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Abstract: The aim of the present work was to characterize the products obtained from the treatment
of phosphogypsum residue by means of two recovery routes, and also to evaluate the concentrations
of heavy metals and radionuclides in the materials obtained and their leachates. In this way, it
is possible to determine how the most hazardous components of phosphogypsum behave during
procedures until their stabilization through CO; fixation. This study provides an initial estimate of
the possibilities of reusing the resulting products from a health and safety risk standpoint and their
potential polluting capacity. The phases resulting from the transformations were controlled, and the
behaviour of standard mortars manufactured from the resulting paste lime was studied. In all cases,
an additional control of the leachate products was performed.
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1. Introduction

One of the most contaminating industries is the phosphoric acid (H3PO,) industry. This chemical
is widely used in agricultural fertilizers, detergent additives, cleaning products, and insecticides.
Phosphoric acid is produced from the treatment of calcium phosphate rocks with sulphuric acid. The
chemical reaction of the industrial process is:

Caz(POy) + 3H,S04 + 6H,O — 2H3PO,4 + 3(CaSOy4)-2H,0. 1)

The residue generated by this process, that is, mainly calcium sulphate di-hydrate, is commonly
known as phosphogypsum (PG) [1].

PG is normally slurred with water and then pumped in enormous amounts to a nearby deposit.
The fertilizer manufacturing industry in the province of Huelva (SW Spain) is based on an important
production of phosphoric acid by wet processing of the phosphoric rock in an industrial plant from the
1960s. In some cases, such as in Huelva (SW Spain), these deposits may be located in the vicinity of
populated towns or in coastal zones close to the phosphoric acid plants where they occupy large areas
of land, thus representing a hazard to both the environment and local population [2-4]. In the case of
Huelva (SW Spain), the material stored reaches 120 million tons and occupies an area of 1200 hectares
near the estuary of the Tinto and Odiel river mouths [5]. The growing interest in the restoration of the
environment by removing landfills and waste stacks is an incentive to search for potential low-cost
applications of PG wastes.
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Untreated PG could certainly be used in several industrial applications. However, it contains
heavy metals and radionuclides, which are harmful to the environment and human health [6,7]. This
is an important drawback when it comes to reincorporating PG in the industrial production circuit
in accordance with the principles of the clean circular economy [8]. Each year, nearly 200 Mt of PG
are produced worldwide, but only 15% of pristine PG is re-used [9,10]. The properties of the material
not only make it urgent to process and eventually remove the deposits entirely, but also offer many
significant opportunities to recover valuable materials, thus supporting the circular economy and, as
mentioned, adding value by CO, sequestration.

The incorporation of construction and demolition waste in concrete and cement mortars is already
a common practice, and the aim is to ensure the construction industry assumes part of the waste it
produces [11,12]. The goal of this stream is to promote the use of conglomerates by incorporating waste to
produce so-called “green concrete”. To achieve this, appropriate standards are urgently required, as well
as interdisciplinary collaborations between the different stakeholders involved in construction [13].

PG is a source of calcium, which, in addition to being a CO, sequestering agent, is a construction
material [14,15]. Research has demonstrated the high efficiency of portlandite precipitation by PG
dissolution using an alkaline soda solution [16]; PG, reacting with ammonia, may be converted into
ammonium sulphate and precipitated calcium carbonate [17], yielding reaction conversion efficiencies
of >95% [18]. By means of other processes with PG, wastes, which are unable to fix CO, by themselves,
can be successfully turned into effective CO, sinks [19]. CO, sequestration may also be achieved
through mineral carbonation of waste PG using the technique of membrane electrolysis [20] and by the
PG reduction thermal decomposition process [21].

In this study, PG was treated in two ways. The first option (procedure A) was based on its
reaction with sodium hydroxide (Na(OH)) to obtain portlandite (Ca(OH);) in the form of lime paste in
a thenardite (NaySOy) solution [20]. Then, the lime reacts rapidly and completely with CO,, yielding
precipitated calcium carbonate (PCC). The second option (procedure B) was based on dissolution in a
highly alkaline liquid residue from the aluminium anodizing industry, rich in Na-Al. The resulting
precipitate consisted of katoite (CazAl,(OH)). Katoite has high carbonation efficiency (80-100%),
and produces a solid precipitate mainly composed of calcite (CaCO3) and an aluminium hydroxide
(A1(OH)3) solution [22].

Following the stream to reuse these wastes in the construction industry, the slaked lime produced
can be used as a mortar component. Ca(OH), improves the degree of cohesion of the materials by
means of the carbonation reaction, thus reducing porosity. Its carbonation is a spontaneous process
driven by diffusion and affected by natural variables [23].

PG is classified, according to the United States Environmental Protection Agency (US-EPA),
2018 [24], as a Technologically Enhanced Naturally Occurring Radioactive Material (TENORM). The
main toxic and radioactive metals present in PG are Sr, As, Y, Cu, Pb, and the radioactive isotopes 226Ra,
238, 230Th, 210Pp, and 210Po [25-27]. Minority impurities, such as P, Cd, and Cr are also dragged out.
These represent a risk of environmental contamination that affects living beings. The concentrations of
these elements vary depending on the characteristics of the original phosphate rock [28].

To establish the limitations of the use of PG related to its content in the abovementioned elements,
it is necessary to understand their leaching processes during treatment [29], from PG until its final
stabilization as calcium carbonate. Thus, the environmental impact generated by its extraction from
PG rafts and its possible recycling could be evaluated.

