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Abstract: Emotion assessment in stroke patients gives meaningful information to physiotherapists to
identify the appropriate method for treatment. This study was aimed to classify the emotions of stroke
patients by applying bispectrum features in electroencephalogram (EEG) signals. EEG signals from
three groups of subjects, namely stroke patients with left brain damage (LBD), right brain damage
(RBD), and normal control (NC), were analyzed for six different emotional states. The estimated
bispectrum mapped in the contour plots show the different appearance of nonlinearity in the EEG
signals for different emotional states. Bispectrum features were extracted from the alpha (8–13) Hz,
beta (13–30) Hz and gamma (30–49) Hz bands, respectively. The k-nearest neighbor (KNN) and
probabilistic neural network (PNN) classifiers were used to classify the six emotions in LBD, RBD and
NC. The bispectrum features showed statistical significance for all three groups. The beta frequency
band was the best performing EEG frequency-sub band for emotion classification. The combination of
alpha to gamma bands provides the highest classification accuracy in both KNN and PNN classifiers.
Sadness emotion records the highest classification, which was 65.37% in LBD, 71.48% in RBD and
75.56% in NC groups.

Keywords: emotion; stroke; electroencephalogram (EEG); bispectrum

1. Introduction

Stroke is one of the highest causes of death in Malaysia, with more than 40,000 survivors
are managing their health today [1]. Globally, there were 6.2 million deaths caused by stroke in
2017, where the highest rates of stroke mortality countries were reported in Eastern Europe, Africa,
and Central Asia [2]. Stroke is caused by the insufficient supply of oxygen to the brain, damaging
damage brain cells. This is turn will definitely affect some brain functions which results in stroke
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survivors to have difficulties in daily living, such as mobility, communication and expressing their
thoughts. Also, stroke patients often suffer from emotional and behavioral changes due to their
dissatisfaction with the current conditions.

Past studies have been carried out to investigate emotional changes in stroke patients as the
influence of their physiological phenomenon [3–5]. These studies revealed that emotions and thoughts
are seen as interactive reactions and are intimately related to the health and physiological problems.
This leads to the increase risk of a second or recurrent stroke with persistent depression. Therefore,
emotion recognition of stroke patients is very helpful in the diagnosis of their psychological and
physiological conditions.

The assessment of the emotional conditions and mood of stroke patients is required during
rehabilitation to identify the presence of mental health problems such as persistent depression and
mood disorders. This also assists in identifying the severity of associated functional impairment of
the patients.

Conventionally, emotion assessment can be done through interviews with patients [3,6],
an observation on patients’ behaviors [6] as well as using standardized measures such as the
Hospital Depression and Anxiety Scale (HADS) [6] and Beck Depression Inventory (BDI) [7].
These standardized measures determine the emotional states of the patient by scoring. However,
the conventional approaches could be cheated by patients and information that is acquired then will
be not accurate. Consequently, researchers tried other approaches to understand the emotional states
of patients. Recent studies have stated that emotion assessment can be performed using physiological
signals [8], such as skin conductance (SC) [9], respiration signal [10], electrocardiogram (ECG) [11],
and electroencephalogram (EEG) [12].

This paper is organized as follows: Section 1, the problem and the context of the study in emotion
assessment in stroke patients is discussed. Then, Section 2 reviews the literature on EEG analysis
and non-linear features. This section also discusses the use of bispectrum features in EEG analysis.
Section 3 focuses on the materials and methods used in this study, including the description of the EEG
data, preprocessing, feature extraction, statistical analysis and classification methods. The next section
presents the results and their discussions. Lastly, the summary of this paper is briefly discussed.

2. Related Works

EEG is the brain signal that can be measured from placing electrode sensors along the scalp to
record the electrical activity of the brain that happens near the surface of the scalp [13]. EEG signal can
be used for diagnostic purposes and any abnormalities detected from it connotes that there is brain
disorder in that person.

From previous research, the brain has been reported as having higher responsibility and
involvement in emotional activities [14]. The brain as the center of emotions is responsible to
give responses when it perceives a stimulus. Hence, brain signals are able to provide emotional
information of a stroke patient. With this concept, most recent studies of emotion assessment for stroke
patients have utilized brain signals. Adamaszek et al. studied the emotional impairment using the
event-related potentials (ERP) of a stroke patient [15], Doruk et al. studied the emotional impairment in
stroke patients by comparing the emotional score in the Stroke Impact Scale (SIS) with the EEG features,
the EEG power asymmetry and coherence [16]. Bong et al. assessed the emotions of stroke patients
by using EEG signals in the time-frequency domain [12]. In this study, the electroencephalogram
(EEG)-based emotion recognition algorithm is proposed to study the emotional states of stroke patients.

