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Abstract

Inspired by the dynamic clamp of cellular neuroscience, this paper introduces VPI—Virtual Partner Interaction—a coupled
dynamical system for studying real time interaction between a human and a machine. In this proof of concept study, human
subjects coordinate hand movements with a virtual partner, an avatar of a hand whose movements are driven by a
computerized version of the Haken-Kelso-Bunz (HKB) equations that have been shown to govern basic forms of human
coordination. As a surrogate system for human social coordination, VPI allows one to examine regions of the parameter
space not typically explored during live interactions. A number of novel behaviors never previously observed are uncovered
and accounted for. Having its basis in an empirically derived theory of human coordination, VPI offers a principled approach
to human-machine interaction and opens up new ways to understand how humans interact with human-like machines
including identification of underlying neural mechanisms.
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Introduction

In this paper we take inspiration from the ‘‘dynamic clamp’’ of

cellular and computational neuroscience in order to probe

essential properties of human social coordination. We do this by

reciprocally coupling human subjects to a computationally

implemented model of themselves, an invention we call Virtual

Partner Interaction or VPI for short. In neuroscience, a dynamic

clamp is an electrophysiological method that interfaces living cells

dynamically to their simulated counterpart in order to explore

cellular processes such as membrane or synaptic current transport.

In one of its implementations, a circuit injects currents to a live

neuron through a microelectrode inserted into its soma, simulating

a synaptic process [1]. Output from the circuit is determined by a

set of differential equations that constitute a computational model

of neuronal behavior. Circuit input includes state-variables of the

live neuron. A simulated neuron and a real neuron are therefore

reciprocally coupled in real-time. This type of coupling between

live and model neuron is called a ‘hybrid network’ [2], and acts as

a bridge between experimental studies and computer modeling of

neural networks. Properties of the interaction can be fully

established by varying model parameters. Among its successes,

the dynamic clamp has yielded insights into the role of voltage-

dependent conductances and the timing of synaptic inputs (see [3]

for a review). The motivation for the use of hybrid networks is to

understand the consequences of the nonlinearities central to most

physiological processes [2]. Often this involves studying the

conditions required for different kinds of phase synchrony between

cells [4–7].

In like fashion, but now scaled up from the level of neuronal

behavior to the level of behaving humans, we introduce VPI as a

surrogate system to systematically investigate the essentially

nonlinear dynamics of human social coordination (see [8–10] for

recent reviews]. In VPI, a human being coordinates behavior with

a virtual partner (sometimes referred to simply as VP in this paper)

whose motion is driven by a nonlinearly coupled component

oscillator of the Haken-Kelso-Bunz (HKB) model of coordination

dynamics [11–14] the parameters of which depend on input from

the human’s own movements (Fig. 1). Coordinated movements

between the human and the VP can vary from simple and

repetitive to complex and discrete. They can be symmetrical or

asymmetrical (both partners performing the same action or not),

thereby laying the basis for such important behaviors as imitation

learning or joint action with a shared goal. Basic coordination

behaviors may be modeled using HKB dynamics. The HKB

equations describe rhythmic coordination between similar effec-

tors within as well as between individuals whose movements may

be coupled through proprioception, vision or audition. The many

extensions of the basic HKB equations are suitable for behaviors of

further complexity. In the current implementation of VPI, the

behaviors of both human and VP are chosen as rhythmic cycles of

flexion and extension of the right index finger. The frequency and

amplitude of the animated finger are determined by a real-time

numerical simulation of the oscillator equation. The human

subject’s finger position and velocity are used to form the HKB

coupling term for the oscillator, so that it reacts to the performance

of the subject. The subject is visually coupled to the oscillator via

the display so that the coupling is bi-directional.
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The present approach is applicable to a wide range of human-

machine interactions, in particular, to human-humanoid robots

and their extension to multiple partner situations. Conceptual and

technological advances have opened up many ways to explore and

understand computational properties of neurobiological systems

[15] as well as complex human-machine interactions [16–18].