The main aim of this work is the characterization and control of the phases resulting from PG
waste transformation by two processes: Procedure A is based on treatment with Na(OH) in which the
controls were performed on the portlandite obtained as lime paste in the first phase and also in the
calcite resulting from carbonation. Additionally, lime mortars were manufactured from lime paste and
standardized siliceous sand to verify the behaviour once the resulting material was stabilized [30], as
well as its possible viability as construction material. Procedure B is based on the reaction with the
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residual liquid of the aluminium industry. It was carried out on the katoite from the first reaction and
the final calcite obtained after the carbonation process.

In all cases, an additional control of the leachate products in accordance with the toxicity
characteristic leaching procedure (TCLP) was carried out [31].

2. Materials and Methods

Crude solid PG was supplied by Fertiberia from the stacks in Huelva, Spain. For its characterization,
the residue was homogenized by means of a splitter. Then, the moisture content of raw PG was
analysed, yielding a value of 21%. For the different tests, the remaining moisture was removed in an
oven at 40 °C for around 48 hours to preserve the structural water of the gypsum. Once dry, it was
grounded in a mortar and used in the experiments without any other treatment. The process schemes
can be seen in Figure 1.

PHOSPHOGYPSUM PHOSPHOGYPSUM
(PG) NaOH (sol) (PG)
+ +
H,0 CAUSTIC LIQUID WASTE

Discarded

liquid Discarded
a) Synthesis a) Synthesis liquid
d) Lime mortar
manufacturing
CcsS | PGAS
Solid phase ) E. Solid phase

b) Carbonation === b) Carbonation
REoGass) Liquid process Liquid
discarted discarted
Ca_sS PGAB
Solid phase Solid phase
PROCEDURE A PROCEDURE B

Figure 1. Schemes of both chemical processes.

2.1. Procedure A

2.1.1. Synthesis

Lime putty was obtained by using the Cardenas—Escudero method [16], with some modifications
to scale the generation of by-products.
In the first stage, 300 g of PG was suspended in 500 mL of distilled HyO under magnetic stirring.
To this suspension, 180 g of NaOH in a 9 M solution was slowly added to favour the crystallization of
the solid phase. The mixture was also stirred for the next 10 min. The reaction associated with this
process was:
CaS0O4-2H,0 + 2NaOH — Ca(OH)2 + NayS0,4 + 2H,0. (2)

This process resulted in the precipitation of a whitish solid phase identified as putty lime and the
Na,SO; solution as a clear supernatant liquid. The solid phase was separated by centrifugation and
labelled C_S. The liquid phase was discarded for this research. Several samples of the solid phase were
dried in an oven at 40 °C in order to hydrate and carbonate them to preserve them from humidity and
atmospheric CO,, so that they could be studied.

2.1.2. Carbonation Process

In the second stage, 2 g of the C_S sample was dispersed in 40 mL of distilled water under
magnetic stirring in a reactor (mass ratio [C_S]/[H,O] = 1/20). A flow of CO; (1 bar, 20 cmd/s) was
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bubbled through the suspension for 15 min at room temperature and pressure [1]. The sample was left
to rest overnight in this CO;-rich water.
The carbonation reaction was:

Ca(OH), + CO, — CaCO; + H,O. 3)

The resulting solid phase, labelled Ca_S (mainly CaCO3,), was separated by centrifugation and dried
in an oven at 80 °C. The supernatant was discarded, and samples of the solid phase were taken for study.

2.1.3. Lime Mortar Manufacturing

Mortars were manufactured with lime putty obtained as described above, with 1:3 lime/sand and
0.5 by weight water/lime ratios. They were prepared with a water content that allowed a consistency of
185 mm, measured in accordance with the UNE-EN 1015-3/A1 standard [32] to ensure its workability.
Prismatic samples were prepared in accordance with UNE-EN 1015-2/A1 standards [33]. The
samples were then deposited for 21 days in climatic chambers (New Brunsaick Galaxy 170) to accelerate
carbonation under realistic curing conditions of 25 °C, 50-60% RH, and 10% vol. of CO, concentration.

2.2. Procedure B

2.2.1. Synthesis

Verinsur S.A. (Jerez de la Frontera, Spain) provided the aluminium anodizing process waste. This
was a clear solution with a pH of around 14, containing a small amount of a precipitate phase. For
this study, the residue was filtered, and the precipitate discarded. The caustic liquid waste had a
density of 1.32 g/cm3, and a composition of [Na] = 110 + 2 g/L (4.78 £ 0.09 M)) and [Al] = 52 +2 g/L
(1.93 + 0.07 M).

The caustic liquid from the anodizing aluminium industry reacted with PG according to the
reaction [23]:

3(CaSO4-2H2 O) +6Na” (aq) + 120H_(aq) + 2A13+ (aq) 3Na2'SO4 + Ca3A12(OH)12 + 6H20. (4)

The process was initiated by adding 12.5 g of PG to 25.0 mL of the aluminium-anodizing residue
under magnetic stirring for 3 h in ambient pressure and temperature conditions [9,16]. The pH was
12.0 during the process. The formation of a grey precipitate was observed, labelled as PGAS, and a
yellowish supernatant was discarded for this study. Both phases were separated by centrifugation,
and then the solid phase was placed in an oven at 80 °C to preserve it from hydration and carbonation.

