mean Diameter
(µm)

Mean zeta
Potential (mV) EE (%) Drug-Loading

Capacity (%)
Outlet Air

Temperature (◦C) NTX Release (%) Dry Batch
Weight (g)

F1 0 −1 0 −1 38.6 2.69 ± 0.35 52.95 ± 2.62 78.0 ± 0.2 15.6 ± 0.04 84 69.4 ± 4.4 1.5
F2 0 0 0 0 23.4 2.03 ± 0.39 59.93 ± 6.05 84.2 ± 0.3 16.8 ± 0.07 73 74.7 ± 1.1 1.5
F3 1 0 0 −1 33.2 1.73 ± 0.13 55.33 ± 1.80 86.5 ± 0.5 17.3 ± 0.10 87 65.1 ± 3.9 1.5
F4 1 1 0 0 39.0 2.25 ± 0.15 60.37 ± 6.93 86.1 ± 4.5 17.2 ± 0.91 80 74.9 ± 20.6 2
F5 0 0 −1 −1 33.7 8.35 ± 0.41 42.03 ± 5.22 80.1 ± 1.1 40.0 ± 0.55 88 81.5 ± 7.1 1.4
F6 1 0 1 0 29.4 3.34 ± 0.19 47.45 ± 7.14 88.3 ± 3.3 12.6 ± 0.47 76 65.8 ± 4.0 1.4
F7 1 0 −1 0 35.4 7.31 ± 0.89 34.23 ± 1.35 85.1 ± 1.4 42.5 ± 0.72 80 72.1 ± 4.2 2
F8 0 −1 0 1 29.7 2.84 ± 0.10 59.70 ± 6.30 73.6 ± 0.6 14.7 ± 0.11 60 67.2 ± 0.6 1.5
F9 0 0 0 0 33.1 2.71 ± 0.23 60.75 ± 0.21 73.8 ± 2.6 14.8 ± 0.52 85 81.4 ± 0.8 1.5
F10 0 −1 −1 0 31.6 9.20 ± 1.33 43.67 ± 0.46 71.0 ± 0.0 35.5 ± 0.00 75 79.7 ± 3.4 1.4
F11 0 0 1 1 30.0 3.21 ± 0.22 61.67 ± 5.23 70.5 ± 0.3 10.1 ± 0.05 60 79.8 ± 1.1 1.4
F12 0 0 1 −1 33.6 2.93 ± 0.18 59.47 ± 1.68 69.8 ± 1.7 10.0 ± 0.24 98 82.9 ± 6.2 1.4
F13 0 −1 1 0 34.5 2.08 ± 0.15 44.40 ± 5.26 70.2 ± 3.2 10.1 ± 0.46 89 86.5 ± 3.1 1.87
F14 −1 0 0 1 25.4 3.84 ± 0.20 61.33 ± 0.91 72.3 ± 1.9 14.5 ± 0.39 60 88.6 ± 6.6 1.5
F15 1 0 0 1 17.0 2.48 ± 0.15 57.05 ± 2.47 73.7 ± 0.1 14.7 ± 0.02 63 71.5 ± 1.4 1.5
F16 −1 0 0 −1 40.3 2.64 ± 0.16 66.50 ± 0.36 74.9 ± 3.5 15.0 ± 0.70 83 74.8 ± 6.1 1.5
F17 1 −1 0 0 32.2 3.23 ± 0.11 63.20 ± 2.17 80.9 ± 2.8 16.2 ± 0.55 75 80.7 ± 3.2 1.5
F18 0 1 −1 0 41.0 3.67 ± 0.23 56.23 ± 7.57 85.1 ± 0.3 42.6 ± 0.17 80 74.0 ± 4.8 1.4
F19 0 0 −1 1 20.7 3.67 ± 0.13 46.90 ± 2.51 77.5 ± 1.9 38.8 ± 0.95 61 94.0 ± 4.2 1.6
F20 −1 −1 0 0 37.9 2.19 ± 0.33 57.10 ± 1.41 75.5 ± 1.9 15.1 ± 0.38 81 78.8 ± 13.2 1.5
F21 0 0 0 0 35.6 2.98 ± 0.08 61.30 ± 2.97 81.2 ± 1.7 16.2 ± 0.33 82 76.2 ± 5.6 2
F22 0 1 0 1 32.7 2.71 ± 0.21 57.40 ± 7.38 80.9 ± 3.2 16.2 ± 0.64 61 74.0 ± 5.0 1.5
F23 −1 1 0 0 29.0 2.92 ± 0.24 63.03 ± 5.24 76.7 ± 4.7 15.3 ± 0.94 85 82.0 ± 9.3 2
F24 0 1 0 −1 39.5 3.14 ± 0.09 63.40 ± 0.71 75.5 ± 3.9 15.1 ± 0.79 86 78.2 ± 2.0 1.5
F25 −1 0 1 0 43.2 2.20 ± 0.21 57.73 ± 2.50 77.0 ± 1.6 11.0 ± 0.22 79 72.7 ± 6.3 1.4
F26 0 1 1 0 38.9 2.52 ± 0.27 56.47 ± 4.25 81.5 ± 4.3 11.6 ± 0.61 81 62.9 ± 11.8 1.4
F27 −1 0 −1 0 23.4 8.29 ± 0.70 52.17 ± 0.21 74.9 ± 4.8 37.5 ± 2.42 70 89.0 ± 1.5 2
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Table 2. Description of variables and levels. L, M, and H depicts low, medium, and high molecular
weight chitosan.

