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Abstract: Graphene-based materials in the form of fibres, fabrics, films, and composite materials are
the most widely investigated research domains because of their remarkable physicochemical and
thermomechanical properties. In this era of scientific advancement, graphene has built the foundation
of a new horizon of possibilities and received tremendous research focus in several application areas
such as aerospace, energy, transportation, healthcare, agriculture, wastewater management, and
wearable technology. Although graphene has been found to provide exceptional results in every
application field, a massive proportion of research is still underway to configure required parameters
to ensure the best possible outcomes from graphene-based materials. Until now, several review
articles have been published to summarise the excellence of graphene and its derivatives, which
focused mainly on a single application area of graphene. However, no single review is found to
comprehensively study most used fabrication processes of graphene-based materials including their
diversified and potential application areas. To address this genuine gap and ensure wider support
for the upcoming research and investigations of this excellent material, this review aims to provide
a snapshot of most used fabrication methods of graphene-based materials in the form of pure and
composite fibres, graphene-based composite materials conjugated with polymers, and fibres. This
study also provides a clear perspective of large-scale production feasibility and application areas of
graphene-based materials in all forms.

Keywords: graphene; graphene-based materials; graphene-based polymer composites; fibre-based
reinforced nanocomposites; graphene applications; wearable technology

1. Introduction

Since the discovery of graphene and its extraordinary electrical and mechanical poten-
tials, graphene has been studied comprehensively and has become the centre of attraction
for research and development [1–4]. Because of its amazing physicochemical and thermo-
mechanical properties, graphene is thought to be the most promising aspirant for next
generation materials. However, researchers are constantly focusing on this material to
fine-tune its properties, upgrading its scalable production techniques, and potential ap-
plication areas. So far, graphene has prospective for a wide variety of multifunctional
applications, and accordingly, the graphene manufacturing industry has expanded dra-
matically. The graphene industry has shown vast scale development, but the flourishing
of the graphene industry is yet to come, as the need for scalable production of graphene
is a popular subject of research. Among the main manufacturing methods, mechanical
exfoliation method [5,6], liquid phase stripping [7], oxidation-reduction method [8,9], and
chemical vapor deposition [10] are most popular. The quality of graphene produced by
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these methods is exceptional, however, the cost of the preparation methods is a major
constraint. Moreover, monolayer and high purity graphene are still a challenge, which
limits the scalable production of graphene and its potential commercial applications [11].

Graphene, the fundamental carbon allotrope, is formed by sp2-carbon atoms bonded
together in a two-dimensional (2D) honeycomb lattice, and it can be synthesised either by
top-down processes, e.g., mechanical/electrochemical/chemical exfoliation of graphite, or
bottom-up methods, e.g., chemical vapor deposition and chemical synthesis [12,13]. As
shown in Figure 1, 2D graphene is the fundamental element of all other carbon allotropes
including 0-dimensional (0D) fullerenes, 1-dimensional (1D) carbon nanotubes (CNTs),
and 3-dimensional (3D) graphite. All these allotropes can be obtained by modifying
graphene [12–14]. In addition, graphene is light, solid, tough, demonstrating exceptional
electrical and thermal conductivity, yet the thinnest and strongest among nanomaterials.
Graphene is not only confined to the extreme level of thermal and electrical conduc-
tivity with fast electron mobility, and excellent mechanical strength, but its distinctive
nanopore structure exhibits impermeability to gases, antimicrobial efficacy, thermal stabil-
ity, excellent chemical resistance, high specific surface area, flexible surface chemistry, and
eco-friendliness [15–18]. Among the various carbon allotropes, such as fullerenes, carbon
nanotubes, graphene, graphene oxide, and carbon-based quantum dots, both the CNTs
and graphene are the most studied materials due to their unique properties and are greatly
used in wearable energy, batteries, biosensors, and in composites application areas [19].
Although CNT and graphene are almost alike in their properties, CNTs have some signifi-
cant demerits in terms of toxicity and production cost [19,20]. It has been reported that if
CNTs are worn for a prolonged time, they may trigger human body cell death, and cause
oxidative stress, malignant transformation, destruction of DNA, inflammatory response,
pulmonary inflammation, development of granulomas in lungs, scarring onto the skin
and other organs [21,22]. Besides, formulation and synthesis of CNTs with other organic
and inorganic chemicals are time-consuming processes [23,24]. Unlike CNTs, graphene is
free from metallic impurities, which made it a more biocompatible material than that of
CNTs [25]. Moreover, graphene can be synthesized from graphite, which is cheaper than
the raw materials (carbon sources like methane) of CNTs [19,20]. Besides, graphene pos-
sesses a higher surface area than the single-walled carbon nanotubes (SWCNTs), which is
advantageous for the electroactivity and immobilization capability. Moreover, for the pres-
ence of sp2 bonds in the structure and the electron configuration of graphene, it possesses
an ultra-high mechanical strength, an electronic band that is tunable, outstanding thermal
conductivity, and excellent elasticity [26]. As a result, though graphene was discovered
later than the CNTs, it has attracted more interest compared to the CNTs [19,27].
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Graphene-based materials have been used extensively in so many application areas
such as in the field of energy, wearable technologies, agriculture, medical and healthcare,
automobile, marine, and aerospace. The need for renewable energy to meet the pollution-
related crisis of the current century can be addressed significantly with graphene/polymer
composite materials. The solar cells especially, Li-ion batteries, and microbial fuel cells
are prominent examples of the application of graphene/polymer composite in renewable
and green energy. Additionally, human body temperature, blood pressure, and heartbeat
rate can be easily monitored with sensors developed from graphene/polymer composite
materials. Moreover, these materials can be used successfully in drug delivery systems,
gene therapy, DNA sequencing, tissue engineering, and artificial bones, bioimaging, and
potential cancer therapies [29–35]. The large surface area and flexible surface characteristics
of graphene have particularly enhanced its application in wearable technologies [36–38].
The electrical properties along with the ability to be knitted and woven into cloth-like
materials made graphene an attractive choice for wearable applications [39,40]. An excep-
tional example of the application of graphene in wearable technology is the utilisation of
symmetrical and asymmetrical supercapacitors and micro-supercapacitors. In addition,
the capacitance retention and cycle ability of the produced supercapacitors have been
found very promising [41,42]. Graphene is considered the ultimate solution for clean and
renewable energy materials and devices on a large scale. Low charging time, high strength
to weight ratio, and large surface area of graphene made it a strong candidate for use in
batteries and cells with remarkable performance [43–45].

Until now, several published review articles have explored the production pro-
cess, physical and chemical properties, as well as applications of graphene-based ma-
terials, which can be used in diversified application areas [46–52]. However, almost
all primarily focused on a single application field and studied the material develop-
ment, their characteristics, and applications only for that particular area, for example,
sensors and biosensors [53–56], energy storage and supercapacitors [57–62], and biomed-
ical and drug delivery [63–66]. There is a scarcity of review articles on graphene-based
materials to comprehensively cover all the production processes of graphene derivatives
such as pure and composite graphene fibres, graphene/polymer composite (gPCs), and
graphene/fibre/polymer composites (gFPCs), and their applications in various fields such
as energy, wearable technology, agriculture, wastewater treatment, medical, healthcare,
and in the automobile industry. Therefore, this review aims to highlight the broadest
views of all the possible applications of graphene-based composite materials along with
their detailed fabrication methods. As graphene has the potential to address the global
concerns related to energy and pollution, it is important to know the state of the art, specific
properties, and potential application areas of graphene-based materials.

2. Production Process of Graphene-Based Materials

The production and use of graphene-based materials are continuously increasing
over the last two decades. The number of articles published from 2001 to 2020 on the
graphene-based composite materials (such as fibres, fabrics, films, polymers composites,
and fibre polymer composites) and their different production methods are summarised in
Tables 1 and 2, respectively.
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Table 1. Number of articles published between 2001 and 2020 on the graphene-based composite
materials (Scopus, as of 10 September 2021).