Based on the chemical composition of the residues, this specific mass ratio corresponded to a
stoichiometric molar ratio of [Ca®*]/[AI3*] = 1.5, targeting the chemical reaction (4). It should be noted
that other stoichiometric relationships with different additions of water were tested. In this study, only
the one that produced the best CO, sequestering results, which was the final purpose, is presented.

2.2.2. Carbonation Process

In this step, 2 g from the PGAS sample were dispersed in 40 mL of distilled water [19]. The
obtained mixture was subjected to a continuous flow of pure CO, (~1 bar, 20 cm®/s) under magnetic
stirring. The sample was carbonated according to the following reaction:

CagAlz(OH)lz + 3C0O, — 3CaCOj + 2A1(OH)3 + 3H,0. (5)

The pH during the process decreased monotonously from 12.8 until it stabilized at 6.7 after 110 min.
This resulted in a new solid-liquid suspension whose phases were separated by centrifugation. The
solid phase was labelled PGAB, and the liquid phase discarded. The reproducibility of the experiment
was verified several times.
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2.3. Characterization Techniques

Mineral characterization of the samples was performed by X-ray diffraction. The diffraction
intensities were measured on a Bruker powder diffractometer (model D8-Advance A25) equipped
with conventional Bragg-Brentano geometry and a Cu anode. X'Pert HighScore software (Malvern
Panalytical, Malvern, UK) was used to analyse the results.

An ICP-MS/MS Agilent 8800 (Agilent Technologies, Santa Clara, CA, USA) was used to analyse the
elements and isotopes at trace and ultra-trace levels (ppm—ppt ranges). This equipment was provided
with an octopolar reaction system (ORS), designed to minimize different types of spectrometric
interference. The elementary concentrations in liquid samples were analysed with a conventional
nebulizer Savillex X400 (ISC-Science. Oviedo, Spain) coupled with a CETAC ASX 520 sample
introduction system. A specific interface allowed the samples to be analysed in the presence of high
concentrations of hydrofluoric acid. Quantitative analyses were performed in accordance with the
US-EPA 200.8 (1986) [34]. The solid samples were subjected to microwave-assisted acid digestion in 9
mL of concentrated HNOj3; and 3 mL of HF for 15 min at 200 °C. After cooling, the contents of the vessel
were filtered and transferred to a 25 mL volumetric flask with type I water from a Milli-Q Integral-3
(Millipore, Merck, Spain).

The activity concentrations of the natural radionuclides were measured by high-resolution
gamma-ray spectrometry. The detection system used consisted of a Reverse-Electrode Germanium
(REGe) detector, model GR6040 (Canberra. Montigny-le-Bretonneux, France) shielded by an active
anti-coincidence system containing an annular anti-Compton Nal detector. Canberra GENIE 2000
(Canberra. Montigny-le-Bretonneux, France) software was used to obtain spectra and for subsequent
analysis. Canberra LABSOCS software (Canberra. Montigny-le-Bretonneux, France) was used to
calculate the counting efficiency of the germanium detector. Cylindrical containers (liquid samples) and
Petri dishes (solid samples) were used in the experimental measurements and sealed under vacuum
to prevent the escape of radon gas, enabling achievement of secular equilibrium between radon and
its daughters (***Ra and 2!4Pb). The activity concentrations of the gamma emitters were determined
through the following energies: 21°Pb (46.5 keV), 232Th (63.3 keV), 22°Ra (351 keV of 214Pb), 2°U (144
keV), and 40 K (1460 keV).

The TCLP (1311 US-EPA) leaching test was performed to assess the effectiveness of the
immobilization of the different components and obtain the degree of toxicity associated with the
different residues. This procedure used an extraction liquid of pH 2.88 + 0.05 consisting of 5.7 mL of
glacial acetic acid diluted with 1L with deionized water. Of the solid sample, 100 g was added to an
amount of extraction liquid, maintaining the 20 mL/g ratio, and placed in a rotary system at 30 + 2 rpm
for 18 hours and at a temperature of 22 + 3 °C.

A Rh-tube Panalytical X-ray Fluorescence Spectrometer (AXIOS model) (Malvern Panalytical.
Malvern, UK) was used to apply the XRF technique, enabling qualitative and quantitative chemical
analysis from O to U in a wide range of concentrations, from major components to traces.

3. Results and Discussion
3.1. Evolution of Environmental Risk

3.1.1. Evaluation of Major Elements and Trace Elements from the Treatment of PG with a Soda
in Solution

(a) Phosphogypsum

The XRD analysis confirmed the almost exclusive presence of gypsum in the sample of unprocessed
PG [17], with a residual amount of quartz (S5iO,) originating from the mother phosphate rock.

According to the XRF analysis results, shown in Table 1, the PG was mainly composed of Ca
(32 wt. %, as CaO) and S (46 wt. %, as SO3). These results were similar to those reported in other
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studies [1] and corresponded to a Ca/S ~0.993 molar ratio, very close to the expected Ca/S =1 molar
ratio. The main impurities of the PG were Si (2.52 wt. %, as 5iO;) and P (0.65 wt. %, as P»0Os).

Table 1. Majority elements in both chemical processes.