Coded Variables Uncoded Variables −1 0 1

A Chitosan molecular weight L M H

B Chitosan concentration
(%w/v) 0.5 0.7 0.9

C Chitosan-NTX ratio 1 3 5
D Feed flow rate (mL/min) 4 6 8

2.3. Spray-Drying of Chitosan-NTX Dispersions

2.3.1. Chitosan-NTX Dispersion

Chitosan was dispersed in 1% v/v acetic acid under magnetic agitation for 24 h, the viscous chitosan
dispersion was centrifuged at 10,000 × g for 10 min (Accuspin 400, Fisher Scientific, Hampton, NH,
USA), and the supernatant containing dissolved chitosan was collected and used in the spray-drying
process. The purpose of centrifuging was to remove any particulate material that may clog the
spray-dryer atomizer nozzle. The amount of “undissolved” material seen after centrifugation was
considerably low and likely had negligible effects on the product yield. NTX was dissolved in 20 mL
of 1% v/v acetic acid and added to the dissolved chitosan dispersion to complete the volume for each
batch ranging between 1.4 to 1.87 g of total dry weight. Before spray-drying, each batch was sonicated
with a VCX probe sonicator (SONICS, Newtown, CT, USA) at an amplitude of 50 Hz for 2 min.

2.3.2. Spray-Dried Chitosan-NTX Microspheres

Spray-drying was performed in a Buchi 190 mini spray dryer (Buchi Corporation, New Castle,
DE, USA) equipped with a 1-mm nozzle (Niro Inc., Columbia, MD, USA) at an atomizer air flow rate
of 750 mL/min, inlet temperature of 190 ◦C, and aspirator pressure of ~30 mbar [23]. Chitosan-NTX
dispersions were pumped into the spray-dryer using a MasterFlex L/S peristaltic pump (Cole-Parmer,
Vernon Hills, IL, USA) equipped with an Easy-Load II head and size 16 platinum-cured silicone
tubing at feed flow rates set to values indicated in the experimental design for each batch. Outlet
air temperature was recorded at the final minutes of completion for each batch. Dried chitosan-NTX
microspheres were collected from the receiver chamber and weighed, and microsphere yield was
calculated according to Equation (1):

Yield(%) =
Wr

Wt
x 100 (1)

where Wr is the total weight of chitosan-NTX microspheres recovered after spray-drying, and Wt is the
total weight of solid (chitosan + NTX) before spray-drying.

2.4. Characterization of Chitosan-NTX Microspheres

2.4.1. Size Distribution and Morphology

Microsphere size distribution was determined by dynamic light scattering (DLS) using a Zetasizer
Nano ZS (Malvern, Westborough, MA, USA). Chitosan-NTX microspheres were dispersed in absolute
ethanol to prevent swelling and aggregation, while parameters of viscosity (1.061 cp), dielectric constant
(24.3), and refractive index (1.361) for absolute ethanol [24–26] were adjusted on the instrument before
analysis. Zeta potential was determined at 25 ◦C by laser doppler micro-electrophoresis technique.

Scanning electron microscopy (SEM) was performed to evaluate the microsphere shape and
surface morphology using a Hitachi-S4800 microscope (Hitachi, Tokyo, Japan) at 5-kV acceleration
voltage. Samples were prepared using double-coated carbon conductive tapes on stubs and were
sputter-coated under vacuum before analysis with gold/platinum using an Emitech K550 sputter
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coater (Quorum Technologies Ltd, Laughton, UK). Fiji (ImageJ) software [27] was used to determine
microsphere diameters of 100 randomly selected microspheres from the photomicrographs acquired
with the SEM.

2.4.2. Determination of NTX Content in Microspheres

Encapsulation efficiency was determined by dissolving a known weight of chitosan-NTX
microspheres in 20 mL of 1% v/v acetic acid under magnetic stirring for 24 h. The solution was
centrifuged (AccuSpin Micro 17R, Fisher Scientific, Hampton, NH, USA), syringe-filtered (0.45 µm,
EMD Millipore, Burlington, MA, USA), and NTX content was quantified using a validated HPLC
method, detailed later in the Methods section. Encapsulation efficiency was determined according to
Equation (2), and drug loading capacity was determined according to Equation (3):

Encapsulation e f f iciency =
Wexperimental

Wtheoretical
× 100 (2)

Drug loading capacity =
NTXw

MSw
× 100 (3)

where Wexperimental is the mass of NTX recovered from a known weight of chitosan-NTX microspheres,
Wtheoretical is the mass of NTX expected in an equivalent weight of chitosan-NTX microspheres, NTXw

is the mass of NTX recovered from a known weight of chitosan-NTX microspheres, and MSw is the
known weight of chitosan-NTX microspheres. Encapsulation efficiency and drug-loading capacity
were determined in triplicate.