Keywords Used for Search Year Range No. of Publications

“Graphene based fibres”
2001–2010 57

2011–2020 3264

“Graphene based fabrics”
2001–2010 0

2011–2020 410

“Graphene based films”
2001–2010 243

2011–2020 8658

“Graphene polymer composites”
2001–2010 152

2011–2020 7655

“Graphene fibre polymer composites”
2001–2010 32

2011–2020 897

Table 2. Number of articles published between 2001 and 2020 on different production methods of
graphene-based materials (Scopus, as of 10 September 2021).

Keywords Used for Search Year Range No. of Publications

“Wet spinning graphene fibres”
2001–2010 0

2011–2020 209

“Graphene solution mixing”
2001–2010 13

2011–2020 719

“Graphene melt blending”
2001–2010 3

2011–2020 319

“Graphene in situ polymerization”
2001–2010 25

2011–2020 1817

“Graphene roll to roll milling”
2001–2010 0

2011–2020 34

“Graphene matrix modification method”
2001–2010 7

2011–2020 340

“Graphene electrophoretic deposition”
2001–2010 13

2011–2020 556

“Graphene chemical vapour deposition”
2001–2010 385

2011–2020 7051

“Graphene chemical grafting”
2001–2010 29

2011–2020 1341

It is evident that the research interest on the graphene-based materials and their
manufacturing techniques is increasing day-by-day. The following describes the most used
approaches of the production of graphene-based materials.

2.1. Spinning of Graphene Fibres

Graphene fibres can be fabricated using solution spinning techniques such as wet
spinning, dry spinning, and dry jet spinning processes. The fabrication of pure graphene
fibres using the melt spinning technique is not applicable because of its high temperature
at melting point (~4600 ◦C) [67]. Therefore, the solution spinning technique is the primary
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technique, and among all, wet spinning is extensively used in the fabrication of pure
graphene fibres and graphene-based composite fibres. After wet spinning, the graphene
fibres pass through reduction processes such as physical, chemical, and thermal reduction
to achieve electrical conductivity [8,9,68–70].

Before the fabrication of the pure graphene fibres, graphite is required to be converted
into graphene oxide (GO). This is because the 2D structure of graphite is made of weaker
intermolecular bonding, difficult to reform into a fixed attachment by the direct layer
assembling [71]. Besides, it is tough to make a uniform solution where the graphene
flakes can be dissolved uniformly to regenerate the fibres. Moreover, it is troublesome
to organize the graphene flakes in a uniform order next to the fibre axis to produce the
graphene fibres [72]. Therefore, to overcome these difficulties graphite is transformed
into GO that contains an ample amount of oxygen functional groups, which can easily
be dissolved into water or other polar organic solvents [73,74]. To produce GO from the
graphite on a large scale, the chemical and electrochemical exfoliation processes follow
as shown in Figure 2 [75,76]. In the case of the chemical exfoliation approach, both the
Hummers and modified Hummers methods are used to convert the graphite (Figure 2a)
into GO, in which potassium permanganate, sulfuric acid, and hydrogen peroxide play
an important role in the delamination and oxidisation of the graphite sheets [50,77]. The
modified Hummers method is briefly discussed (Figure 2b); the expanded graphite (1 g)
and sulphuric acid (H2SO4, 200 mL) are mixed and stirred continuously overnight. Then
potassium permanganate (KMnO4, 10 g) is added very slowly until the colour of the mixture
turns green. Next, de-ionised water (DI, 200 mL) is gradually added, changing the colour
of the mixture from green to purple to brown. After that, hydrogen peroxide (H2O2, 30 mL)
solution is added dropwise into the mixture until the colour of the solution turns light
yellow. Subsequently, hydrogen chloride (HCl, 500 mL) solution (9:1 v/v, water to HCl)
is added into the mixture and stirred for 30–40 min before it is centrifuged for 20~30 min.
Finally, the solution is repeatedly washed around 6–7 times with DI water [78,79]. In
the electrochemical exfoliation approach (Figure 2c), an electrical field is introduced to
the graphite ultimately infusing the electrons, making graphite positively or negatively
interpolated. Finally, during solvent electrolysis in the gas expansion process, the graphite
is exfoliated into GO sheets [50,77]. These GO sheets are later used to produce pure GO
fibres via wet spinning.
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Figure 2. Chemical and electrochemical exfoliation of graphene oxide (GO) from graphite. (a) graphite, (b) chemical
exfoliation approach, (c) electrochemical exfoliation approach, and (d) GO dispersion in water with a volume of 10 L;
Reprinted with permission from [50].

The wet spinning of graphene fibres has been investigated widely because it is an easy
process, lower prerequisite of apparatus, and homogeneous dispersibility of GO sheets
in the solvents [80]. To produce the graphene fibres via wet spinning, a dope solution
is prepared where GO is dissolved in the suitable solvent and then passed through the
coagulation bath. The coagulation bath can be prepared with a mixture of solvent and
non-solvent, where the dope solution is converted into a gel-like structure. Finally, after
the drying process, this gel-like structure is transformed into graphene fibres [80]. This
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technique is a combination of a double-diffusion, where the solvent present in the dope
solution can coagulate inside the coagulation bath, and the coagulating agent can be
inserted into the fibres [81–83]. When the dope solution is injected into the coagulation
bath, to confirm the formation of consistent and uninterrupted GO fibre, the bath rotates
continuously (Figure 3a) or the fibres are collected after passing through the bath to the
collection unit at a uniform draw ratio (Figure 3b) [67]. Although it has been reported that
in the first approach (Figure 3a), GO fibres can be fabricated with an extraordinary tensile
strength (between 185 MPa and 365 MPa), it is not suitable for the large-scale production
of GO fibre, as the rotating speed of the coagulation bath and the fibres requires precise
control [50,67,84]. It is more convenient to produce GO fibres with a constant drawing and
collecting onto a collection unit, after passing through the coagulation bath. This approach
(Figure 3b) is also more feasible for producing GO fibres on a large commercial scale [85].

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 37 
 

 

The wet spinning of graphene fibres has been investigated widely because it is an 
easy process, lower prerequisite of apparatus, and homogeneous dispersibility of GO 
sheets in the solvents [80]. To produce the graphene fibres via wet spinning, a dope solu-
tion is prepared where GO is dissolved in the suitable solvent and then passed through 
the coagulation bath. The coagulation bath can be prepared with a mixture of solvent and 
non-solvent, where the dope solution is converted into a gel-like structure. Finally, after 
the drying process, this gel-like structure is transformed into graphene fibres [80]. This 
technique is a combination of a double-diffusion, where the solvent present in the dope 
solution can coagulate inside the coagulation bath, and the coagulating agent can be in-
serted into the fibres [81–83]. When the dope solution is injected into the coagulation bath, 
to confirm the formation of consistent and uninterrupted GO fibre, the bath rotates con-
tinuously (Figure 3a) or the fibres are collected after passing through the bath to the col-
lection unit at a uniform draw ratio (Figure 3b) [67]. Although it has been reported that in 
the first approach (Figure 3a), GO fibres can be fabricated with an extraordinary tensile 
strength (between 185 MPa and 365 MPa), it is not suitable for the large-scale production 
of GO fibre, as the rotating speed of the coagulation bath and the fibres requires precise 
control [50,67,84]. It is more convenient to produce GO fibres with a constant drawing and 
collecting onto a collection unit, after passing through the coagulation bath. This approach 
(Figure 3b) is also more feasible for producing GO fibres on a large commercial scale [85]. 

 
Figure 3. (a) Wet-spinning process of GO fibres, (b) collection process after the coagulation process; Reprinted with per-
mission from [67]. 