Majority Elements (wt. %) PG C_S PGAS PGAB
Fe, O3 nd nd nd 0.01 £ 0.01
MnO nd nd nd nd
MgO nd nd nd nd
CaO 32+1 49 +2 21+1 32+2
Na,O 0.01 + 0.01 125 +0.6 20.5+0.7 2.29 +0.08

K,O 0.02 +0.01 nd 0.02 +£0.01 0.03 = 0.01
TiO, nd nd nd nd
P,0Os5 0.65 + 0.02 1.02 +£0.01 0.38 = 0.01 0.47 +0.01
SO;3 46+ 3 13.6 +0.2 27 +2 144 +09

Cl nd nd nd nd

F nd nd nd nd
SrO nd nd nd nd
BaO nd nd nd nd
LOI 184 +04 19.4 +£0.2 144 +0.2 33+0.1

wt. %: weight percentage; PG: phosphogypsum; C_S: lime putty; PGAS: katoite precipitate; PGAB: calcite from

katoite carbonation.

The main heavy metals and radionuclides observed in the PG were: Sr, Cr, As, Cu, Cd, Pb, U,
and Th. The minority elements identified are shown in Table 2, together with the PG sample leaching
results obtained from TCLP.

Table 2. Contents of trace elements (mg/kg) in the PG (phosphogypsum) sample. Leaching results (mg/L)
obtained from the application of the TCLP (Toxicity Characteristic Leaching Procedure) technique
to the PG sample (L_f: phosphogypsum leaching), and reference (mg/kg) of the global average
concentration of typical uncontaminated soils. The limit values permitted by the US-EPA (United
States- Environmental Protection Agency) for metals in leachates extracted from the TCLP test and the
maximum permissible limits of heavy metals in water for domestic use according to the US-EPA, WHO
(World Health Organization), and EU (European Union) (according to German legislation).

PG

Limits Allowed

TCLP (U

Metal (mg/ke) L_f (mg/L) (mg/kg) S—EPA) US—EPA  WHO EU
A% 29+07 0.0161 + 0.0001 97 0.05
Cr 6.3 +0.2 <0.023 92 5.0 0.10 0.05 0.05
Co <0.6 <0.0024 17.3
Ni <3 0.026 + 0.001 47 0.02 0.02
Zn <42 0.600 + 0.007 67 5.0 3.0
As <0.6 0.0052 + 0.0004 4.8 5.0 0.05 0.01 0.01
Se <30 <0.006 0.09 1.0
Sr 360 + 10 1.89 £ 0.03 320 4.0
Cd 1.8+04 0.0072 + 0.0007 0.09 1.0 0.005 0.003 0.005
Ba 371 0.0433 + 0.0008 628 100.0 2.0 0.30
Pb 1.8+0.1 0.0053 + 0.0001 17 5.0 0.015 0.01 0.01
Th 1.1+02 <0.0013 10.5
U 5+1 0.0081 + 0.0001 2.7

The concentrations of V, Cr, Ba, Pb, and Th were well below those typically found in undisturbed
soils (Table 2) [35]. However, the concentration of Cd was ~20 times higher than the typical value, the
concentration of Sr was 1.2 times higher, and the content of U was approximately half of its value in
uncontaminated soils. It should be noted that the concentrations of Cd and Sr were lower than different
PG sources analysed in the literature (Idaho, South Africa, and Tunisia) [29]. The concentrations of
other metals were below the detection limit.
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All these results, when compared with the limit values permitted by the US-EPA for metals in
leachates extracted with the TCLP test (Table 2), were well below the established limits. No information
is available for some metals, such as V, Co, Ni, Zn, and Sr. More strict criteria would be applicable if the
aforementioned numbers are compared with those stipulated in legislation regulating drinking water
for human consumption. For this reason, the maximum permissible limits of the metals studied were
taken in accordance with the US-EPA (1986), the World Health Organization, and the EU (Drinking
Water Directive, 1998) (Table 2) [36]. Additionally, for vanadium, German legislation was taken as a
basis for purification [37,38]. Even so, the level of leachate concentration did not exceed the established
limits, except for Ni, which slightly exceeded these limits (30%).

Considering the results obtained, the PG analysed in this study does not generate major
environmental risks, and therefore, no corrective measures should be applied. However, caution
must be taken before any categorical assertion, because PG is heterogeneous, and its heavy metal and
radionuclide contents depend on the depth at which the PG is found [39-41].

(b) Soda solution treatment by-products

The XRD diffractogram of the C_S sample is shown in Figure 2. As expected according to its
composition (Table 1), there was a major presence of CaO, corresponding to slaked lime and Na,O
and SO3 due to the sodium sulphate. The lime was composed of 65.3% Ca(OH);, 13.5% SO3, silica
impurities (quartz), and phosphates (1.02% P,0Os), and did not contain MgO.

5 10 15 20 25 30 35 40 45 50 55 60

T * T ¢ T ¥ T . T . T $ T , T . T s T
7800 |- Cc C: Calcite (CaCO,) ]
Q: Quartz (Si0,)
=
o 5200F .
2
2 2600 - Q H c ¢ ¢ ¢ g
< Cc |
IS Q l c |Q I‘ 1oa cc
| | | o JU\
0 L NS Ct) HSoeey | Uhie= f rsy ST ose: |V USRS | cumemiss | Basersad ) © | G S ‘.;7_
L 1 1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50 55 60
13500 |- P 20° 7
P: Portlandite (Ca(OH)z) ]
El T: Thenardite (Na,SO,)
8 2000 P Q: Quartz (Si0,)
2
2 4500 |
2
£ T
0
1 1 1 1 1 1 1 | 1 1

20°

Figure 2. XRD (X Ray Diffraction of the samples Ca_S (calcite from lime putty carbonation) (above)
and C_S (lime putty) (below). C: Calcite, Q: Quartz, P: Portlandite, T: Thenardite.