2.4.3. Solid-State Characterization

Differential scanning calorimetry (DSC) measurements were performed on a Q20-DSC equipped
with a refrigerated cooling system (TA Instruments, New Castle, DE). The DSC curves were obtained
under nitrogen atmosphere (40 mLmin−1) using 1.5-mg samples and a heating rate of 5 ◦C·min−1.
Accurately weighed samples (± 0.1 mg) were placed in a covered Tzero low-mass aluminum pan with
an empty covered aluminum pan used as reference before heating from 0 to 240 ◦C.

FT-IR spectra were taken with a Frontier FT-IR/FIR spectrometer (PerkinElmer, Waltham, MA,
USA). Approximately 5 mg of each sample was mixed and triturated with 300-mg KBr (dried overnight
at 60 ◦C) in a mortar to form a fine powder mass. A small amount of the sample-KBr mixture was
compressed for 2 min with a hand-press into a thin, translucent pellet disk and placed in the specimen
holder of the spectrophotometer. All spectra were recorded at ambient temperature at a resolution of
1 cm−1 and 16-time scan. Each spectra scan was taken in the wavenumber region between 4000 to
400 cm−1.

2.5. In Vitro NTX Release Studies

In vitro release of NTX from the microspheres was determined using an in-line flow-through
diffusion cell apparatus (PermeGear, Hellertown, PA, USA). HEPES-buffered Hank’s balanced salts
(pH 7.4) with gentamicin sulphate (87 µM) served as the receiver medium. A cellulose dialysis
membrane (SnakeSkin®, 10,000 Da molecular weight cutoff, Thermo Scientific, Waltham, MA, USA) was
equilibrated in DI water for 10 min and then cut to fit the diffusion cells (2.2 × 2.2 cm internal dimension,
with 0.64 cm2 permeation area). Chitosan-NTX microsphere dispersions containing 2-mg/mL NTX
in PBS (pH 7.4) were prepared, and 500 µL was applied to the dialysis membrane. Dispersions were
prepared by adding the required weight of chitosan-NTX microspheres into the dispersion medium
under magnetic agitation before they were applied to the donor chamber. The diffusion cells were
maintained at 37 ◦C throughout the study, and the receiver medium flow rate was set to 1.5 mL/h to
maintain sink conditions. Samples were collected every 3 h for 24 h. Cumulative NTX release was
quantified using HPLC. Experiments were performed in triplicate.
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2.6. In Vitro Skin Permeation Studies

2.6.1. Preparation of Chitosan-NTX Dispersions

Chitosan-NTX dispersions of three formulations (F7, F19, and F27 (Table 1)) containing 12-mg/mL
NTX were prepared by dispersing the necessary mass of each formulation in a dispersion medium
composed of DI water (79%), polyethylene glycol (20%), and benzyl alcohol (1%) under magnetic
agitation overnight. Additionally, a dispersion of formulation F7 containing 30-mg/mL NTX was
prepared using the same medium.

2.6.2. Preparation of Porcine Ear Skin

Excised porcine ear skin for all in vitro permeation studies was obtained from a local slaughterhouse
and stored at−80 ◦C until use. Skin samples were thawed on the day of use and were dermatomed (TCM
3000BL, Nouvag AG, Goldach, Switzerland) to a thickness of 1-mm skin before use. For MN-treated
skin, an “in-plane” array of 5 stainless steel MNs, 750-µm length, was used (Tech-Etch Inc, Plymouth,
MA, USA). The array was applied a total of 20 times to create 100 microchannels on a skin area of
0.64 cm2 (corresponding to the diffusion area of the in-line diffusion cells). To create the microchannels,
the array was first applied 10 times in one direction, the skin was turned approximately 45◦, and then,
an additional 10 MN applications were performed. To verify micropore formation, additional skin
samples were treated with MNs and then stained with gentian violet dye to allow visualization of the
micropores. The dye was allowed to stand on the skin surface for 1 min for adequate staining, and
the skin surface was then cleaned with isopropyl alcohol swabs to remove excess dye. Skin samples
that were not treated with MNs were stained with the same technique for comparison. An image of a
sample MN array and MN-treated skin is shown in Figure 1.Pharmaceutics 2020, 12, x 6 of 19 
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Figure 1. (A) In-line microneedle (MN) array containing 5 MNs of µm length, (B) MN array with
applicator made in-house, (C) intact skin stained with gentian violet, and (D) MN-treated skin stained
with gentian violet, showing micropore formation.

2.6.3. In Vitro Skin Permeation

In order to evaluate the influence of the chitosan polymer concentration on NTX flux through
the microchannels created from MN insertion, MN-treated porcine skin was mounted into the in-line
diffusion cells with the stratum corneum side facing upwards. Five-hundred microliters of dispersions
of formulations F7, F19, and F27 (each containing 12-mg/mL NTX) were applied to the MN-treated
skin area. Samples were collected for 48 h and NTX content in the receiver medium was quantified
via HPLC. Cumulative NTX vs. time was plotted, and flux was determined from the steady-state
portion of the curve. Based on results from this experiment, an additional skin permeation study was
performed using a higher concentration of NTX; specifically, a dispersion of formulation F7 containing
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30-mg/mL NTX. All other conditions for the permeation studies were the same as those for the in vitro
release studies, and intact skin served as the control for this study. All experiments were performed
in triplicate.