The preparation of a suitable dope solution is an important step to assure the opti-
mum spinnability of the GO fibres. Water is mostly used to disperse or dissolve the GO 
sheet in the production of the GO dope solution. The size of the GO sheets, viscosity, and 
the concentration of the GO dope solution are also important factors affecting the spinna-
bility of the GO fibres [86]. It has been found that the larger GO sheets are difficult to 
dissolve properly in the solvent, while highly concentrated and viscous GO dope solution 
is difficult to pass through the nozzle that eventually limits the spinnability of the GO 
fibres [87–89]. Filtration, centrifugation, and deaeration of the dope solution are some of 
the processes that enhance the quality of the GO dope solution [50]. In recent years, the 
formation of liquid crystalline graphene oxide (LCGO) dope solution has been used to 
fabricate the GO fibres, where both the aspect ratio and solubility of LCGO are the key 
elements that ascertain the articulation of the LCGO [50,71,86]. 

Xu and Gao discussed the properties of the LCGO solution by preparing an exten-
sively soluble single-layered GO with a high width/thickness ratio (aspect ratio) [90]. 
Later, the authors demonstrated the continuous production of the wet spun GO fibres 

Figure 3. (a) Wet-spinning process of GO fibres, (b) collection process after the coagulation process; Reprinted with
permission from [67].

The preparation of a suitable dope solution is an important step to assure the optimum
spinnability of the GO fibres. Water is mostly used to disperse or dissolve the GO sheet
in the production of the GO dope solution. The size of the GO sheets, viscosity, and the
concentration of the GO dope solution are also important factors affecting the spinnability
of the GO fibres [86]. It has been found that the larger GO sheets are difficult to dissolve
properly in the solvent, while highly concentrated and viscous GO dope solution is difficult
to pass through the nozzle that eventually limits the spinnability of the GO fibres [87–89].
Filtration, centrifugation, and deaeration of the dope solution are some of the processes
that enhance the quality of the GO dope solution [50]. In recent years, the formation of
liquid crystalline graphene oxide (LCGO) dope solution has been used to fabricate the
GO fibres, where both the aspect ratio and solubility of LCGO are the key elements that
ascertain the articulation of the LCGO [50,71,86].

Xu and Gao discussed the properties of the LCGO solution by preparing an extensively
soluble single-layered GO with a high width/thickness ratio (aspect ratio) [90]. Later, the
authors demonstrated the continuous production of the wet spun GO fibres from the
LCGO using the wet-spinning technique [91]. The utilisation of a proper coagulation
bath for the precipitation and solidification of the GO dope solution is also an important
sphere of consideration while performing the wet spinning of the GO fibres [50,92,93]. In
general, a mixture of water and alcohol, in different volume ratios is extensively used
as a coagulating agent [50,86]. In addition, the use of KOH, NaOH, CuCl2, CuSO4, and
CaCl2 is reported as a precipitating agent, where the presence of excess metal ions can be
removed by the subsequent washing, drying, and thermal treatment of the fibres [86,94,95].
Figure 4 shows the morphological structure of the graphene fibres produced with different
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coagulation baths (water, acetone, and acidic medium, from a to c, respectively) [78]. As
it is observed with the change of the coagulant in the coagulation bath, the morphology
of the fibres changes from the non-porous and dense structure to the porous and loosely
packed fibres [78].
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After the spinning process, the dried graphene fibres go through the chemical reduc-
tion processes (chemical reagents, photocatalysis, and electrochemical reduction), or the
thermal reduction process (thermal annealing, and microwave and photo reduction). The
reduction process aims to remove the oxygen-containing groups from the fibres and repair
the lattice defects of the graphene structure (graphitic network), which will eventually
increase the electrical conductivity and other functional properties of the fibres [8,67,86,96].
Different chemicals such as hydrazine and its derivatives, hydroiodic acid (HI), and metal
hydrides (e.g., sodium hydride and sodium borohydride) are used to reduce the GO fi-
bres [8,9]. Since some of these chemicals are hazardous, corrosive, and toxic, more recently
eco-friendly and green chemicals including organic acids, microorganisms, plant extracts,
antioxidants, and sugars are used to accomplish the reduction of graphene fibres [97].
Ascorbic acid (AA, also known as Vitamin C), Caffeic acid (CA), a mixture of ascorbic acid,
and sodium-citrate are some of the examples of excellent green reducing agents of GO
fibres [8,98]. It has been reported that the chemical reduction approach of the GO fibres
is highly suitable and industrially scalable compared to the thermal reduction process.
This step is accomplished at room temperature (or slightly higher up to 90 ◦C), it is sim-
ple, cheap, and importantly does not require large instruments for the reduction process
set-up [68,96,99]. Figure 5 demonstrates different approaches of fabrication to reduce GO
(RGO) from graphite, along with the steps using the reduction of GO, schematic diagrams
of the removal of the defects, and changing of the oxygen functional groups after reduction.
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2.2. Graphene Polymer Composites (gPCs)

The most commonly used techniques of gPCs fabrications are; solution mixing, melt
blending, in situ polymerization, and high shear mixing–calendaring, which are discussed
in detail in the following sections [100]. General fabrication steps for graphene/polymer
composites are delineated in Figure 6 [101].

It is to be noted that the composite fabrication techniques influence the dispersion of
graphene and/or its derivatives in the polymer matrices and will affect the performances
of the composite materials [80]. The molecular weight, polarity, hydrophobicity, and re-
active groups of the polymer resin, graphene nano-fillers, and solvent are considered the
main controlling parameters in graphene/polymer composite synthesis [102,103]. Pristine
graphene cannot be evenly dispersed in most aqueous solvents, because of its hydrophobic
nature. Therefore, even though graphene derivatives such as graphene-oxide (GO), chem-
ically reduced graphene oxide (CRGO), and thermally reduced graphene-oxide (TRGO)
have lower physical properties than pristine graphene, they are being used as fillers when
making composites. The hydrophilic modified graphene is preferred to boost industrial
production and the applications of polymer composites [104].
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2.2.1. Solution Mixing

Solution mixing is the easiest and the most widely used technique for the large-scale
production of graphene/polymer composites. This method is suitable for both thermoplas-
tic and thermoset polymer resins. It usually involves three steps including (i) Dispersion of
filler in a suitable solvent, (ii) Incorporation of the polymer, and (iii) Removal of the solvent
by distillation or evaporation [105,106]. As shown in Figure 7, the graphene or graphene
derivatives are firstly dispersed in a suitable solvent like water, acetone, chloroform, tetrahy-
drofuran (THF), dimethylformamide (DMF), or toluene followed by sonication, mechanical
or magnetic stirring. Then, this graphene suspension is mixed with the polymer resin either
in the same solvent or in a mixed solvent via the shear mixing or stirring process. Finally, the
solvent is evaporated, and the newly formed nanocomposite is washed with distilled water
to remove the remaining solvents followed by drying to obtain the graphene/polymer
composites. Although the fabrication of uniform and homogenous dispersion of graphene
nanomaterials is possible with this method, solvent removal is a critical issue [105,107].
The selected solvent must be compatible with the polymer resin and be volatile to facilitate
the evaporation or distillation processes [105,108]. A wide range of polymers including
epoxy [109], polyvinyl alcohol (PVA) [110], polyvinyl fluoride (PVF) [111,112], polyethy-
lene (PE) [113,114], polypropylene [115,116], polymethylmethacrylate (PMMA) [117,118],
polyurethane (PU) [119,120], polystyrene (PS) [121,122] have been explored and found
to be suitable for graphene/polymer composite manufacturing via the solution mixing
technique. Consequently, polymer resin can intercalate between the graphite layers more
easily during the composite fabrication process, thus, resulting in a uniform distribution
of graphene or modified graphene materials in the polymer resin [123]. Though this is
the simple technique to make graphene/polymer composite, it is, however, challenging
to completely remove the organic solvents as well as the air bubbles trapped inside the
structures, thus, causing deterioration in the structural and functional properties [124].
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2.2.2. Melt Blending

Melt blending is another practical and popular composite fabrication technique, es-
pecially for thermoplastic polymer composites. It is eco-friendly, cost-effective, and also
worthy of large-scale manufacturing of nanocomposites [125]. This technique requires no
solvent for processing and the graphene or modified graphene materials are integrated
with the molten polymer matrix. Solid graphene materials at a higher temperature are
mechanically mixed with the molten thermoplastic polymers in a twin-screw extruder.
The high shear force in the twin-screw extruder pushes the graphene materials to in-
tercalate inside the polymer structures. The uniform dispersion of graphene materials
depends on the extent of polymer disintegration at higher temperatures. The properties
of the resultant polymer nanocomposites can be regulated by controlling various fab-
rication process parameters including rotation speed of the screw, mixing temperature,
and time [124]. A wide range of polymers including PU [126], PET [114], polylactic acid
(PLA) [127], isotactic polypropylene (iPP) [128], styrene, and acrylonitrile [129], polyamide
(PA) [129,130] and polycarbonate [131], have been explored so far and found to be suitable
for graphene/polymer composite manufacturing via melt blending technique. Although
this technique is an environmentally friendly method as no toxic solvent is used, it has
some significant drawbacks such as heterogeneous dispersion of graphene, which might
be due to the high viscosity of graphene–polymer dispersion even at a lower loading of
graphene [132]. In addition, defects and breakage of graphene sheets like buckling, rolling,
and even shortening due to the higher shear forces used during mixing in the twin-screw
extruder, and poor conductive properties of the composite due to the reduced aspect ratio
of graphene sheets, are also some of the disadvantages of this method [101].