The UNE-EN 459-2 standard [42] states that lime content must always be higher than 55%,
although higher values may be required. Nevertheless, the UNE-EN 196-2: 2014 standard [43] requires
that sulphate content, given in terms of SO3, must be less than 2%. Regarding the MgO content,
the standard requires this to be less than 5%. The SO3 content exceeded the limit established in the
regulations, and therefore, preventive measures are required to correct it.

The concentrations of Cr, Co, Ni, Zn, and Th (Table 3) were below the average concentrations
found in typical uncontaminated soils. Those of As and Sr were higher by factors of ~1.5 and 1.3,
respectively. However, the concentrations of Se, Cd, U were substantially higher, as much as ~37.5
times higher in the case of Cd. The increase in the concentration of U, #4 times higher than that of
typical soil, was not surprising since it is a material obtained from PG, which is considered a NORM
material, that is, one which is rich in U-Th radionucleide series.
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Table 3. Trace elements of portlandite (C_S), calcite (Ca_S), and mortar samples. Leaching results
obtained from the application of the TCLP (Toxicity Characteristic Leaching Procedure) technique to
the sample of portlandite (L_p), calcite (L_c), and mortar (L_m).

Ca_S Mortar

METAL C_S (mg/kg) L_p (mg/L) (mg/ke) L_c (mg/L) (mg/kg) L_m (mg/L)
\% <0.1 <0.007 <0.1 <0.007 03+0.1 0.109 £ 0.001
Cr 13.8 +0.2 0.083 + 0.003 11.5+04 <0.023 9+2 <0.023
Co 0.275 + 0.004 <0.0024 0.23 + 0.01 0.0048 + 0.0002 0.165 + 0.03 0.0049 + 0.0002
Ni 1.80 £ 0.02 0.023 + 0.001 23+0.1 0.046 + 0.001 0.347 + 0.05 0.039 + 0.001
Zn 10.1 £0.2 0.67 +0.02 9.7+ 0.5 <0.214 9.6 +1.2 <0.221
As 7+2 <0.002 52+04 <0.002 39+1.1 <0.002
Se 2.36 + 0.08 <0.0059 2.33+0.08 <0.006 1.2+07 <0.0061
Sr 413+ 6 2.17 £ 0.05 353 +1 3.03 + 0.04 170 + 20 2.31 +0.01
Cd 3.37 + 0.04 <0.0008 3.6+0.1 <0.0008 14+04 <0.0008
Ba 83+2 0.062 + 0.002 72+1 0.1203 + 0.0009 36+2 0.0658 + 0.0004
Pb 3.25+0.05 0.0066 + 0.0003 35+02 <0.0009 1.43 £ 0.04 <0.0009
Th 1.5+0.2 <0.0013 2.69 +0.08 <0.0013 0.32 £0.05 <0.0013
U 10.7 + 0.3 <0.0012 9.7+03 0.0508 + 0.0003 39+03 0.0302 + 0.0003

(c) Carbonation by-products

The XRD analysis of this sample indicated that the portlandite carbonated completely, resulting
only in calcite (Figure 2). The characteristics of this sample have been reported elsewhere [1].

In this case (Table 3), as may be expected, the concentrations of trace elements and radionuclides
coincided almost completely with those found in the C_S sample.

(d) Mortar probes

As expected, the majority in the discarded sand was calcite. The portlandite was fully carbonated.
Small reflections of residual thenardite in the lime were also observed (Figure 3).

0 10 20 30 40 50 60 70
T T T T T T
8000 Q -
C: Calcite (CaCO,)
Q: Quartz (Si0,)
6000 - T: Thenardite (Na,SO,) N

4000 — -

Intensity (a.u)

2000 §
Q c Q
a€ q c Q Q
e e SUSCEAL e g2 4]
o L ST AT M AL i
" " " 1 " 1 " 1 L 1 n
0 10 20 30 40 50 60 70

20°

Figure 3. XRD of mortar sample. C: Calcite, Q: Quartz, T: Thenardite.

In the case of the mortar, since it is a very heterogeneous system on a millimeter scale, it was
necessary to take different aliquots to obtain reliable information because the masses that can be
digested by ICP are very small, resulting in a dispersion of the concentrations of the trace elements. The
average results of four aliquots taken are presented in Table 3. It can be observed that, when mixing
the lime with sand, the initial concentrations of most of the trace elements decreased. The average
concentrations of As and Sr were below the limits established by current regulations. However, those of
Se, Cd, and U were moderately above those limits. Besides the trace element concentrations, the results
from the application of the TCLP technique are shown for the L_p, L_c, and L_m samples in Table 3.
These results are compared with the maximum permissible limits established by the TCLP (US-EPA),
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indicated in Table 2. It has been verified that all the values were well below the established limits.
Thus, it can be concluded that the monitored metals were effectively immobilized. It was also verified
that these values were below the permissible limits established by TCLP (US-EPA). However, there is
no information on permissible limits for some metals, such as Zn, Ni, V, and Sr. The concentrations of
all the elements screened did not exceed the maximum permissible limits for drinking water. The V
limit exceeded the maximum permitted by German law by a factor of ~2.2.