Understanding these interactions is guided by models of

information exchange characteristic of human social interaction

[19–21]. In recent times, a shift has occurred toward creating

humanoid machines that attempt to mimic human beings [22], be

it for surrogate human interactions [21,23–26], ‘‘intuitive or

natural’’ human computer interactions [27,28] or more broadly

cognitive and behavioral cooperation between humans and

machines [27,29–35], including in rehabilitation settings [36–

39]. Two main design themes or directions have emerged. The

first attempts to build integrated architectures of functional

systems, e.g. for perception, attention, spatial navigation, learning,

decision-making and so forth. The second, guided by principles of

phylogeny and ontogeny, attempts to self-organize basic building

blocks into purposeful systems ([33,40–42]; see also [43] for a

similar goal at the neural level). Ever greater recognition is being

given to the importance of coordination between the agent’s

‘‘brain’’ and ‘‘body’’ [27,33,34,41,44], as well as to the social

significance of behavior [33,44,45]. For individuals, behavior is a

means of seeking energetic and informational resources in the

environment [46]. Behavior (actions, gestures, facial expressions,

verbal communication and so forth) also provides a means to

integrate information about the self and the other, thereby

supporting purposeful interactions. Adding to the significance of

behavior for the emergence of social complexity, advanced brains

appear to have evolved a specialized neural system for this

function called the mirror neuron system [47]. The mirror neuron

system has been assigned explanatory duty for numerous cognitive

and social functions including theory of mind, language, empathy,

cooperation and skill learning [48].

In VPI, the virtual partner is endowed with a coordination

dynamics that is intended to capture how one human being

performs visual coordination with another. First published in

1985, the HKB model of this coupled behavior is one of the most

extensively tested quantitative models in human movement [49].

In its original form, HKB describes and predicts the dynamics

(multistability, instability, transitions, etc) of the relative phase

between two oscillating fingers or limbs when frequency or rate is

scaled [50,51]. In HKB, the equation of motion for the key

collective or coordination variable (relative phase) can be derived

by treating the interacting components as nonlinearly coupled

nonlinear oscillators [11]. Much work has gone in to identifying

the intrinsic properties of the components and their coupling (see

[52] for a review). HKB has been successfully extended in

numerous ways, for instance, to situations where different limbs

are coordinated, movements are coordinated with different

sensory modalities, multifrequency coordination as in drumming

and piano playing, discrete as well as rhythmical movements—to

name just a few. When combined with noninvasive brain imaging

techniques, the HKB model (and more generally, the theoretical

concepts and methods of coordination dynamics) have motivated

new ways to investigate brain function (e.g. [53–59]).

One remarkable extension of HKB is that it describes and

predicts basic patterns of social coordination between two people

[60,61]. It naturally follows that the HKB equations are suitable to

Figure 1. The Virtual Partner Interaction (VPI) paradigm. Subject coordinates finger movement with a virtual partner visually via an animated
display. Subject’s behavior y, _yyð Þ is digitized and fed to a real-time HKB computational circuit. The circuit computes corresponding virtual partner
position and velocity x, _xxð Þ which is then used to animate the hand of the virtual partner. Circuit is coupled to the subject via the digitized inputs.
Subject is coupled to the circuit visually via the display.
doi:10.1371/journal.pone.0005749.g001
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design a ‘dynamic clamp’ for human-machine interactions that is

modeled after human-human interactions. Analogous to the

dynamic clamp [1,3] VPI allows the experimenter to explore a

range of control parameters and coupling manipulations not

typically accessible in experimental studies of human social

coordination. As proof of concept, we asked human subjects to

coordinate rhythmic finger movements with a virtual partner and

maintain in-phase coordination with the VP’s movements.

However, the virtual partner was parameterized to couple most

stably anti-phase with its human counterpart. The outcome of pitting

one behavior against the other, we hypothesized, is virtually

guaranteed to be an emergent behavior that is dependent on neither

the virtual partner nor the human subject alone, but rather to the

cooperation or competition between them. As we will show, the

experiment reveals phenomena consistent with the HKB model as

well as a number of new effects (‘strategies’) never previously

observed or anticipated in experimental studies of social coordina-

tion, but that are nevertheless understandable on further analysis.

Materials and Methods

The VPI system
A component equation of the HKB model is given by the non-

linearly coupled nonlinear oscillator

€xxz ax2zb _xx2{c
� �

_xxzv2x~ AzB x{yð Þ2
� �

_xx{ _yyð Þ

where x and y refer to the positions of two interacting partners

(Fig. 1) and the parameters a, b, c, v, A and B are constants [11]