2.6.4. NTX Recovery from Porcine Skin

NTX concentration in the skin was quantified upon completion of the in vitro skin permeation
studies. The diffusion area was isolated, blotted dry, and then tape-stripped twice to remove residual
formulation from the skin surface (Scotch 1

2 ” Magic Tape, 3M, Maplewood, MN, USA). The skin was
weighed, cut into small pieces, and extracted in methanol overnight under agitation. Each sample was
further sonicated for 20 min, centrifuged (AccuSpin Micro 17R, Fisher Scientific, Hampton, NH, USA),
appropriately diluted, and syringe-filtered. NTX content was quantified using HPLC. Experiments
were performed in triplicate.

2.7. HPLC Method

NTX was quantified using HPLC analysis on a Shimadzu LC-2030 Prominence iSeries system
(Shimadzu, Kyoto, Japan) equipped with a LC-2030 pump, autosampler, and UV detector; data analysis
was performed using Shimadzu® LC Solution software (Shimadzu, Kyoto, Japan, Ver. 5.92). Reverse
phase chromatographic separation was carried out using a Kinetex® C18 100 Å column (150 × 4.6 mm
i.d., 5µm; Phenomenex, Torrance, CA, USA). The mobile phase (A: 0.1% TFA and 0.06% v/v TEA in
water and B: acetonitrile) was used in a gradient elution as follows: phase B concentration increased
from 10% to 30% over 4 min, maintained at 30% for 1 min, and then decreased to 10% until 6 min for
equilibration. Flow rate was 1.0 mL/min, oven temperature maintained at 30 ◦C, and injection volume
was 10 µL. NTX was detected at wavelength of 226 nm with a retention time of 3.62 min. The standard
curve was linear across the range of 0.4 to 100 µg/mL (R2

≥ 0.99). Method accuracy (relative error
(RE), %) was <1.5%, and within-day and between-day precision (relative standard deviation (RSD), %)
was <2.5%.

2.8. Statistical Analysis

Results obtained were subjected to ANOVA and Student’s t-test analysis, and parameter estimation
was done with general linear modeling using GraphPad Prism 8 (GraphPad Software, San Diego, CA,
USA) and Minitab® 18 software (Minitab Inc., State College, PA, USA), respectively. p < 0.05 was
considered statistically significant.

3. Results and Discussion

3.1. Quality Attributes and Characterization of Chitosan-NTX Microspheres

3.1.1. Summary of Quality Attributes

A summary of chitosan-NTX microsphere quality attributes and DoE statistical analysis results are
presented in Tables 1 and 3, respectively. Model equations generated after statistical analysis for each
quality attribute are provided in the Supplementary Materials. In general, for different combinations in
the experimental design, spray-dried microsphere yield ranged from 17% to 43%, mean hydrodynamic
diameter by dynamic light scattering ranged from 1.7 to 9.2 µm, and polydispersity index was >0.4.
Mean zeta potential ranged from +34 to +66 mV, while mean outlet air temperature ranged from 60 to
98 ◦C. Mean encapsulation efficiency was between 70% and 87%, mean drug-loading capacity ranged
from 10% to 43%, and mean percent cumulative in vitro NTX release over 24 h ranged from 63% to 94%.
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Table 3. Individual influence of parameters on chitosan-NTX microsphere properties. n = 3 and data
represented as mean ± SD.

Individual Effects on

Input Variables Yield (%) Diameter (µm) Zeta Potential (mV) Outlet Air
Temperature (◦C) EE (%) Drug-Loading

Capacity (%) NTX Release (%)

Chitosan MW p = 0.476 p = 0.718 p = 0.975 p = 0.877 p = 0.009 * p = 0.579 p = 0.043 *
Chitosan

concentration p = 0.394 p = 0.372 p = 0.352 p = 0.643 p = 0.042 * p = 0.626 p = 0.532

Chitosan-NTX ratio p = 0.207 p = 0.001 * p = 0.113 p = 0.147 p = 0.335 p < 0.0001* p = 0.138
Feed flow rate p = 0.003 * p = 0.673 p = 0.618 p < 0.001 * p = 0.341 p = 0.854 p = 0.373

* p-values < 0.05 are statistically significant. MW = molecular weight.

3.1.2. Influence of Parameters on Microspheres Quality Attributes

The influence of selected variables on the quality attributes of chitosan-NTX microspheres were
examined in this study. Benchtop spray-dryers such as the Buchi spray-dryer used in this study
generally produce a powder yield in the range of 8% to 84% [23,28,29]. In this study, feed flow rate
significantly influenced the powder yield (p = 0.003). Increasing the feed flow rate from 4 to 8 mL/min
decreased the powder yield (Figure 2A), similar to previous reports [30,31]. This may be due to the fact
that at higher feed flow rates there is an increase in feed load, causing slower heat and mass transfer,
leading to insufficient drying and sticking to chamber walls that consequently lowers the yield [32–34].
Moreover, the microsphere yield was influenced by an interaction between chitosan MW and ratio
of chitosan:NTX (Figure 2B). Higher yields were achieved with a decrease from high to low-MW
chitosan and increase from a low to high level of chitosan:NTX (an increase in chitosan proportion
in the dry weight of the chitosan-NTX mix). A study from Desai’s group reported similar results, in
which a higher chitosan microsphere yield was achieved using low MW chitosan vs. medium and
high MW chitosan in a spray-drying process [35]. While this phenomenon may be difficult to explain,
it could be related to the bulk density/lightness of the chitosan polymer at different MW. Aranaz et
al. demonstrated that larger amounts of the lightest chitosan polymer were lost and not trapped by
the spray-dryer aspirator, leading to a lower product yield [36]. Low-MW chitosan appears to be less
bulky and heavier than medium and high-MW chitosan; likewise, NTX appears to be lighter and
less bulky than the chitosan polymers. Thus, a combination of these two situations could have led
to the product yield observed—a decrease in chitosan MW from high to low might have led to the
production of heavier microspheres that are easily trapped by the spray-dryer aspirator, while higher
proportions of “heavier” chitosan polymers in comparison to NTX might have produced the same
effect, a combination effect leading to a higher product yield. The equation describing the influence of
the tested parameters on the powder yield is:

Yield (%) = 32.672 − 1.09 A + 1.31 B + 1.96 C − 5.27 D + 3.92 A × B − 6.44 A × C − 0.32 A×D − 1.24 B × C + 0.51 B × D + 2.37 C × D (4)
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Outlet air temperature was significantly influenced by the feed flow rate (p < 0.0001). Outlet
air temperature has an important effect on the moisture content of spray-dried powders, and it is
important to have an optimal outlet air temperature in a spray-drying process. A decrease in outlet air
temperature often leads to an increased powder moisture content [37]. The current study demonstrated
that an increase in the feed flow rate from 4 to 8 mL/min led to a significant decrease in the outlet air
temperature, which is consistent with other studies [38]. This may also explain the low product yield
observed at higher feed flow rates. Increased powder moisture associated with a very low outlet air
temperature may cause powder to stick to the chamber walls [31,39,40]. The equation describing the
influence of the tested parameters on the outlet air temperature is:
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Outlet air temperature (◦C) = 77.11 + 0.25 A + 0.75 B + 2.42 C − 13.42 D + 0.25 A × B − 3.25 A × C − 0.25 A × D − 3.25 B × C − 0.25 B × D − 2.75 C × D (5)

The chitosan:NTX ratio significantly influenced the microsphere size (p = 0.001). A decrease
from the high-level chitosan:NTX ratio (+1, five-parts chitosan to one-part NTX) to a low-level (−1,
one-part chitosan to one-part NTX) led to an increased microsphere size (Figure 2C). This could be
related to the feed concentration of the chitosan-NTX dispersion. High feed concentrations can cause
an increase in viscosity, which can consequently lead to the formation of larger droplet sizes and the
production of powders with larger sizes during spray-drying [20,41,42]. This was observed in several
formulations in the current study. To explain this, formulations F13, F1, and F10 had 0.5% w/v of
medium MW chitosan at chitosan:NTX ratios of 5, 3, and 1 and DoE levels of +1, 0, and −1, respectively.
This corresponded to actual feed concentrations of 0.58%, 0.63%, and 1.0% w/v and microsphere sizes of
2.08 ± 0.15, 2.69 ± 0.35, and 9.20 ± 1.33 µm, respectively. The microspheres were polydispersed, which
is consistent with other studies of spray-dried chitosan [36,43]. The equation describing the influence
of tested parameters on the microsphere size is:

Microsphere size (µm) = 3.626 − 0.184 A − 0.460 B − 2.117 C − 0.215 D − 0.442 A × B + 0.617 A × C − 0.131 A × D + 1.605 B × C − 0.039 B × D + 1.345 C × D (6)

Zeta potential was not significantly influenced by any of the variables evaluated and was positive
for all formulations; this is typical of chitosan polymers [35]. The equation describing the influence of
the tested parameters on the zeta potential is:

Zeta potential (mV) = 51.06 + 0.13 A + 3.96 B + 6.92 C + 2.10 D − 9.75 A × B + 2.95 A × C − 4.65 A × D + 2.55 B × C − 5.47 B × D + 2.08 C × D (7)

Chitosan MW and concentration individually influenced the encapsulation efficiency (p = 0.009
and 0.042, respectively). Increased chitosan MW and concentration led to an increase in the NTX
encapsulation efficiency (Figure 2D), which is consistent with other studies [20,44]. The influence of the
MW could be due to the relationship between the MW and viscosity of chitosan. Higher MW chitosan
tends to be more viscous than lower MW chitosan, with an increase in viscosity potentially leading
to more efficient NTX encapsulation [35]. Similarly, an increased chitosan concentration may lead to
an increase in viscosity and availability of more polymer to entrap NTX [20,35]. Thus, a combination
effect of increased viscosity caused by increased chitosan MW and concentration could have led to the
increase in the encapsulation efficiency observed. Although the initial results showed that a higher
product yield may be achieved using low-chitosan MW (which may lead a to lower encapsulation
efficiency), it is important that the totality of variables that may influence the microsphere quality
attributes be carefully considered to choose the right formulation that fits and produces the optimum
results for our intended drug delivery purpose. Thus, the in vitro release and skin permeation of
these formulations were also considered to choose an ideal formulation in this study. The equation
describing the influence of the tested parameters on the encapsulation efficiency is:

Encapsulation Efficiency (%) = 77.959 + 4.12 A + 3.04 B − 1.37 C − 1.35 D + 0.98 A × B + 0.28 A × C − 2.55 A × D − 0.72 B × C + 2.46 B × D + 0.82 C × D (8)

Drug-loading capacity was significantly influenced by the chitosan:NTX ratio (p < 0.0001), with a
decrease from a high (+1, five-parts chitosan to one-part NTX) to low (−1, one-part chitosan to one-part
NTX) chitosan-NTX ratio, leading to a higher drug-loading capacity. No relationship was observed
between the encapsulation efficiency and drug-loading capacity, further showing that these quality
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attributes were influenced by the process and formulation variables used in this study. The equation
describing the effect of the tested parameters on the drug-loading capacity is:

Drug-loading capacity (%) = 19.89 + 1.02 A + 0.90 B − 14.29 C − 0.34 D + 0.20 A × B − 0.87 A × C − 0.51 A × D − 1.39 B × C + 0.49 B × D + 0.35 C × D (9)

Percent cumulative in vitro NTX release at pH 7.4 for 24 h in SnakeSkin® cellulose dialysis
membrane (10,000 Da MWCO, Thermo Scientific, USA) shows that the chitosan MW significantly
(p = 0.043) influenced the NTX release, as a higher percent NTX release was achieved with a change
from a high to low MW chitosan (Figure 2E). This result is in agreement with other studies that
demonstrated a slower drug release from high MW chitosan and could be due to a high-density
polymer shell around the drug particles, which may retard the fluid ingress into the polymer shell and,
thus, decrease the drug release [20,45]. The equation describing the effect of the tested parameters on
the in vitro cumulative NTX release is:

Cumulative NTX release (%) = 76.97 − 4.65 A − 1.36 B − 3.31 C + 1.94 D − 2.24 A × B + 2.47 A × C − 1.85 A × D − 4.48 B × C − 0.48 B × D − 3.91 C × D (10)

Other studies were performed to understand the necessary parameters of the formulations to
choose an ideal formulation. An ideal formulation would be one that has a high NTX encapsulation
efficiency and drug-loading capacity, optimum/high NTX in vitro release and skin flux, and can be
easily manipulated for dosing/application.

3.2. Shape and Surface Morphology

Figure 3 shows the SEM photomicrographs of pure high MW chitosan, NTX powder, blank
spray-dried chitosan, and spray-dried chitosan-NTX microspheres (Formulation F7). Figure 3A shows
pure high MW chitosan with irregularly shaped and rough-surfaced particles of diverse sizes, while
Figure 3B shows long, crystal-like structures of pure NTX. SEM photomicrographs of blank spray-dried
chitosan microspheres (Figure 3C) show spherical and wrinkled surfaces appearing in the form
of troughs and ridges. This type of surface morphology exhibited by blank spray-dried chitosan
microspheres is in-line with previous reports [35,43,46].

SEM photomicrographs of spray-dried chitosan-NTX microspheres (Formulation F7, Figure 3D)
show a polydisperse particulate system with diameters ranging from 0.35 to 8.56 µm (mean
diameter of 2.63 ± 1.55 µm), further confirming the polydisperse results obtained from the dynamic
light-scattering characterization.

The microspheres, however, have particles with regular spherical shapes and smooth surfaces,
showing the effectiveness of the spray-drying process in converting irregularly shaped chitosan
and crystal-like NTX into regularly shaped microspheres. There were no free crystal-like NTX
(Figure 3D) present on the chitosan-NTX microsphere surfaces, which infers an amorphous nature of
the microspheres, as powders produced from spray-drying are generally known to be amorphous in
nature [20,47]. Formulations F19 and F27 had regular spherical-shaped particles with similar smooth
surfaces as those observed with Formulation F7. Photomicrographs of Formulations F19 and F27 are
included in the Supplementary Materials.
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3.3. Solid State Characterization

3.3.1. FT-IR Spectra

Figure 4 shows the FT-IR spectra of NTX powder, blank spray-dried high MW chitosan, a physical
mixture of NTX and blank spray-dried chitosan (1:1), and spray-dried chitosan-NTX microspheres
(Formulation F7). Figure 4A shows the characteristic peaks typical of NTX near wavenumbers 1717,
1660, 1504, 1314, and 1274 cm−1 [48]. The high intensity peak at 1717 cm−1 is due to the stretching
absorption of C=O of the saturated cyclic aliphatic ketone, while the peak at 1660 cm−1 shows a C=C
stretching band of C=C-O-H. There is a C=C stretching of the aromatic ring that appeared at peak
1504 cm−1, an O-H bending absorption appearing at 1314 cm−1, and a C-O-C asymmetric stretching
peak observed at 1274 cm−1 [48].