3.1.2. Contents of Major and Trace Elements in the Treatment of PG with Aluminium Residue
(a) Aluminium waste

The density of the aluminium residue was 1.32 g/cm® measured by Hg pycnometry with pH = 14
and [Na] =110 £ 2 g/L (4.78 £ 0.09 M) and [Al] =52 + 2 g/L (1.93 + 0.07 M), according to ICP-OES results.

(b) Synthesis

The XRD pattern of the solid by-product resulting from an attack of the PG with the aluminium
waste is represented in Figure 4, labelled PGAS. The main associated reflections corresponded to katoite
and thenardite, as expected according to Equation (3). It should be noted that no residual gypsum
was detected, indicating that the reaction was complete. The compositional analysis of the PGAS
by-product by XRF (Table 1) confirmed the presence of Ca, Al, S, and Na as the main components, in
the relative molar fractions Ca:Al (1.51) and Na:S (1.96), typical of katoite and thenardite, respectively,
confirming that the reaction was indeed complete.
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Figure 4. XRD of the samples PGAB: calcite (above) and PGAS: katoite precipitate (below). C: Calcite,
Q: Quartz, K: Katoite, T: Thenardite.

(c) Carbonation.

The XRD pattern of the carbonated sample (Figure 4) presents the calcite reflections accompanied
by those of the remaining quartz impurities from the PG. No thenardite reflections were observed,
confirming its complete dissolution during the carbonation process. However, the XRF analysis
(Table 1) revealed the presence of substantial contents of certain chemical species not detected by XRD,
indicating their amorphous character. These were mainly Al and S, and to a lesser extent, Na.

The contents of trace elements present in the PGAS sample (Table 4), such as V, Cr, As, Sr, Ba, and
Th were well below the concentrations in undisturbed soils. However, the concentration of Cd (1.1 +
0.2 mg kg) exceeded the typical concentration by a factor of 12.5. In contrast, the concentration of U
(2.5 + 0.3 mg/kg) was within the limit permitted for uncontaminated soils.
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Table 4. Contents of trace elements in the PGAS (katoite precipitate) and PGAB (calcite) samples.
Leaching results obtained from the application of the TCLP (Toxicity Characteristic Leaching Procedure)
technique to the PGAS (L_k) and PGAB (L_ck) samples.

Metal PGAS (mg/kg) L_k (mg/L) PGAB (mg/kg) L_ck (mg/L)
A% 8.0+0.3 <0.007 58+0.3 0.0225 + 0.04
Cr 53+04 <0.023 6.7 0.6 0.030 + 0.004
Co <0.6 <0.0024 <0.6 <0.0024
Ni <3 0.0082 + 0.0003 <3 0.0050 + 0.0004
Zn <41 0.0740 + 0.0005 <41 <0.212
As 1.8+£0.8 <0.002 14+£02 <0.002
Se <30 <0.006 <30 <0.0059
Sr 248 + 10 1.69 £ 0.02 345+ 5 146 + 0.1
Cd 1.1+0.2 <0.0008 1.6+0.2 <0.0008
Ba 27+3 0.0344 + 0.0001 36+1 0.0024 + 0.02
Pb 1.5+£02 <0.0009 1.6+£0.1 <0.0009
Th 09+01 <0.0013 1.1+£0.1 <0.0013
U 25+03 <0.0012 29+02 <0.0012

In the case of the PGAB sample, the concentrations of the trace elements were well below the
allowed concentrations for undisturbed soils, except for Cd (1.6 + 0.2 mg/kg), which exceeded it by a
factor of 17.5. In contrast, the concentration of U (2.9 + 0.2 mg/kg) was moderately higher than the
limit value.

The results of the TCLP leaching test in the PGAS and PGAB samples (whose liquids are labelled
(L_k) and (L_ck), respectively) are shown in Table 4. All the resulting values for the monitored metals,
compared with those in Table 2, were well below the permitted limits; hence, it may be concluded
that these metals were effectively immobilized. As in the previous case, due to the lack of data on
the maximum permitted limits of Zn, Ni, V, and Sr, reference was made to the limits established
in the legislation that regulates water for human consumption. Values above those allowed were
not observed.

3.2. Radiological Evolution

3.2.1. Procedure A

Table 5 shows the concentrations of radionuclides obtained by gamma spectroscopy. 2*°Ra
concentrations of PG samples coincide with results published elsewhere [1,4,26]. Similar conclusions
were also obtained for 232Th and 21%Po. In contrast, the concentrations of U isotopes were much lower
than the rest of the radionuclides in the series. However, 219Pb presented very high activity due to
the high solubility of U in acidic media; more than 85% of the phosphate rock content remains in the
phosphoric acid fraction obtained during the industrial process, while on the contrary, more than
90% of the 2°Ra and 2!°Pb ended up in the PG [44,45]. Finally, the Th series radionuclides presented
very low levels in the PG sample, even lower than the concentrations in typical undisturbed soils
(2540 Bg/kg). These PG samples therefore contained concentrations below 1000 Bq/kg for U-series
radionuclides (226Ra, 210Pb) and 232Th. Therefore, for this series, PG is not considered a NORM material
by the IAEA regulation (2004) [46]. However, the high concentration of the ?2°Ra isotope makes it a
NORM material, being the most important source of radioactivity in PG. The 2?°Ra produces radon
gas (**2Rn), which has a short half-life (3.8 days), an intense radiation capacity, and causes significant
damage to internal organs (US-EPA, 2002) [47].
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Table 5. Average activity concentrations of the different radionuclides present in chemical process
phases. Average activity concentration with the TCLP (Toxicity Characteristic Leaching Procedure)
leaching test of the different radionuclides and corresponding transfer factors (1)).