(see Table 1). The equation for the second component y is

obtained by a simple substitution xRy, yRx giving us a symmetric

system. These equations are often simplified into phase and

amplitude components which yield, under the rotating wave and

slowly varying amplitude approximations [11], a relative phase

dynamics that describes coordinated behavior between the

interacting components (e.g., fingers, limb segments) within or

between individuals. For the parameters used in [11], coordination

at in-phase is more stable compared to anti-phase for frequencies

comparable to those used in our VPI study (1 Hz to 3 Hz). In this

paper, x(t) drives the movement of the virtual partner while the

input y(t) is the actual movement from a human subject. A

computer generated virtual partner (an avatar of a hand) is

constructed using an animated sequence of index finger move-

ments whose position is selected based on a mapping from the

variable x. The human subject is visually coupled to the virtual

partner through the animated display (Fig. 1). The oscillator is

coupled to the human partner’s motion y(t) via the modified

coupling function K~ AzB x{myð Þ2
� �

: _xx{m _yyð Þ. The parameter

m serves to scale the response of the human’s movements to the

dynamic range of the virtual partner’s and to control for the virtual

partner’s preference for in-phase or anti-phase coordination with

the subject. We used reversed coupling (m,0) so that the virtual

partner was parameterized to couple most stably anti-phase with

the human subject creating, as it were, a ‘‘conflict of intentions’’.

The choice of oscillator and coupling parameters (Table 1) was

guided by empirically obtained values fitted to a self-excited

oscillator model of finger movements [11,62] and the requirement

that the VPI system produce an emergent behavior.

Preliminary Simulations and Predictions
In Fig. 2 are shown examples of the relative phase behaviors one

expects for a reversely coupled (m = 21) HKB system under

various random initial conditions but with otherwise identical

oscillator and coupling parameters (Table 1). Instead of settling

down to attractors at Q = 0 and Q = p (in-phase and anti-phase) as

is the case for the normally coupled HKB system with m = 1, the

relative phases now approach the intermediate values p/2 or 2p/

2 depending on their initial condition. Note that the relative phase

attractors at p/2 and 2p/2 in the reverse coupled case, though

rare, are also approximately achieved in studies of spontaneous

coordination between two people but the nature of this behavior

Figure 2. Simulation of the relative phase behavior of a reverse-coupled HKB system. Relative phase approaches either 2p/2 or p/2
depending on the initial condition. Except for the reversed coupling, the parameters used are identical and are given in Table I. The shifted attractors
are reminiscent of the bi-stability at 0 and p found in the normally coupled HKB system. The convergence of the trajectories toward two attractors at
2p/2 and p/2 reflects the (minimal) bistability present due to the choice of parameters.
doi:10.1371/journal.pone.0005749.g002

Table 1. Virtual Partner Interaction
experiment parameters.

a~0:641

b~0:00709

c~12:457

A = 0.12

B = 0.025

doi:10.1371/journal.pone.0005749.t001
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(e.g. intention, reversed coupling) is not known at the moment.

What is known is that it is more common in behavioral

coordination studies involving nearly identical frequencies (wheth-

er between effectors, between two people, or between a subject

and an external stimulus) to have in-phase and anti-phase as stable

patterns. Thus, an interesting question here is which relative phase

patterns actually emerge under the experimental conditions of

VPI. We also explored the virtual partner’s response to a

synthesized sine signal, y:r sin vtzqð Þ, whose frequency v,

amplitude r, and phase angle Q can be varied at will (Fig. 3). This

input to the virtual partner does not have the intrinsic dynamics

(e.g. self-excitation, amplitude-frequency relation) of an HKB

component, but it can serve as an aid in constraining the

parameters of the full VPI experiment. Switching is of particular

interest since it usually provides the most information about

mechanisms underlying behavior in a dynamical system. For the

results shown in Fig. 3, we used the parameters in Table 1 that

were employed in the full VPI experiment. In Fig. 3a, we show a

behavior similar to the characteristic amplitude decrease/increase

in component oscillations in the HKB-model when there is a

switch in coordination pattern. However, since the avatar is

reverse-coupled to the sinusoidal input, we see a switch from in-

phase to anti-phase. In Fig. 3b, instead of allowing the

coordination pattern to switch to anti-phase, the phase of the

sinusoidal input is reset so that it is always in-phase with the virtual

partner. This has the consequence that the VP amplitude does not

recover. The foregoing simulations suggest that subjects who

persistently coordinate in-phase with the virtual partner will

eventually encounter difficulty in perceiving the avatar’s behavior

because of the degradation in oscillator amplitude. How subjects

solve this problem is explored in the experiment.

The Experiment
Ethics Statement and Subjects. Ten subjects (6 female and

4 male; 18 to 35 years old) provided written informed consent

prior to the experiment and were included in the study.