Figure 4B shows the spectrum of blank spray-dried high MW chitosan with a strong broad band
at ~3428 cm−1; two bands at about wave numbers of 2921 and 2874 cm−1; and other bands at 1652,
1597, 1420, 1377, 1322, 1154, and 1094 cm−1, respectively. The strong band at 3428 cm−1 corresponds to
a stretching vibration of -OH, an extension vibration of N-H and the intermolecular hydrogen bonds
of the polysaccharides. The bands at about 2921 and 2874 cm−1 correspond to an asymmetric and
symmetric C-H stretching vibrations. There was a characteristic -NH-bending vibration of the primary
amine groups at about 1652 and 1597 cm−1, while the bands at 1420, 1377, and 1322 cm−1 corresponded
to the C-N stretching vibrations. A C-O stretching vibration in the secondary alcohol was observed at
about 1154 cm−1, while a C-O starching vibration in the alcohol was also seen at about 1094 cm−1 [49].
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Figure 4. FT-IR spectrum of (A) NTX HCl, (B) spray-dried chitosan (high MW), (C) physical mixture
of NTX HCl/spray-dried chitosan (high MW) (1:1), and (D) spray-dried chitosan-NTX microsphere
(Formulation F7). NTX = naltrexone and MW = molecular weight.

Figure 4C shows the FT-IR spectrum of the physical mixture of NTX powder and blank spray-dried
chitosan (high MW) with superimposable characteristic absorption bands of individual pure NTX
powder (Figure 4A) and blank spray-dried chitosan (Figure 4B), implying no interaction between the
drug and polymer. Figure 4D shows the FT-IR spectrum of spray-dried chitosan-NTX microspheres
with characteristic bands observed in pure NTX and blank spray-dried chitosan but at low intensities.
While the intensities of the bands were reduced, there were no new bands observed in the spectrum,
confirming that no new chemical bonds were formed between NTX and chitosan after spray-drying.

3.3.2. DSC Thermograms

Thermal properties of pure NTX, pure high MW chitosan, blank spray-dried chitosan, and
spray-dried chitosan-NTX microspheres were studied using DSC from 0 to 240 ◦C. Figure 5 shows the
DSC thermograms of NTX powder, pure high MW chitosan and blank spray-dried chitosan, a physical
mixture of NTX and blank spray-dried chitosan (1:1), and spray-dried chitosan-NTX microspheres
(Formulation F7).
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The NTX thermogram showed a sharp endothermic peak at ~219 ◦C, indicating the melting of
NTX. Pure chitosan showed a broad endothermic peak only at ~75 ◦C, while spray-dried chitosan
showed two peaks at 75 and 160 ◦C. The endothermic peak at 75 ◦C can be ascribed to water loss from
the chitosan polymer during the heating process, as the chitosan polysaccharide has a disordered
structure with a strong affinity for residual water [50]. The second endothermic peak at 160 ◦C may be
due to a slight glass transition of chitosan (Tg); however, affirming the glass transition temperature
of the chitosan polymer is quite cumbersome, because as a natural polymer, properties such as the
MW, crystallinity, and deacetylation degree often result in a wide range of variations in chitosan
Tg [51]. In fact, this slight glass transition was not observed in pure chitosan that was not spray-dried.
The physical mixture of NTX and blank spray-dried chitosan (1:1) showed three endothermic peaks
at ~75, 160, and 213 ◦C, corresponding to a loss of water from the chitosan polymer, slight Tg, and
melting of free NTX in the mixture. However, spray-dried chitosan-NTX microspheres (Formulation
F7) showed only two endothermic peaks at 75 and 160 ◦C, corresponding to the initial water loss from
the chitosan polymer and a slight Tg. There was, however, no peak corresponding to the melting of
NTX within the range of temperatures studied (0–240 ◦C), which indicates an amorphous dispersion
of NTX within the chitosan microspheres. This may be due to the fact that powders produced from
spray-drying are generally known to be amorphous in nature [20,47].

3.4. In Vitro Skin Permeation

In order to evaluate the influence of chitosan MW on in vitro NTX flux from chitosan-NTX
microspheres applied to MN-treated porcine skin, formulations F7, F19, and F27 were chosen and
initially evaluated at an NTX concentration of 12 mg/mL. These formulations were chosen for the
following reasons: they were prepared using high (F7), medium (F19), and low MW (F27) chitosan but
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at the same polymer concentration (0.7 %w/v) and chitosan-NTX ratio (1:1). These formulations also
had high encapsulation efficiencies, in addition to similarly high drug-loading capacities. Formulations
F7 and F27 had comparable characteristics in terms of mean diameters (both larger than Formulation
F19), though it is important to note that, in quality-by-design, the totality of tested variables and their
effects on the formulation responses within the design of the experiment is highly important rather
than looking at the effects on a response in a single formulation within the design to make formulation
selection decisions. Table 4 shows the attributes of Formulations F7, F19, and F27.

Table 4. Characteristics of selected formulations. n = 3 and data displayed as mean ± SD.

Formulations Chitosan MW (kDa) Yield (%) Mean Diameter (µm) Encapsulation
Efficiency (%)

Drug-Loading
Capacity (%)

Cumulative in
Vitro NTX

Release (%)

* NTX Flux in
MN-Treated
Porcine Skin

(µg/cm2
·h)

F7 310–375 35.4 7.31 ± 0.89 85.1 ± 1.4 42.5 ± 0.72 72.1 ± 4.2 3.89 ± 0.96
F19 190–310 20.7 3.67 ± 0.13 77.5 ± 1.9 38.8 ± 0.95 94.0 ± 4.2 4.24 ± 1.57
F27 50–190 23.4 8.29 ± 0.70 74.9 ± 4.8 37.5 ± 2.42 89.0 ± 1.5 3.28 ± 0.98

* Skin samples were treated with microspheres containing 12-mg/mL NTX. NTX = naltrexone and MN = microneedle.