2.2.3. In Situ Polymerisation

In-situ polymerisation is an effective technique ensuring the homogenous disper-
sion of nano-fillers in the polymer matrices. This technique facilitates the formation of
a strong interaction between the polymer matrix and reinforcement (e.g., rGO). In this
technique, graphene or modified graphene is first mixed and swollen in a monomer so-
lution. Then, these graphene materials are ultrasonically dispersed in the solution and
a suitable initiator is added. Finally, the polymerisation process commences either by
heat or radiation [104]. The viscosity of the graphene–polymer mixture is dependent on
controlling the degree of polymerisation. This is because the viscosity of the mixture
increases with the reaction. Finally, the composite structures are obtained either by fol-
lowing the precipitation/extraction or solution casting process [100]. A large number of
graphene/polymer nanocomposites including PU [133], PS [134], PMMA [135], polyimide
(PI) [136], and PET [114] have been prepared by this method. One of the notable advantages
of this technique is the possibility of a high level of homogenous graphene dispersion
in the polymer matrix. Moreover, it facilitates a strong covalent bonding between the
polymer and graphene materials. However, there are some challenges to be considered in
this technique, such as the increased graphene–polymer mixture viscosity with a higher
degree of polymerization, which ultimately attributes to poor manipulation and inferior
load fraction in the composite structures [108].

2.2.4. Roll to Roll Milling

Roll to roll (calendaring) milling is also another technique that ensures the homoge-
nous dispersion as well as the high filler contents of polymer matrices to improve compos-
ite performances [137–140]. This technique is suitable particularly for thermoset polymer
resins such as epoxy resins. The required amount of graphene and polymer resin are placed
between the (usually two) rotating rollers and uniformly mixed under a high shear force
by reducing the roller gaps [139,141]. Milling time and shear forces controlled by changing
the gap between the rollers affecting the homogenous dispersion of graphene and/or
some other nanomaterials in the polymer matrices. This technique seems quite feasible
for industrial fabrication, though batch-to-batch quality variation may occur depending
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on the feeding accuracy and process control [105,142]. However, this technique is labour
intensive and often difficult to automate.

2.3. Graphene/Fibre/Polymer Composites (gFPCs)

The graphene nanomaterial can be incorporated with the fibre-reinforced polymer
composites (FRPCs) by following three methods as described below. In the first method,
referred to as the ‘Matrix Modification Method’, graphene is mixed with a suitable polymer
and then applied to the reinforcement fibre by either dip coating, hand lay-up, or spray-up
techniques. In the second method, known as the ‘Fibre Modification Method’, graphene
nanomaterial is directly integrated onto the fibre surfaces via electrophoretic deposition
(EPD), chemical vapour deposition (CVD), and chemical grafting techniques. The third
method is the combination of the two methods, where graphene can be incorporated with
both the fibre and polymer matrix simultaneously to boost the composite properties for the
desired end uses [100].

2.3.1. Matrix Modification Method

This is the most widely used method to introduce nanomaterials with the polymer
composites. The fabrication steps of the gFPCs via the matrix modification method are
demonstrated in Figure 8. A certain amount of graphene (wt.%) is mixed with the polymer
resin by a wide variety of mixing techniques including shear mixing either mechanical
or magnetic [143,144], extrusion [145], rolling (calendaring), or ball milling [146], and
ultrasonication [147]. These techniques can also be applied together to ensure the proper
dispersion of the nanomaterials resulting in the ultimate desired properties of the composite
structures [148]. After mixing the graphene nanomaterial with polymer resin, a selective
hardener and an accelerator are added followed by the degassing step. The polymer matrix
is pumped out to reduce the void contents in the matrix. The physicochemical properties
of the polymer matrix differ based on the processing conditions, the type, and amount of
chemicals used with the resin [149]. Graphene can be incorporated with the reinforcement
textile fibre or fabrics either via dip coating of the fibre into the polymer matrix [150] or
hand brushing [151] or spraying techniques [152]. After that, graphene incorporated textile
preforms are pre-cured at a higher temperature (approximately around 110 ◦C) for a certain
time (5–10 min) depending on the type of polymer matrix and reinforcement fibres to
obtain the prepregs. These prepregs are stacked in a particular sequence and placed in a
particular mould. Finally, the nano prepreg structures are hot press cured under a certain
pressure (e.g., 0.6 MPa) at a certain high temperature (e.g., 150 ◦C) for a period of time (e.g.,
15 min) [153]. Note that curing conditions, including pressure, temperature, and pressing
duration, are found to tailor the composite properties. Nevertheless, the non-uniform
dispersion and agglomeration of graphene in the matrices create some drawbacks such
as lower wettability and poor interfacial adhesion between the fibres and matrix, which
lower their mechanical properties and restrict the wider applications [154,155].
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2.3.2. Fibre Modification Method

Graphene nanomaterials can be directly incorporated with the textile preforms in-
cluding fibre, tow, and fabrics. It has been found that electrophoretic deposition (EPD)
and chemical vapour deposition (CVD) methods are the most commonly used techniques
to graft graphene and some other nanomaterials including amorphous carbon, carbon
nano-fibres, and carbon nanotubes [157].

Electrophoretic Deposition Technique (EPD)

Electrophoretic deposition (EPD) is a low-cost and practical technique to introduce
the graphene nanomaterials onto the surface of the textile preforms [158,159]. The active
surface area of fibre is enhanced to improve the interfacial adhesion properties between
the textile preforms and polymer matrix [160]. Since pristine graphene is hydrophobic and
uniform dispersion in aqueous solvents is not obtained, oxidised graphene is preferred
to pristine graphene while making the EPD solution. The negatively charged GO, high
mobility, and hydrophilic oxygen functional groups on GO make it suitable for EPD
solution [161]. Figure 9 demonstrates the schematic of the EPD technique. In this method,
textile preforms are mounted onto the positive electrode, and negatively charged GO moves
towards the preforms when an electrical voltage is applied to the electrodes immersed
in the solution. In this way, GO is deposited on the textile preforms [162]. Stability and
concentration of GO in the suspension [163], the size of the suspended graphene, applied
voltage [164,165], and deposition time [166] are the most influencing factors for graphene
uniform deposition. Sometimes, surfactants are used to keep the suspension stable by
providing a higher zeta potential and electrophoretic mobility to the suspended particles in
the solution. However, there are some drawbacks in EPD including bubbles on electrodes
caused by the electrolysis process and preform damage and micro-cracks generated due to
the impurities deposited. The cracks are found to propagate quickly under loads leading to
structural failure [167]. To reduce the bubbling effect in the dispersion solution, sonication
is applied and it consequently enhances the quality as well as quantity of the graphene
deposition [168]. If the EPD parameters can be controlled properly, it is an excellent
technique for the homogenous graphene coating on the fibre surface. This technique can
be easily used on an industrial scale by adjusting the treatment conditions [169].
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Chemical Vapour Deposition Technique (CVD)