226Ra ZlOPb 40K 232Th 235U
Sample
Raw Material
PG (Bg/kg) (5.68 + 0.25) 10% (7.2 + 0.3)10? <111 4+1 19 +3
TCLP (Bg/L) 0.65 + 0.15 (1) = 2.3%) 4.0 £ 1.3(1) = 11.2%) <3 <1 <2
PG + (Na(OH)
Dissolution reaction
C_S (Bq/kg) (7.0 £ 0.3) 102 (1.03 + 0.05) 10° 16 +£5 8+1 28+3
TCLP (Bg/L) <1 <3 <3 <1 <2
Carbonation reaction
Ca_S (Bg/kg) (7.9 £ 0.3) 102 (1.01 £ 0.07) 103 <65 8+1 20+ 4
TCLP (Bg/L) 1.3+ 0.4 (n = 3.3%) 22+ 1.1 (1) = 4.3%) <2 <0.25 <0.2
Mortar production
Mortar (Bg/kg) (2.32 + 0.10) 102 (3.65 + 0.17) 102 80+17 56+05 8+2
TCLP (Bg/L) 0.85 + 0.25 (1 = 7.3%) 2+1(n=11.0%) <25 <1 <1
PG + Caustic wastes.
Dissolution reaction
PGAS (Bg/kg) (4.45 + 0.19) 102 (3.90 + 0.18) 102 <61 4+1 10+2
TCLP (Bg/L) 0.9 £ 0.2 (1) = 4.3%) <35 <4 <1 <2
Carbonation reaction
PGAB (Bg/kg) (4.17 £ 0.17) 10? (4.1 £0.3) 102 <27 5+1 10+2
TCLP (Bq/L) 3+1(n=14.4%) <3 <3 <1 <2

In the U.S,, to prevent environmental and public health risks, the commercial use of PG for
agriculture is limited for certain applications, such as soil amendment, and is only permitted if the
average certified concentration of >?°Ra does not exceed 370 Bq/kg (US-EPA, 1992) [48]. However, it
is more important to know the concentration of radioisotopes when leaching occurs, rather than the
absolute amount of radionuclides that has contributed to the soil. Table 3 shows the results of the
leaching test using TCLP. As no information is available in this regard, the results were compared
to the radioactivity levels in water for human consumption permitted by the US-EPA (2000) [49]
and in Spanish regulations (Royal Decree, 2016) [50]. Some concentrations of radionuclides were
below the measurement detection limits. In these cases, these values were taken as the upper limit
of unfavourable conditions. For the PG sample, the results indicated that the total alpha and beta
activities (0.65 Bg/L and 4 Bq/L, respectively) exceeded the radioactivity permitted for human drinking
water according to the US-EPA and, obviously, the Spanish legislation (0.1 Bq/L and 1 Bq /L for alpha
and beta activities, respectively). If the limit thresholds are exceeded, the specific radionuclides must
be analysed and the correct measurements must be obtained. In PG leachate, concentrations of °Ra
and 21Pb exceeded the reference levels, although both radionuclides had relatively small transfer
factors (Table 5), indicating that most of these radionuclides remained in the starting material; these
results are consistent with values reported elsewhere [51,52].

C_S and Ca_S in Table 5 are the concentrations of radionuclides obtained in the lime and calcite,
respectively, generated by the treatment of PG with caustic soda. These results confirmed that the major
parts of the radionuclides accumulated in the Ca containing by-products [1,30]. The concentrations in
the C_S samples of the uranium series exceeded the value established by CSN (UNSCEAR, 1993) at
1000 Bqg/kg [53]; therefore, both by-products were considered NORM materials and must therefore be
radiologically controlled for commercial applications.

The results of the TCLP test in the C_S sample presented with higher levels of total alpha and beta
activities, 2 Bg/L and 3 Bg/L respectively. These values exceeded those allowed in water for human
consumption. The 226Ra and 219Pb values must be below 0.5 Bg/L and 0.2 Bq/L, respectively, but both
values were lower than their detection limits, being higher than the maximum permitted values. In the
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case of Ca_S, both total alpha and beta activity indexes (1.55 Bq/L and 2.15 Bq/L, respectively) also
exceeded the permitted limits in water for human consumption. The leaching results of ?2°Ra and
210Pb in calcite exceeded the reference values, albeit with very small transfer factors, indicating that
these radionuclides mainly remain in starting material.

Most of the radionuclides present in the mortar samples belong to the uranium series (Table 5).
Neither 22°Ra nor >!°Pb exceeded the values established at 1000 Bq/kq and 5000 Bq/kg, respectively;
therefore, mortar is not a NORM material. However, the values obtained with the TCLP test for total
alpha and beta activities (1.85 Bq/L and 2 Bq/L, respectively) exceeded those permitted in water for
human consumption. It should also be noted that their transfer factors were quite small.

3.2.2. Procedure B

Table 5 also shows concentrations of radionuclides in katoite (PGAS) and calcite resulting
from its carbonation (PGAB). In general, most of the radionuclides present in PG accumulate in
solid by-products [23]. The concentrations of uranium series (>Ra and 2'°Pb) in PGAB and PGAS
did not exceed the values established at 1000 Bq/kq and 5000 Bg/kg, respectively. Consequently,
these by-products are not NORM materials and no radiological control for commercial applications
is required.