Procedures were approved by the Internal Review Board at

Florida Atlantic University and conformed to the principles

expressed in the Declaration of Helsinki. All subjects were right

handed and had normal or corrected-to-normal vision.

Task. The experiment consisted of two initial scaling trials

and 32 experimental trials. Scaling trials lasted 200 sec., and

experimental trials lasted 100 sec. Subjects were instructed to

maintain smooth, rhythmic movements with the right index finger

(flexion-extension) and to avoid stopping their finger at any time.

Since the frequencies in the experiment were low, fatigue was not

a factor.

The scaling trials determine the average critical movement

frequency f � (in Hz) at which a subject loses anti-phase

coordination with a (moving hand) visual stimulus as the frequency

of the stimulus is increased from 1.5 Hz to 3.3 Hz in increments of

0.2 Hz every 20 seconds [14]. Figure 4 illustrates the key points in

the scaling trial. This frequency is used to determine low

vL~2pfL, fL:f �{1:1ð Þ and high vH~2pfH , fH:f �{0:1ð Þ
oscillator frequency parameters (fL&1 Hz and fH&2 Hz). Both fL
and fH frequencies belong to bistable regimes in which the human

can sustain in-phase and anti-phase coordination, i.e. realizations

of both human and VP ‘‘intentions’’ are possible. The faster

frequency was employed because it tends to promote more

intermittent switching behavior: coordinating at faster rates

enhances fluctuations, thereby creating opportunities for the

partners to switch between states.

Based on the foregoing considerations, the main experimental

design consisted of two rates (low and high frequency) 63

conditions (one bidirectional and two unidirectional coupling

conditions). We label these conditions in terms of information flow

between the human and the virtual partner, i.e. who affects whom

(Fig. 5). For the bidirectional coupling condition, the partners are

reciprocally coupled: information flows to the VP through the

coupling term of the HKB equation and to the subject through

vision of the animated display. In the human-to-VP condition, the

oscillator receives kinematic information about the human’s

behavior which is processed through the HKB coupling term,

but the animated display is switched off, so that the human is

decoupled from the oscillator. In the VP-to-human condition the

human sees the animation displayed, but the coupling term of the

oscillator is set to 0, so that VP motion is intrinsic and independent

of the human’s behavior: the VP acts essentially like a metronome

[14]. The purpose of the VP-to-human trials is to check that we

are in a region of parameter space that promotes bidirectional

interaction and not simply coordinating with a metronomic

stimulus disguised as an avatar. Similarly, the purpose of the

human-to-VP trials is to ensure that the oscillator itself is not

capable of inducing phenomena of note without the presence of

human interaction. Subjects were paced for 5 sec. prior to trial

onset to entrain them to a movement frequency that was identical

to the virtual partner’s (fL or fH). In both the bidirectional and VP-

to-human conditions, subjects were asked to coordinate finger

movement in-phase with the virtual hand. In the human-to-VP

condition, subjects were asked to maintain a continuous

movement for the duration of the trial. Trials (16 bidirectional,

8 human-to-VP, 8 VP-to-human; half of which were at low and

high frequency respectively) were presented in a random order.

Figure 3. Response of the virtual partner (blue curve) to a
sinusoidal input (orange curve). Sine input has the same frequency
and fixed amplitude. The plots are time series of positions. (A) After
starting out at in-phase, the coordination pattern switches to the virtual
partner’s preference at anti-phase. This switch is accompanied first by
reduction then by an increase in the amplitude. (B) If the sinusoidal
input is periodically reset so as to be in-phase with the virtual partner,
the virtual partner amplitude decreases and does not recover. For the
full VPI experiment, this has the effect of degrading the visual
information required by the subject to coordinate effectively with the
virtual partner.
doi:10.1371/journal.pone.0005749.g003
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Apparatus. The position and velocity of the subject’s index

finger was measured via a manipulandum that rotated freely in the

transverse (horizontal) plane about a fixed axis aligned with the

metacarpophalangeal joint. Position data (angular displacement),

measured by a DC potentiometer, were acquired at a sampling

rate of 1 KHz using a National Instruments A/D converter and

Figure 4. Selection of experimental frequencies guided by the HKB collective variable dynamics. Humans have shown remarkably
consistent coordinative (relative phase) behavior in a wide variety of coordination tasks with rhythmic stimuli, a fact captured by the elementary HKB
dynamics [11] illustrated here. When asked to synchronize at the same frequency with the stimulus, stable phase patterns are invariably present at (or
close to) anti-phase and in-phase for low movement frequencies (typically ,2 Hz). This is indicated by the solid lines of fixed points ( _ww~0) when w~0
and w~p for f below a critical frequency f*. For frequencies f.f*, only the fixed point at w~0 is stable. In the VPI experiment, a separate scaling trial in
which the frequency is systematically increased is used to determine f*. The value of f* is then used as an upper bound for the choice of frequency
parameter, ensuring that pattern instability is not only due to the effect of high frequency in the subject but also comes from conflicting tasks.
doi:10.1371/journal.pone.0005749.g004