The chemical vapour deposition technique has recently received considerable atten-
tion because of the large-scale graphene synthesis with controlled architecture and low
defects [173–176]. The CVD technique encompasses four main stages: (i) activation of feed
gases, (ii) chemical reaction, (iii) formation of graphene nanomaterials, and (iv) deposition
on a suitable substrate. Graphene can be deposited either on a temporary metal substrate
such as Fe [177], Cu and Ni [178], Pt [179], or their alloys and then transferred onto the
textile preforms or directly deposited on the textile preforms. The carbon-containing gases
(e.g., hydrocarbon gases) are used as the precursors in the CVD technique. The feed precur-
sors are pyrolyzed at elevated temperature to form different carbon allotropes including
graphene, carbon nanotubes, and amorphous carbon. Furthermore, a variety of metal
catalysts like Co(NO3)2.6H2O, Fe(NO3)3.9H2O, and Ni(NO3)2·6H2O are used to reduce
the temperature of the CVD process and to boost the pyrolysis of the feed gases. These
catalysts act as the active sites for depositing graphene film. The annealing process at the
elevated temperature causes H2 to dissociate into atomic H, which ultimately leads to the
dehydrogenation of hydrocarbon precursors and carbon radicals start to deposit onto the
metallic substrate integrated with high-performance fibres [180,181]. Graphene growth
rate predominantly relies on the hydrogen diffusivity and solubility of these catalysts [180].
The CVD furnace temperature, reaction duration, feed gases, feed ratio, catalysts, and their
molar ratios are the crucial factors for the type and quality of deposited nanomaterials.
Temperature is one of the most influential factors in graphene production via the CVD
technique. Graphene growth rate increases as the furnace temperature increases and more
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importantly, better quality monolayer graphene film with minimum defects is produced
in a higher temperature [182–184]. The production rate of graphene also varies due to
pressure differences in the furnace. For example, single layer graphene is usually produced
at lower pressure whereas the bi-layer and multilayer graphene films are produced at
higher pressure (more than 50 mbar) [185]. Hydrocarbon precursor is another significant
factor in the CVD technique. Precursor (e.g., CH4) concentration plays an important role
in the graphene film growing kinetics. Monolayer graphene and multilayer graphene
film are found to be deposited onto the metal substrate while using the lower and higher
concentration precursors, respectively [186]. Acetylene, another kind of most commonly
used precursor, is better than methane because of its better pyrolysis performance. The
lower feeding rate of C2H2 results in less defective graphene [187]. Although the CVD
technique is commonly used for the large-scale production, this process is currently highly
time-consuming, costly, and complex. It is also difficult to control the thickness of graphene
deposited on the fibre surface, and, most importantly, because of using higher temperature,
the mechanical properties of the fibres are deteriorated [188,189]. The CVD technique of
graphene synthesis is schematically shown in Figure 10.
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2.3.3. Chemical Grafting Technique

This is one of the latest techniques to graft graphene or its derivatives onto the surface
of the fibres. Chemical grafting is a way of connecting graphene with high-performance fi-
bres such as carbon and aramid fibres by the covalent bonding via a variety of connecting or
coupling agents such as hexamethylene diisocyanate (HDI) tri-polymer, poly(amidoamine)
(PAMAM) dendrimers [191–193]. Functionalised graphene has been directly grafted onto
the surface of carbon fibre using a newly developed method [194–196], where SOCl2 is
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used as the connecting agent (Figure 11). In this technique, firstly, the carbon fibres are
oxidised by treating with concentrated nitric acid (HNO3) and functional carboxylic groups
(-COOH) are introduced onto the fibre surface. Then, a thin layer of the coupling agent
is coated on the carbon fibre surface and finally is treated with modified graphene to be
grafted onto the fibre surface. This technique involves some demerits; it is costly, requires
multisteps for grafting, uses toxic and corrosive chemicals, damages the fibre surface and
deteriorates mechanical properties of fibres, and sometimes it is not possible to remove the
chemicals from the fibre surface completely [191,197].
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3. Applications of Graphene-Based Materials

Graphene-based materials are found in a wide variety of advanced applications
because of their extraordinary structural and functional properties [198]. As a result of
intense research on graphene over the past decades, it is now being used in so many
application fields ranging from agriculture to aerospace. Some of the most remarkable
uses of graphene-based materials include solar cells, supercapacitors, Li-ion batteries,
microbial fuel cells, sensors, and nanomembranes for wastewater treatment. In addition,
graphene nanomaterials are being used for various important medical purposes such as
drug delivery systems, gene therapy, DNA sequencing, tissue engineering and artificial
bones, bio-imaging, and potential cancer therapies. Moreover, graphene incorporated
fibre-reinforced composites are noticeably occupying the automotive, marine, aerospace
industry due to their high strength to weight ratio properties.

3.1. Energy

Graphene-based materials are used in producing renewable energy, which is one of the
critical issues of today’s world. Different types of solar cells are produced from graphene
to convert solar energy into other forms of energy [199]. For instance, graphene-based solar
cells are used for solar-thermal or solar-electrical conversion, and photo-catalysis appli-
cations [200]. Among some remarkable properties of graphene such as the 2D structure,
excellent electrical and thermal conductivity, high transparency, flexibility, exceptional me-
chanical strength, and very large specific surface area, the enhanced electrical conductivity
without affecting the optical transmittance is the best reason for its success in the solar cells.
Moreover, the hydrophobic nature of graphene is thought to prevent unwanted reactions
from impeding degradation [201]. In addition, graphene/polymer composites are now
used as the electrodes in the dye-sensitised solar cells (DSSC) to convert solar energy into
electrical energy. The energy conversion efficiency has been substantially improved using
this type of electrodes because of their larger surface area, high porosity, better conductivity,
and reasonably good chemical stability [202,203]. Graphene-based conducting polymer
composites are used in supercapacitor or ultracapacitor and have been found to demon-
strate improved performance as compared to conventional batteries [204]. It is possible to
fabricate an ultrathin (<100 nm) graphene film by filtration method, where this film can be
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transformed onto a flexible substrate, such as polyethylene terephthalate (PET). That is why
graphene is a strong candidate to be used in the supercapacitors’ electrode intended for flex-
ible and wearable energy storage devices [205]. Furthermore, if graphene is compounded
with polymer binder, it can compensate the limitations of insulating polymers. On the
other hand, it enhances the mechanical properties of the polymer framework, resulting in a
praiseworthy improvement in cycling ability and specific capacitance of conductive poly-
mers [206]. Polyaniline (PANI) is one of the most used conducting polymers with graphene
oxide or reduced graphene oxide to make high-performance capacitors [207,208]. These
graphene-based capacitors provide high power density, short charge and discharge time,
and long-life cycle of the capacitor. Figure 12 represents the applications of graphene-based
materials in energy storage and energy conversion devices [209].
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Li-ion battery (LiB) is another prominently used storage system. However, the an-
ode and cathode materials show low life due to the continuous volume expansion and
contraction caused by the lithiation/de-lithiation reaction [210,211]. Furthermore, Li-ion
batteries fail to perform as expected due to the low electron conductivity properties of
the existing electrodes. The problem has been solved using graphene-based anode and
cathodes in the Li-batteries. Li-ion batteries demonstrated excellent performance because
graphene-based electrodes possess good electrical conductivity and reasonably high porous
structures [212–214]. The fabrication methods and properties of graphene-based materials
used in energy storage and conversion devices are provided in Table 3. Graphene/polymer
composites are also found to be used in microbial fuel cells to produce electricity from
different organic sources [215].

Table 3. Fabrication and properties of graphene-based materials used energy storage and energy conversion devices.

Sample Fabrication Method Properties Ref.

Nanostructured polyaniline (PANi)
composited with

graphene sheets (GNS)
Chemical polymerisation

• The capability of delivering a specific capacitance of
532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s.

• At a scan rate of 50 mV/s, the exceptionally stable
capacitance retention as high as ~99.6%.