In both cases, the total alpha and beta activity obtained with the TCLP test exceeded the permitted
levels in water for human consumption. Specifically, the ?°Ra content exceeded the reference value.
The transfer factor of 2?°Ra for katoite was low but not so low for calcite, particularly when compared
to that of calcite obtained by treating PG with reactive grade soda.

3.3. Radiological Risk Indexes

The purpose of measuring radioactive concentrations is to determine the risk of radiation emitted
by these materials establishing so-called “radiological risk indexes”. Two of the most widely used
indexes are the “gamma activity concentration index” and “radium equivalent activity index”.

The gamma activity concentration index (I) [53,54] is the sum of the contributions of the different
natural radionuclides to the external gamma dose defined by the European Commission (EC-Radiation
Protection, 1999) [55]:

Cra226 , Crnoz2 | Cxao
I, =
Y= 7300 200 T 3000’ ©)

where the I, index is correlated with the annual dose rate due to excess external gamma radiation
caused by surface materials. The value established for no-risk materials is I, < 1. Index values I, <2
correspond to a dose rate criterion of 0.3 mSv/year, while 2 < I, < 6 corresponds to a criterion of 1
mSv/year (Mir6 et al., 2010). EU legislation aims to prevent the general population from receiving
effective dose rates that are above 1 mSv/year with respect to the natural background, which corresponds
tol, > 6.

Radium equivalent activity, Raeq, was used to compare the specific activity of materials containing
different amounts of “°K, ?°Ra, and *Th. Raeq was calculated, in Bq/kg, from the following
relationship [56-58]:

Raeq = (Ctn 1.43 + CRr, + Cx 0.077) < 370 Bg/kg, (7)

with Cry,, Cra, and Ck being specific activities of 232Th, 226Ra, and 4K, respectively (Bg/kg), and
representing the risks of external gamma radiation.

When the concentration of any radionuclide is below the detection limit, this value is
taken for calculations. This provides upper limits for these indexes, corresponding to the most
unfavourable scenario.

For PG, an index equal to 2 was obtained, and it could be used to produce a surface material with
restricted use in construction, as it fulfils I,, < 6 (UNSCEAR, 1993) [50]. Although this material cannot
be used without any restriction from the radiological standpoint, it is competitive when compared
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with thionite or untouched sludge from ilmenite, a NORM residue generated in the industrial process
used to obtain titanium dioxide, whose index is I, = 16.7, or fly ash with I,, = 3.90 [59].

An equivalent radioactivity of 370 Bg/kg in construction materials is assumed to produce an
exposure of around 1.5 mGy/year in the population [60], a value considered to be the maximum limit
by the ICRP (1977) [61].

The value of Raeq for PG was 580 Bq/kg, exceeding the established maximum value for construction
materials. Thus, for the use of this waste as construction material, a radiological study is required for
each specific application.

The by-products from treatment of PG with caustic soda, C_S and Ca_S, presented L, of 2.4 and
2.7, respectively, and Raeq of 710Bq/kg and 800 Bq/kg, respectively, exceeding both values established
in current regulations, which is as expected since the radionuclides in PG, 226Ra, 238, 20Th, and 219Pb
were almost completely transferred first to portlandite and then to calcium carbonate. The observed
increase in radioactivity has to take into account mass loss after discounting the mass of sulphate ions
of thenardite, which is free of radionuclides. However, both by-products could be used to produce
surface material with restricted use, since it fulfils I, < 6.

For the second chemical treatment, in which katoite and calcite were obtained as by-products, the
following values were obtained: I, = 1.5 and I, = 1.4; and Raeq = 460 Bq/kg, Racq = 430 Bq/kg. Both
parameters exceeded the value demanded by current regulations, but were still 1.5 times lower than
those obtained with the first chemical treatment, close to the value established by the regulations. This
result was also to be expected, like the results for the previous by-products from the first chemical
treatment, and the radionuclides present in starting residue (PG) were almost completely transferred
to the katoite and to the final calcite sample. However, both by-products could be used to produce
surface material with restricted use, since I, < 6.

For the mortar sample, the value of I, = 0.8 and the Ra.q=250 Bq/kg were below I, = 1 and
Raeq = 370 Bg/kg, respectively. Therefore, it can be stated that the mixture for the manufacture of
mortar specimens produced with 1:3 by weight lime/sand and 0.50 water/lime ratios can be used
practically without restriction to produce construction materials, due to the lower leaching results in
comparison with those obtained in the PG sample.

4. Conclusions

4.1. PG

1. This waste does not pose any major leaching environmental risk, except for Ni.

4.2. Procedure A

2. Cd and Se concentrations in the different phases are moderately above the established limits.
The other elements remained below the limits, except for U, St, and As. In the mortar, only Se, Cd, and
U are above the legal limits.

3. The Ca containing by-products is NORM, but the mortar prepared with this series of lime
was not.

4. The mobility of the different trace elements, both in the portlandite and calcite samples and in
the mortars, were well below the established limit values, except for V.

4.3. Procedure B

5. The katoite contained amounts of Cd above the legally established value. Regarding the calcite,
only Cd and U were above the limit permitted for uncontaminated soils. The resulting by-products are
not NORM.

6. The metals in the katoite and calcite sample obtained turned out to be immobilized. Both
by-products can be used for surface materials with restricted use.
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