Figure 5. Experimental conditions defined by the direction of coupling or information flow. In human-to-VP condition (A), the display is
switched off but kinematic information about the subject’s movement is received by the virtual partner. In the bidirectional condition (B), the subject
sees the virtual partner’s movements and the virtual partner receives kinematic information of the subject’s movements. In the VP-to-human
condition (C), a subject has vision of the virtual partner’s movements but the virtual partner is decoupled (coupling term set to zero) from the subject.
doi:10.1371/journal.pone.0005749.g005
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down-sampled by the computer program to 100 Hz. Velocity was

numerically computed using a 3-point differentiation algorithm

and, together with the position data, used to form the coupling

term with the HKB oscillator. The position of the oscillator was

used to select one of 119 position-indexed images, which were

displayed on the screen. The screen animation was refreshed at

100 Hz during the experiment and looked just like a normal video

(Fig. 5).

Analysis. Raw data from the subjects’ movements were pre-

processed by application of a digital low pass filter (Butterworth,

10 Hz, recursively applied for zero phase-shift). Frequency was

estimated via a wavelet transform (Morlet mother wavelet).

Relative phase of the subject with respect to the virtual partner

was computed using a continuous Hilbert transform on the mean-

centered position data. Collective behavior was classified as stable,

switching, and unstable according to a combined measure of

synchronization index (SI) [63,64] and dwell time t around regions

near in-phase. The dwell time relates to sustainability of the

coordination pattern over the longer time scale (on the order of the

trial length), whereas the synchronization index is also sensitive to

stabilization of the relative phase at the shorter time scale (on the

order of a movement cycle length). SI is based on the circular

variance (CV) of the relative phase over the whole trial and is

defined as

SI:1{CV~
1

N

XN

j~1

eiwj

�����

�����

where wj is the relative phase at time tj = jDt, where Dt is the

sampling interval. Total dwell time is defined as t = S tn, where tn

is the local dwell time for the nth phase-locked interval within the

trial and the summation is taken over all such intervals. Episodes of

coordination either span the entire trial or are established and lost

recurrently over its course. Each episode of stabilization of the

relative phase that lasts more than 2 cycles with a variation about

the mean of less than 0.17 radians (15 degrees) is called a local

dwell time tn. Trials were classified as stable if they exhibited

extended phase locked intervals and had SI.0.8 and a single dwell

time t$90% of the trial duration. Switching trials were classified

as such if they showed transitions from in-phase and back and had

0.3#SI#0.8 with a cumulative dwell time t$25%. Unstable trials

have SI,0.3 and show characteristic phase wrapping throughout

most of the trial.

Results

First we present the relative phase distributions from the

unidirectional and bidirectional conditions. This comparison is to

verify that we are in a parameter region where the coupled

behavior is truly reciprocal. In Fig. 6 we plot the relative phase

distributions for both unidirectional and bidirectional coupling

conditions, each collapsed across all subjects and trials. The

distributions of the relative phase in human-to-VP conditions

(Figs. 6a,b) show the weakness of the coupling of the virtual

partner with the human. A faint peak is observed just below anti-

phase (<2.5 rad) for the low-frequency condition (Fig. 6a) and

Figure 6. Relative phase distributions for unidirectional and bidirectional conditions at low and high movement frequencies. Data
are collapsed across subjects. For the Human-to-VP conditions, the distributions of relative phase suggest peaks at just below anti-phase (<2.5 rad)
for the low-frequency condition (A) and near anti-phase (&p rad) for the high-frequency condition (B). The relatively flat distribution shows the
weakness of the coupling of the virtual partner with the human. On the other hand, in the VP-to-Human conditions (E) and (F) the human subject is
able to coordinate with the virtual partner when the latter functions like a passive visual metronome. The results for Bidirectional conditions are
shown for low (C) and high (D) frequencies, respectively. The range of the vertical axis is doubled compared to unidirectional conditions because of
the different number of trials used. The distributions are bimodal with a larger concentration of in-phase than anti-phase at both frequencies. For
high (D) relative to low frequency (C) the concentration at in-phase decreases while phase dispersion and antiphase increase.
doi:10.1371/journal.pone.0005749.g006
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near anti-phase (<p rad) for the high-frequency condition (Fig. 6b).