[207]

Composite films of chemically
converted graphene (CCG) and

polyaniline nanofibres (PANI-NFs)
Solution mixing

• Mechanically stable with high flexibility, easily bent
into large angles and/or shaped into various desired
structures.

• The conductivity of the 44% CCG composite film
10 times higher than that of a PANI-NF film.

• At a discharge rate of 0.3 A g−1, developed
supercapacitor devices exhibited a high electrochemical
capacitance of 210 F g−1.

[208]
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Table 3. Cont.

Sample Fabrication Method Properties Ref.

Co/Zn–S polyhedron homogeneously
embedded between the reduced

graphene oxide (rGO) sheets film as a
binder-free electrode

In-situ polymerisation

• In a 6 M KOH alkaline aqueous electrolyte, a high
capacitance of 1640 F g−1 was measured at a current
density of 1 A g−1.

• When used as the positive electrode alongside
activated carbon as the negative electrode to devise an
asymmetric supercapacitor (ASC), the developed ASC
shows an ultra-high energy density of 91.8 W h kg−1

with the power density of 800 W h kg−1,
• The developed device exhibits 90.3% capacity retention

after 8000 cycles.

[216]

Tin-graphene tubes Chemical vapour deposition
(CVD)

• The developed system has high volumetric and
gravimetric capacities, as well as high-rate efficiency
and long cycling life.

• Pairing the Tin-graphene tubes with a commercial
cathode material LiNi0.6Mn0.2Co0.2O2, the gravimetric
and volumetric energy density of complete cells is
590 W h kg−1 and 1252 W h L−1, respectively.

[217]

Polyaniline hybridised
three-dimensional (3D) graphene

Electrophoretic deposition
(EPD)

• Interacts with bacterial biofilm in three dimensions.
• Allows easier electron transfer.
• Achievable multiplexed and high-conductivity

pathways.

[215]

Graphene/TiO2 continuous fibres
(GTF)

Solution spinning and
annealing method

• Photocatalytic activities under both UV irradiation and
visible light irradiation.

• Under UV irradiation superior activity than the
benchmark photocatalyst P25.

• Four times more effective than pure TiO2 fibres (PTF)
under visible light irradiation.

[218]

Amino graphene oxide/dopamine
modified aramid fibres Chemical grafting

• Exhibits 34% higher interfacial shear strength (IFSS)
(35.21 MPa) compared to pure aramid Fibres
(AF)/epoxy composites even at a high reaction
temperature of 60 ◦C.

[219]

3.2. Wearable Technology

Graphene-based materials are the subject of huge attraction in the field of wearable
technologies. The aim is to assemble fibre-based supercapacitors that are flexible with excel-
lent electrochemical properties. For example, supercapacitors (SCs) are one of the popular
examples of wearable storage and conversion devices. SCs are being used in hybrid electric
vehicles, energy management, memory backup devices, and industrial power [220]. Differ-
ent approaches have been taken to use graphene-based fibres to devise supercapacitors
for energy storage and wearable technologies [39,220–232]. Among these, an asymmetric
supercapacitor with high flexibility, excellent cycling ability, and mechanical stability is
remarkable. Moreover, its superior volumetric energy density made it reversibly cycled at
a high voltage of 1.6 V [223]. Transition metal oxide nanorods/reduced graphene oxide
hybrid fibres were used for the purpose. The electrochemical performance of the hybrid
fibres considerably increased as a result of the synergetic effects between transition metal
oxide nanorods and rGO [223]. Whereas in an all-solid-state symmetric supercapacitor, due
to the improved electron transportation of the conductive graphene network, significant
electrochemical properties were also found even under bending and stretching conditions,
which indicates the suitability of the material to be used in wearable technologies [224].
Other supercapacitors and micro-supercapacitors are mentioned as strong candidates for
wearable technologies. Among the various composite fibres used in SCs, a specific capaci-
tance of 1722.1 mF cm−2 and energy density of 37.2 µWh cm−2 have been shown by the
graphene fibre fabricated with a titanium core that was prepared using the alternately
dipping (AD) technique [226]. In another study, the fabricated graphene and MnO2 hybrid
supercapacitor demonstrated up to 93% capacitance retention after 1000 cycles, which was
a promising outcome to apply in the field of wearable fabric [228]. Polyurethane yarn as the
elastic core and graphene/poly (vinyl alcohol) as the conductive sheath fabricated using
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layer by layer assembly method can be used as a yarn strain sensor for their superior elec-
tromechanical properties and good linearity between the change in relative resistance and
applied strain [233]. In every case, the graphene’s excellent conductivity and remarkable
mechanical properties with flexible structure assisted the fabricated devices to perform
assertively. Dopamine-modified aramid fibres (AF) and Graphene/TiO2 continuous fibres
(GTF) are prominent candidates for use in environmental remediation [218,219]. Moreover,
Graphene/TiO2 continuous fibres (GTF) have photocatalytic activities under both UV
irradiation and visible light irradiation [218].

Graphene quartz fibre (GQF) are suitable for industrial electronic heaters and real-
time biomimetic gas sensor [234,235]. Gas sensors are used to screen the air quality,
environment, and to sense the presence of different toxic gases such as carbon dioxide,
methanol, ethanol, ethylene, formaldehyde, and acetone [236]. The performance of the
gas sensors are determined using some parameters, for example, selectivity, sensitivity,
response time, detection limit, and response recovery [236,237]. The preparation process of
a graphene-based gas sensor is easier and more cost-effective than the other metal-based
sensors, which eventually increase its applications in diversified areas [236,237]. They
can be knitted into meter-scaled knit fabrics with excellent electrothermal conversion
efficiency, high sensitivity, fast response (<0.5 s), and good durability (~5000 cycles) to
organic solvent vapour [234]. As shown in Figure 13, graphene/polymer composites
are used in different sensor elements, especially for healthcare [238] and environmental
control systems [239]. The graphene coated or incorporated fibre or fabric-based gas
sensors possess excellent advantages such as cheap, durable, drapable, pliable, and light
weight [235,240]. In addition, these can be incorporated into textiles in various forms
with excellent washability compared to the previously used solid-state gas sensors [241].
Furthermore, as different gases, volatile organic compounds (VOCs), and humidity can
be detected with GO-based gas sensors, these sensors are found to be responsive for
detecting any environmental change including the identification of different hazardous
materials such as toxic gases, organic vapours, and chemical warfare agents [237,242].
Thus, graphene/polymer composites facilitate keeping the environment safe from various
harmful materials [242,243]. Apart from this, human body temperature, blood pressure,
and heartbeat can be easily measured with the help of these sensors used as wearable
devices. Changes in the conductivity of graphene caused by human body motion or
environmental changes, provide the desired results [244]. The fabrication and properties of
graphene-based materials widely used in wearable technology are tabulated in Table 4.
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Table 4. Fabrication and properties of graphene-based materials used in wearable technology.

Material Fabrication Method Properties Ref

Graphene/PEDOT
(GF@PEDOT) fibre

In situ
polymerisation

• Specific capacitance of up to 15.39 mF cm−2

(0.58 mF cm−1) at 0.53 mA cm−2.
[220]

Cellulose nanofibres (CNF) reinforced
graphene/polypyrrole microfibre Wet spinning • Superior energy density, remarkable rate capability, and

good cycling ability with tensile strength of 364.3 MPa.
[222]

Transition metal oxide
nanorods/reduced graphene oxide

(rGO) hybrid fibres
Wet spinning

• Can be cycled reversibly at a high voltage of 1.6 V.
• Delivers a superior volumetric energy density.
• Excellent flexibility, cycling ability, and mechanical

stability.

[223]

Cotton/graphene/polyaniline (PANI) Dip-coating

• The energy density of 9.7 µWh cm−2.
• The power density of 840.9 µW cm−2.
• Under the mechanical bending and stretching

conditions shows stable electrochemical performance.