In vitro NTX skin flux from Formulations F7, F19, and F27 containing 12-mg/mL NTX applied to
MN-treated porcine ear skin were 3.89 ± 0.96, 4.24 ± 1.57, and 3.28 ± 0.98 µg/cm2

·h, respectively. There
was no significant difference in NTX flux between these three formulations when applied to MN-treated
skin, despite that in vitro NTX release from microspheres containing 2-mg/mL NTX showed that
increased chitosan MW led to a decreased cumulative NTX release over 24 h. This result may be
explained by the properties of the hydrophilic natural polymers such as chitosan, which swell rapidly
in aqueous mediums, forming a gel-like structure that can control and slow down drug release [14].
The higher amount of chitosan (12 mg/mL) in the formulations used in this skin permeation study vs.
that of in vitro release studies (2 mg/mL) may have canceled out the effect that chitosan MW had on the
NTX flux. To support this hypothesis, no significant difference in percent cumulative the in vitro NTX
release in the SnakeSkin® cellulose dialysis membrane was observed from Formulations F7, F19, and
F27 containing 12-mg/mL NTX in 24 h. Based on these results, Formulation F7 prepared using high
MW chitosan was chosen as the ideal formulation for further study. Chitosan MW as a categorical
variable led to the selection of Formulations F7 (high MW), F19 (medium MW), and F27 (low MW),
because these possessed the highest encapsulation efficiencies and drug-loading contents. While
Formulation F7 had a lower NTX in vitro release at lower NTX concentrations, no significant difference
was observed in the NTX in vitro release and the skin flux at higher NTX concentrations between
Formulations F7, F19, and F27. In addition, F7 was easier to manipulate in preparing a formulation
containing higher NTX concentrations, making F7 a formulation that fit our previously defined criteria.

In order to facilitate a higher NTX flux, skin permeation studies were performed using a dispersion
of Formulation F7 containing 30-mg/mL NTX. The flux of NTX from Formulation F7 containing
30-mg/mL NTX applied to MN-treated skin was 11.57 ± 2.24 µg/cm2

·h, while no NTX was detected in
the receiver medium of the intact skin treated with Formulation F7. MN treatment of the porcine ear
skin thus facilitated a significant flux enhancement from Formulation F7. This result is expected, as
MN treatment facilitates the creation of microchannel pathways through the stratum corneum that
allow the effective diffusion of NTX across the skin [6,7]. The lag time of NTX from Formulation F7 was
1.52 ± 0.35 h, demonstrating that F7 will begin to have a clinical effect in less than 2 h of application.

A study published by Wermeling et al. reported an in vitro NTX steady-state flux of
14.7 ± 4.9 µg/cm2

·h in MN-treated skin using a 16% w/v (160 mg/mL) NTX gel prepared with an
aqueous medium containing 60.75% v/v propylene glycol (a skin permeation enhancer) and 1% w/w
benzyl alcohol [4]. In our current study, we prepared chitosan-NTX microspheres containing 3% w/v
(30 mg/mL) NTX in an aqueous medium containing 20% v/v polyethylene glycol and 1% v/v benzyl
alcohol. We report a NTX steady-state flux of 11.57 ± 2.24 µg/cm2

·h in MN-treated skin, which is not
notably different from the NTX flux reported in the Wermeling et al. study, considering the significantly
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higher NTX concentrations in the gel used in their study. Thus, we achieved a nearly comparable NTX
steady-state flux in vitro using a significantly lower NTX concentration.

The concentrations of NTX extracted from intact and MN-treated skin are shown in Figure 6.
Following the application of 500 µL of Formulation F7 (30-mg/mL NTX), NTX recovered from skin was
0.25 ± 0.08 and 1.45 ± 0.38 mg/g of porcine skin for intact and MN-treated skin, respectively. NTX
recovered from the skin showed similar trends as the NTX flux. NTX recovered from MN-treated skin
with Formulation F7 were significantly higher than from intact skin (p = 0.0056). NTX recovered from
the skin represent a skin reservoir that can contribute to a continuous NTX release across the skin,
which can help to maintain the delivery of therapeutic concentrations of NTX.
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4. Conclusions

This study demonstrated the process for obtaining chitosan-NTX microspheres using a
spray-drying technique. Spray-drying produced spherical and smooth-surfaced chitosan-NTX
microspheres with amorphous characteristics. The study shows that input variables (chitosan
MW, chitosan concentration, chitosan-NTX ratio, and feed flow rate) individually or in combination
influenced the yield, size, encapsulation efficiency, drug-loading capacity, and cumulative in vitro
NTX release from the microspheres. Powder yield, size, and encapsulation efficiency were mainly
affected by the feed flow rate, feed concentration, and chitosan MW and concentration, respectively.
MN treatment of the skin significantly increased the NTX flux from chitosan-NTX microspheres in
comparison to the intact skin. The application of MNs in combination with NTX formulations such as
the type described in this study could improve patient compliance by preventing the drawbacks of
oral and intramuscular NTX and support a sustained delivery of NTX across the skin.
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