On the other hand Figs. 6e,f indicate that the human subject is

able to achieve synchronization with the avatar acting as a non-

interacting partner (i.e., as a visual metronome). Here, in both low

and high frequency conditions, a marked peak in the relative

phase is observed at in-phase. In the bidirectional coupling trials

(Figs. 6c,d), a major relative phase concentration is observed at in-

phase as in the previous case, but there also emerges a minor

relative phase concentration at anti-phase. Despite the weakness of

the virtual partner’s coupling with the human, the virtual partner

can induce the human toward its preferred coordination behavior

as well as being influenced by him/her.

Although comparisons between the gross distributions in Fig. 6

are indicative of emergent behavior, a clearer picture of

interaction is obtained through analysis of the basic time series.

Figure 7 shows relative phase time series of the three basic

behaviors found in bidirectional trials: stable, switching, and

unstable. Using synchronization index and dwell time criteria, the

percentage distributions were computed and are presented in

Table 2. For comparison purposes, data for the unidirectional

conditions are also provided. From Table 2 we see that as in

reciprocally coupled live interactions between two people,

movement rate determines the stability of coordination

[60,61,65]. When the task for the subject was to coordinate with

the virtual partner at low frequency, 42.5% of the trials were

stable, 37.5% exhibited switching, and 20% were unstable. At high

Figure 7. Examples of relative phase time series showing the three basic behaviors found in bidirectional trials. Stable coordination is
shown in (A), intermittent switching between in-phase and anti-phase in (B) and unstable phase wrapping behavior in (C). Using the synchronization
index and dwell time criteria, the percentage distributions were computed and are given in Table 2 (for comparison, data for the unidirectional
conditions are also provided).
doi:10.1371/journal.pone.0005749.g007

Table 2. Distribution of coordination patterns for low and
high frequency conditions classified according to combined
criteria of synchronization index and dwell time.

Pattern Human-to-VP Bidirectional VP-to-Human

Stable 0% (low) 42.5% (low) 75.0% (low)

0% (high) 2.5% (high) 2.5% (high)

Switching 2.5% (low) 37.5% (low) 12.5% (low)

2.5% (high) 32.5% (high) 42.5% (high)

Unstable 97.5% (low) 20.0% (low) 12.5% (low)

97.5% (high) 65.0% (high) 55.0% (high)

doi:10.1371/journal.pone.0005749.t002

Coordination Dynamics
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frequencies, only 2.5% of the trials were stable, 32.5% exhibited

switching, and 65% were unstable. The low percentage of stable

trials at higher frequencies was predicted on both empirical and

theoretical grounds. Near 2 Hz, in the absence of special training,

subjects start to lose synchronization even with a passive visual

metronome [14]. In the presence of an opposing partner that seeks

anti-phase (as is the case with the VP here), it was expected that

loss of coordination around 2 Hz may be even more prevalent.