[224]

Polyaniline/graphene (PANI/GF)
hybrid fibres Wet spinning

• Composite fibres have improved
• Structural uniformity and stability.
• High specific capacitance (87.8 mF cm−2) and high

energy density (12.2 µWh cm−2).
• Current density of 0.22 mA cm−2.

[225]

Graphene Fibre with a titanium core
(AD:Ti@RGO)

Alternately dipping (AD)
method

• Ultra-high specific capacitance (up to 1722.1 mF cm−2).
• The highest specific capacitance reported to date.

[226]

Porous polyaniline nanorods/graphene
fibres (GF@PANI) Chemical polymerization

• The capacitance of 357.1 mF cm−2.
• Energy density of 7.93 µWh cm−2 (5.7 mWh cm−3).
• Power density of 0.23 mW cm−2 (167.7 mW cm−3).
• 3.8% capacitance loss after 5000 cycles.
• Rate capability (78.9% capacitance retention).

[227]

Polyaniline/carbon nanotube graphene
fibre

Electrophoretic deposition
(EPD)

• Spring-like coiled fibre coated with an elastic polymer.
• Extreme stretchability.
• Cycles with up to 500% strain for a thousand cycles.
• The specific capacitance of ≈138 F g−1.

[230]

Polyaniline nanorod arrays/graphene
(PNA/G) Chemical polymerisation

• Large capacitance (230 mF cm−2),
• High cycling stability (86.9% retention after 8000

cycles),
• Long-term bending durability and high energy density

(37.2 µWh cm−2).
• High electrical conductivity (18,734 S m−1).
• Pseudo-capacitance.

[231]

Sulphur-doped graphene fibres (S-GFs) In situ
Polymerisation

• The high specific capacitance of 4.55 mF cm−2.
• The current density of 25.47 µA cm−2.

[232]

Graphene/poly (vinyl alcohol)
composites as the conductive sheath,

and polyurethane yarn as the elastic core
Dip-coating

• Two sensors have been developed (graphene
concentration of (a) 0.8 wt% and (b) 1.0 wt%, and (a) 12
and (b) 9 cycles of coating, respectively).

• The change in relative resistance and the applied strain
maintains a good linear relationship (correlation
coefficient of (a) 0.95 and (b) 0.97).

• Good repeatability (repeatability error of (a) 2.03% and
(b) 1.81%).

• Hysteresis error of (a) 7.03% and (b) 9.08% implies low
hysteresis.

• Thermal stability is excellent.

[233]

Graphene quartz fibre (GQF) Chemical vapour
deposition (CVD)

• Capable to be knitted into meter-scaled knit fabrics.
• Tunable conductivity sheet resistances of

0.2−10 kΩ/sq).
• Electrothermal conversion efficiency is up to 980 ◦C

within a few seconds at 24 V.
• To organic solvent vapour, it has a high sensitivity, a

quick response time (<0.5 s), and a long life
(~5000 cycles).

[234]

Chitosangraphene oxide composites
polymer modified glassy carbon

electrode (CS/GO-IIP)
Dip-coating

• Under optimised conditions, a linear dependency of 0.5
to 100 µmol/L, with a detection limit of 0.15 µmol/L.

• Acceptable recovery rates for tap and river water
samples.

[239]
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Table 4. Cont.

Material Fabrication Method Properties Ref

Zinc oxide (ZnO) and reduced graphene
oxide (rGO) coated

wearable cotton fabrics

Coating (In-situ sol-gel
method)

• The as prepared rGO/ZnO coated cotton (ZnO + 7 wt%
rGO) achieves the highest total EMI shielding
effectiveness of ~99.999% (54.7 dB).

• An effective absorption efficiency of 99.99% and
capable of shielding impinging EM waves greater than
99.999%.

[246]

Poly (styrene-butadiene-styrene)
(SBS)/graphene (Gr) composite
fibre-based flexible strain sensor

Wet spinning

• The fibres with 5 wt% graphene have a wide response
range of up to 100% strain.

• The SBS-5 percent Gr composite fibres have excellent
sensing efficiency when it comes to detecting human
upper limb movements at various joints.

[247]

graphene (G), carbon black (CB), and
polydimethylsiloxane (PDMS) into
three-dimensional (3D) Ni sponge

Dip-coating

• The G/CB/Ni strain sensor is flexible, has a high
sensitivity (gauge factor of 138 at 16% strain), and is
stable over time.

• The G/CB/Ni sensor can accurately track subtle
human movements like pulsing, blinking, and
swallowing, as well as can measure the strength of
muscles.

• The G/CB/Ni sensor can be used to detect human
movements in humid and wet environments since it is
waterproof.

[248]

3.3. Agriculture and Wastewater Management

Water contamination with various toxic materials originated from both organic and
inorganic sources, for example, industry, agriculture, and household affairs is an alarming
topic from the environmental sustainability point of view. Aquatic species are on the verge
of extinction due to mass water contamination. Although more than 70% of the Earth’s
surface is covered with water, it is becoming increasingly difficult to find clean usable
water [249,250]. Therefore, various methods are being used to eliminate water pollution.
In the present time, graphene-based nano porous membranes are used as an efficient
technique to remove different kinds of pollutants. The nanomembranes effectively act
as a barrier for both liquid and gaseous materials. Figure 14 shows a schematic diagram
of different types of graphene-based membranes used for wastewater treatment. Table 5
represents the fabrication method and properties of graphene-based materials that are used
in agriculture and wastewater management.

Table 5. Fabrication and properties of the graphene-based materials used in agriculture and wastewater management.

Material Fabrication Method Properties Ref.

Graphene oxide/iron (GO-Fe)
composite Solution mixing

• Phosphate ions are attached to the GO-Fe composite,
resulting in a loading capacity of 48 mg P/g.

• Compared to commercial mono ammonium phosphate
(MAP) fertiliser, a GO-Fe composite loaded with
phosphate (GO-Fe-P) fertiliser resulted in a slower
release of P, minimizing the risk of soluble P leaching or
runoff into surface and ground waters.

[251]

Water-soluble graphene Modified Hummers and
Offeman’s process

• After 20 days of exposure, graphene significantly
decreased the growth of plant and biomass under
experimental conditions as compared to a control.

• The number and size of leaves on graphene-treated
plants reduced in a dose-dependent manner.

• Under the same conditions, lettuce seedlings showed
little or no substantial toxicity.

[252]

Graphene quantum dots (GQDs) Chemical grafting • The growth rate of leaves, roots, shoots, flowers, and
fruits accelerated by graphene quantum dots.

[253]
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3.4. Medical and Healthcare

The amazing properties of graphene have laid the foundation of a new horizon of pos-
sibilities for various applications and the application of graphene/polymer nanocomposites
in the biomedical industry is one of them. Since the first report on the use of graphene
in the medical field in 2008 [254,255], much research has been done on its versatility. The
large surface area, a strong affinity for hydrophobic drugs, stable chemical properties of
graphene, and the enhanced mechanical properties of graphene-based polymer composites
made it suitable for a wide range of biomedical applications such as drug delivery, gene
therapy, DNA sequencing, tissue engineering, artificial muscles, and cancer therapies as
shown in Figure 15.