In addition to the usual effects seen in coordination studies [11–

14,50,51,60,61,65], novel and unanticipated behaviors were

uncovered. Due to the reversed HKB coupling built into the

virtual partner, extended in-phase coordination with the human

subject (especially at low frequency) depresses the movement

amplitude of the virtual partner thereby degrading the visual

information required for accurate coordination. The amplitude

drop is consistent with our analyses of the oscillator’s response to a

synthesized sine signal whose phase is reset to enforce prolonged

synchronization at in-phase (Fig. 3b). Thus, the human subject not

only has to keep pace with the virtual partner, but also has to

sustain the virtual partner’s amplitude of motion. To coordinate

effectively, successful subjects adopted several ‘‘strategies’’. We use

the word ‘‘strategy’’ here only as way to categorize the behaviors

produced. There is no indication that these behaviors were

planned or decided in advance and every indication that they

emerged in real time as a result of the particular experimental

circumstances. In the first strategy, subjects induced amplitude

recovery in the virtual partner by switching temporarily to anti-

phase (Fig. 8a). Each switch brings up the virtual partner’s

amplitude long enough to accomplish synchronization. Thus,

subjects maximize time in the instructed in phase pattern by

Figure 8. Behavioral patterns in bidirectional conditions. Reciprocal interaction between human and VP gives rise to unstable (not shown),
intermittent (A) and stable (B, C) collective behaviors. Shown are the time series for positions of the virtual partner (x, blue curve) and the subject (y,
orange curve) and the relative phase w of the subject with respect to the virtual partner. Motion near in-phase and anti-phase are highlighted in
green and red, respectively. When a subject is in-phase with the virtual partner, the latter’s amplitude eventually decreases due to the reversed
coupling. To prevent amplitude collapse, subjects may temporarily switch to anti-phase (A). For extended in-phase coordination, spatial strategies
were employed by the subjects. These include reducing one’s amplitude to an optimal range (B), and shifting the center of oscillation downward
toward flexion (C). None of the strategies were part of the instructions to coordinate but were discovered during the course of interaction.
doi:10.1371/journal.pone.0005749.g008
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allowing brief incursions of anti-phase coordination during which

the VP satisfies its own requirement.

In a second strategy, subjects adjusted the spatial properties of

their movements by either maintaining their amplitude within an

optimal range (Fig. 8b) or shifting their center of oscillation toward

the direction of flexion (Fig. 8c). It is important to emphasize that

these novel ‘strategies’ were not part of the instructions but were

discovered during the course of the interaction (see also footnote

1). On exit interviews, some subjects even reported that the

machine was ‘‘messing’’ with them, suggesting the attribution of

agency or intentional state to the virtual partner.

To understand how the spatial strategies (Figs. 8b,c) affect the

motion of the virtual partner, it is enough to note the effect of a

simple linear transformation of the subject’s position input on the

instantaneous oscillator-to-subject coupling. Thus, for an origin

shift, yRp+y, the coupling is incremented by an amount

DK~B m2p2{2mp x{myð Þ
� �

_xx{m _yyð Þ. Likewise, a decrease or

increase in subject amplitude by a factor q effectively changes

the scaling from m to qm thereby also affecting the coupling. Both

manipulations potentially impact the virtual partner, acting in

effect as additional reverse damping mechanisms. As in the

simulations shown in Fig. 3, we used a sine signal as an idealized

‘pseudo subject’ able to deliberately shift origin and change

amplitude at will, and yet maintain in-phase coordination with the

virtual partner. The results shown in Fig. 9 are presented in terms

of measured outcomes rather than p and q because of conversion

factors inherent in analog-to-digital systems. In Fig. 9a we used

three decreasing p values resulting in the measured origin being

successively shifted down by the amounts P = 0, P = 20.7, and

P = 21.0. Note that the decline in the virtual partner’s amplitude

is also progressively delayed until P = 21.0 where it is sustained

throughout the length of the simulation. In Fig. 9b, three

decreasing values of q corresponding to measured subject

amplitudes Q = 4, 2, and 1 were used. For Q = 1, the virtual

partner’s amplitude is effectively maintained. These modeling

studies nicely capture the novel behaviors produced by subjects to

preserve the amplitude of the VP.

Discussion

VPI provides an attractive new frontier for human-machine

interaction. Whereas artificial systems can be elaborated and

theorized about, the human response (and consequently the

coupled response) is less well-known. In this paper, the emphasis

has been on examining the continuous dynamics of interaction

between a human and a machine whose dynamics is similar to that

of the human. The coupled dynamics is based on equations of

motion that have successfully described coordinated behaviors

within and between individuals, now extrapolated to hybrid

settings (i.e., co-existence of human and computational agents

interacting in real time). In the present work we have uncovered

complex emergent behaviors under parsimonious experimental

settings and discovered salient features of the interaction (here,

coordination of rhythmic behaviors between two dynamically

similar systems). This step complements the conventional input/

output paradigm which may not always capture the complexity of

interaction [66].

As reviewed in the introduction, outside of the present

framework of coordination dynamics there have been many

extensive studies of human-machine interaction covering a wide

Figure 9. Simulations of spatial strategies during extended in-phase coordination. A sine signal acts as a pseudo-subject for the virtual
partner. The phase of the sine signal is reset to force in-phase synchronization. The plots show the position time series of the VP (blue) in response to
amplitude and origin shift manipulations of the input signal (orange). (A) The amplitude decline of the VP is systematically delayed when the origin of
the sine oscillation is changed by amounts P = 0, 20.7, and 21 (shifted down). At P = 21, the virtual partner’s amplitude remains constant throughout
the 100 sec simulated trial. (B) When the effective input amplitude Q is systematically reduced (Q = 4,2,1), the decline in the virtual partner’s
amplitude is also delayed. At the critical value Q = 1, the virtual partner maintains its amplitude throughout the run.
doi:10.1371/journal.pone.0005749.g009
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variety of contexts. One salient example in the spirit of VPI uses