Because of the atomic thickness and extremely high conductivity properties of graphene,
it is extensively used in bioimaging materials. Graphene/regenerated silk fibroins (RSFs)
composite fibres produced by the wet spinning method have the potential for being used
in tissue engineering, biomedical, and biotechnological areas as they have shown signifi-
cant antimicrobial efficacy against both gram-positive and gram-negative bacteria [256].
Silica microfibre/graphene oxide can be used for in situ DNA measurement and DNA
detection as it exhibits a strong π–π interaction. Moreover, this particular embodiment is
sensitive, user-friendly, and can certainly be operated in a hard-to-reach environment [257].
Functionalised graphene/polymer composites are now used as biosensors to diagnose a
variety of biomolecules like haemoglobin, glucose, cholesterol, DNA, and even in food
industry because of their higher sensitivity towards the changing environments [258,259].
The excellent physical and chemical properties of graphene such as greater surface area,
higher absorption ability, higher conductivity, and outstanding catalytic activity made it
an excellent choice as a biosensor [259,260]. Although the use of metal-based biosensors
were popular due to their electrocatalytic activity, biocompatibility, and lower price, some
of these suffered from lower electrical conductivity [260]. Besides, some metallic nanopar-
ticles depicted unreliable signal amplification maybe because of the presence of metallic
impurity [261]. Apart from these, it is also an issue of concern that the existence of 50 ppm
impurities can cause redox reactions with the biomolecules that ultimately ensures the
possibility of toxicological hazards [262]. Similar issues have been found in the case of
the biosensors produced with the CNTs and the metallic nanoparticles. Hence, currently,
researchers are focusing on the application of graphene-based biosensors to overcome these
issues. Table 6 summarises the potential applications of graphene/polymer composites in
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the biomedical industry. Although graphene or graphene-based composites have received
an unprecedented response in the medical sector, more research is needed on the long-term
effects of graphene inclusion in the human body.
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Table 6. The potential applications of graphene/polymer composites in the biomedical industry.

Applications Purpose Graphene/Polymer Composites Ref.

Neuroscience Neural sensing and stimulation Porous graphene microelectrode array [264]

Gene delivery

Drugs and genes delivery PAMAM-GO [265]

Cancer therapy GQD-PEI-Dox-GFP (GIDG)
GQD-PEI-EGFR-Dox (GIED) [266]

Optimisation of the gene delivery system GO-APTES [267]

Biosensors

Detection of DNA PANI/GP [268]

L-lysine biosensing c-MWCNTs–SnO2–GR–CS [269]

Glucose sensing 3D NiO hollow sphere/rGO composite
modified electrode [260]

Amperometric uric acid detection Uricase/Chi-Gr cry/PB/SPCE [270]

Drug delivery

Controlled release of the Sumatriptan Succinate (SS) drug CS-TPP-GO [271]

Cisplatin drug loading efficacy CS/M/S/GO [272]

Specificity to tumour cells MGO-MIP [273]

Therapeutic efficacy of doxorubicin (DOX) as an
anticancer drug PB-MG [274]

PAMAM = polyamidoamine; PANI = polyaniline, GP = graphene, c-MWCNTs = carboxylated multiwalled carbon nanotubes;
CS = Graphene–chitosan; Cry = cryogel; Gr chi = graphene-incorporated chitosan; PB = Prussian blue; SPCE = screen-printed car-
bon electrode; CS-TPP-GO = Chitosan/tripolyphosphate/Graphene oxide hydrogel; CS/M/S/GO = chitosan-coated magnetite, silicon
dioxide, and graphene oxide; MGO = magnetic GO; MIP = Molecularly imprinted polymers; PB = brush polymer; MG = magnetic
graphene oxide; GQD = graphene quantum dots; PEI = polyethylenimine; Dox = GFP = green fluorescent protein; Dox = drug doxorubicin;
EGFR = epidermal growth factor receptor; APTES = 3-aminopropyltriethoxysilane.
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3.5. Automobile, Marine and Aerospace Industry

At present, the emphasis is on application of lightweight but strong materials in
various structural engineering industries, especially in the automotive, aerospace, and
marine industries [275–278]. This requirement reduces the parts weight and the amount of
fuel required, resulting in considerable reduction in costs and fuel consumption. Less fuel
consumption ultimately leads to less carbon dioxide gas emission and environmental pollu-
tion. Heavy steel materials are replaced with fibre-reinforced composite materials because
of their lightweight and excellent specific strength/stiffness properties. Different types of
high strength and high modulus fibre such as glass fibre, carbon fibre, and para-aramid
fibre are used as textile reinforcement. In fabricating the fibre-reinforced composites, ther-
mosetting polymer resins are frequently used as the polymer matrix for their chemically
inert, thermally stable, and moderate mechanical properties. Although fibre/polymer
composites (FPCs) demonstrate substantial enhancement in the in-plane properties, they
cannot improve the through-the-thickness properties as desired. In addition, thermosetting
polymer resins are very much prone to initiate cracks under cyclic loading conditions. To
eradicate these problems, nowadays graphene nanomaterials are incorporated as another
reinforcing agent in the FPCs, showing significant improvement both in the in-plane and
out-of-plane properties for having a large strength to weight ratio and superior mechanical
properties [171,279]. Ford Motor Company has replaced noisy parts with graphene-made
parts such as the pumps, fuel rail, chain-driven gears, or belt-driven pulleys on front en-
gines. BMW’s i3 and Volkswagen’s XL1 are examples of commercialised carbon fibre-based
polymer composites [280]. Different marine components made of graphene/polymer com-
posites are highly protected from corrosion effect and ultimately demonstrate better service
life [281]. At present, different types of ship components like spars, hull, till, rudder, keels,
masts, and poles are made from graphene/carbon fibre/polymer composites [281,282].
Graphene materials with their amazing structural strength and conductivity properties
have emerged as the prospective contender for numerous applications in the aerospace
industry. Graphene/carbon fibre/polymer composites with their super interlaminar shear
strength and fracture toughness properties are now used in different parts such as air-
craft ribs, panels, fuselages, wings, fuel tanks, and tail assemblies [282]. Around 50% of
parts of the Boeing and Airbus aircraft are made of multiscale composites with improved
mechanical strength, damage tolerance, thermal stability, and corrosion resistivity prop-
erties. Moreover, fibre-reinforced multiscale composites are used considerably in making
different components for helicopters such as rotor blades, fan blades, propellers, seats,
and interiors [281]. However, despite the fibre-reinforced multiscale composites demon-
strate improved properties, the final cost restricted their applications, and more research is
required to reduce the costs without sacrificing quality.

3.6. Others

Lightweight, strong, and cost-efficient sports items are made from fibre-reinforced
polymer composite materials with multi-functional properties. Nowadays, a wide variety
of sports items are made of graphene/polymer nanocomposites among them tennis rackets,
helmets, hockey sticks, bicycle frames, skis, and golf clubs [281,283,284]. Another promising
application area of graphene-based composites is the military defence industry. A wide
range of products made from graphene/polymer composites is used in this sector. Because
of the higher strength to weight ratio, high stiffness, and other multifunctional properties,
graphene-based FPCs are used to make ballistic body armour, drones, and some military
automotive parts [285].

4. Conclusions and Future Prospect

In this review, the fabrication methods of graphene-based materials and their potential
applications in several fields were discussed. The wet spinning process is one of the most
followed methods in the fabrication of pure graphene and composite graphene fibres
along with natural and synthetic polymers. These fibres are later reduced with chemical or
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thermal approaches to make electrically conductive graphene fibres. On the other hand,
the composite graphene materials incorporating fibres or thermoplastic and thermosetting
polymers are fabricated using the matrix modification process, fibre modification process,
or the combination of these two processes. These are the cheap, environmentally friendly,
and economically feasible approaches to facilitate the industrial large-scale production of
graphene-based composite materials. The fabricated graphene materials and their com-
posites are applied to diverse application areas due to the excellent mechanical properties
and functional characteristics of graphene and its derivatives. Sensors, nanocomposites,
electrodes for solar cells, medical equipment, different sports items, parts, and frames of
automobiles are some examples of the application of graphene-based materials. In addition,
these materials are also used in wastewater treatment and water purification systems.

Further applications of graphene-based material are expected in nanocomposite indus-
tries. Although graphene is currently used in this industry, an excellent understanding of
this material is yet to be discovered. Graphene is used in the biomedical and drug-delivery
systems; however, focused research is required in the utilisation of all the positive qualities
of this remarkable material. This includes investigating the antimicrobial aspects, enhanc-
ing biocompatibility, and applying graphene materials to the removal of toxic elements to
protect the environment. Apart from these, further research can be carried out to find an
optimum and eco-friendly reduction process of graphene that can demonstrate higher elec-
trical conductivity with excellent mechanical properties, which can bring a breakthrough
in all application fields. In a nutshell, graphene is a wondrous material in this world that
can be tailored in various ways to use in diversified application areas.
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