neural networks and game theory to simulate the ‘‘paper-rock-

scissors’’ game [67] wherein individual players are pitted against

their neural network counterpart. By manipulating parameters

such as the amount of working memory and an operational

measure of perceived outcomes, the game could be biased in favor

of one player over the other, a result not predicted from game

theory. More recently, again in a similar vein to VPI, Repp and

Keller [68] have studied sensorimotor synchronization with a

simulated partner whose output is based on an extended model of

self-paced finger tapping.

There is much more to simple finger movements than meets the

eye. A great benefit of the present approach is that the VP is based

on detailed empirical studies and theoretical modeling of the

component oscillator’s dynamic features (at both behavioral and

neural levels) as well as its fundamental biophysical coupling.

Bearing in mind that the virtual partner alone cannot enforce anti-

phase coordination (Figs. 6a,b), the observation that the coordina-

tion pattern may switch, if only temporarily, from in-phase to anti-

phase (Figs. 7b and 8a) during reciprocal interactions is quite

remarkable. In two person interactions the switch is typically from

the relatively less stable anti-phase to the more stable in-phase

pattern. Our data suggest that the virtual partner is not faithfully

following the input of the human subject to effect an anti-phase

pattern. More likely, the switch is induced on the human subject by

the virtual partner. As for the spatial strategies that subjects use to

overcome the amplitude reduction of the virtual partner, we note

again that such actions were not part of the instructions on how to

coordinate, but were discovered by the human subjects during the

course of the interaction. Typically, analyses of coordination

between two people have focused on the relative timing (relative

phase) between important events such as peaks or troughs. Often,

neither the amplitude nor the exact position of the center of

oscillation has been extensively studied (but see [69]).

In typical social coordination experiments, [e.g. 60,61,65], the

‘‘parameters’’ of the behavioral dynamics expressed by the subjects

may only be influenced by the experimenter indirectly (i.e. by

instruction), and may even be in flux during the experiment as the

intentions of each party are subject to change. Coupling a human to

a model clamps the parameters of one of the parties, so that the task

of identifying the properties of the other party is simplified: yet both

parties remain dynamic in the sense that they react to and interact

with each other. The interaction is richly reciprocal, in the same

way that social coordination is reciprocal: Party A affects party B,

and party B simultaneously affects party A. This may be contrasted

to unidirectional interaction with a passive stimulus such as a

metronome, in which only one party may be said to be ‘‘dynamic.’’

Analogous to the dynamic clamp in cellular and computational

neuroscience, VPI provides an opportunity to explore parameter

ranges and perturbations that are not easily implemented in

traditional live social interaction studies. This extended parameter

range opens up the possibility of systematically driving neuro-

markers –dynamical brain processes involved in social interaction

[65]– to better understand their roles and may also lead to novel

applications. For example, in modern society people have to deal

with new technology that sometimes does not provide immediate

‘‘affordances’’–qualities of an object that allow users to discover

their function without the requirement of instruction or learning

[70]. Interactions with ever proliferating technological devices

often place high skill demands on users who have little time to

develop those skills. The opportunity presented through VPI is

that equally useful and informative new behaviors may be

uncovered despite the built-in asymmetry in the human-machine

interaction. Modifying the dynamics of the virtual partner with the

purpose of inducing a desired human behavior (e.g. as in learning

a new skill or as a tool for therapy and rehabilitation) is another

useful possibility. On a more basic level, there is also a great deal of

interest in engineering complex dynamic structures to produce

desired states [71]. For example, weak nondestructive signals can

be used to alter interactions among nonlinear rhythmic electro-

chemical elements [72]. In a similar way, VPI brings the human

into the picture: the human may tune the response of the machine

and the machine may tune the response of the human. In

principle, the VPI invention can be scaled up to include multiple

partners and multiple sensory modalities. Frames of reference and

mappings between human and machine can be explored.

Equations of motion that have been proposed to handle discrete

as well as rhythmic behaviors can be readily incorporated [73–75].

Indeed, it seems that VPI—due to its grounding in empirically-

based models of coordination dynamics—opens up the possibility

of exploring and understanding a wide variety of interactions

between minds and machines.
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