According to previous studies, stroke patients suffer from emotional impairment and consequently,
hence their emotional experiences are less significant compared to normal people [15,17–19]. In another
related study by Bong et al. [12], left brain damage (LBD) stroke patients were most dominant in
perceiving sadness emotion and RBD stroke patients were most dominant in anger emotion. In addition,
the authors’ dominant frequency band was the beta band by using wavelet packet transform (WPT)
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with Hurst exponent feature. The highest accuracy obtained was 76.04% in the happiness emotion for
the normal control (NC) group using the features from beta to gamma band.

Previous emotional classification studies by Yuvaraj et al. [20] have also shown that the accuracy
of the feature extracted from the single frequency band was higher in the beta and gamma bands.
Also, the highest accuracy was obtained when all frequency bands from delta to gamma were combined.
The author obtained an average accuracy of 66.80% in NC using the combinations of the five frequency
bands. In addition, they obtained an average accuracy of 64.73% with the beta band and 65.80%
with the gamma band of NC. These results were optimized with the application of the feature
selection technique.

The brain is a chaotic dynamical system [21–23], where EEG signals are generated by nonlinear
deterministic processes. This is also referred to as deterministic chaos theory with nonlinear coupling
interactions between neuronal populations [24,25]. In contrast with linear analysis, nonlinear analysis
methods will give more meaningful information about the emotional state changes of stroke patients.
Over the last few years, a number of research works have been reported on analyzing EEG signals by
using non-linear methods [25–27]. For example, a recurrence measure was applied to study the seizure
EEG signals [25]. Zappasodi et al. used fractal dimension (FD) to study the neuronal impairment
in stroke patients [26]. In addition, Acharya et al. studied sleep stage detection in EEG signals by
using different nonlinear dynamic methods, higher order spectra (HOS) features and recurrence
quantification analysis (RQA) features [28]. In their study, HOS was used to extract momentous
information which helped with the diagnosis of neurological disorders.

HOS has been claimed as an effective method for analyzing EEG signals. HOS feature has been
the most commonly used nonlinear feature. It is the frequency domain or spectral representation of
higher order cumulants of a random process. HOS only includes cumulants with third order and
above. HOS gains its advantage with the elimination of Gaussian noise and provides a high signal to
noise ratio (SNR) [29,30]. HOS provides the ability to extract information deviation from Gaussian and
preserves the phase information of signals. Thus, HOS is able to estimate the phase of the non-Gaussian
parametric signals. In addition, HOS detects and characterizes nonlinearities in signals. In contrast,
the second order measure is power spectrum, which can only reveal linear and Gaussian information
of signals.

The third order HOS is bispectrum and is able to preserve phase information of EEG signals.
Bispectrum is the easiest HOS to be worked out [31]. Bispectrum has been utilized in the emotional
study in EEG signals. Yuvaraj et al. applied bispectrum to study the difference between Parkinson’s
disease patients and normal people in six discrete emotions (happiness, sadness, fear, anger, surprise,
and disgust) [27,32]. Hosseini applied bispectrum to classify the two emotional states (calm and
negatives states) of normal subjects [33].

However, the emotional states of stroke patients are yet to be analyzed using the bispectrum
features. Hence, in this work, the bispectrum feature is used to classify stroke patients’ EEG signals in
different emotional states.

Bispectrum is proven in its ability to detect quadratic phase coupling (QPC), a phenomenon of
nonlinearity interaction in EEG signals. QPC is the sum of phases at two frequency variables given by
f1 + f2 [34,35]. Bispectrum can be estimated through two approaches: direct and indirect methods.
For a stationary, discrete time, random process x(k), the direct method is estimated by taking the
1D-Fourier transform of the discrete series given by:

Bi( f1, f2) = E[X( f1)X( f2)X∗( f1 + f2)], (1)

where Bi is the bispectrum magnitude, E [ ] denotes statistical expectation operation, X( f ) is the Fourier
transform (1-D FFT) of the time series, x(k) and * denote the complex conjugate.
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For the indirect method, bispectrum is estimated by first estimating the third order cumulants
of the random process x(k). Then the nth-order moment is equal to the expectation over the process
multiplied by the (n − 1) lagged version of itself. Therefore, the third order moment, m3x is:

m3x(τ1, τ2) = E[X(k)X(k + τ1)X(k + τ2)], (2)

where E [ ] denotes statistical expectation operation, τ1 and τ2 are lags of the moment sequence.
The third order cumulant sequence, C3x(τ1, τ2), is identical to its third order moment sequence.

It can be calculated by taking an expectation over the process multiplied by 2 lagged versions given by:

C3x(τ1, τ2) = E[X(k)X(k + τ1)X(k + τ2)]. (3)

The bispectrum, B( f1, f2), is the 2D-Fourier transform of the third order cumulant function is
given by:

B( f1, f2) =
∞∑

τ1=−∞

∞∑
τ2=−∞

C3x(τ1, τ2) exp[− j( f1τ1 + f2τ2)], (4)

for
∣∣∣ f1∣∣∣≤ π ,

∣∣∣ f2∣∣∣≤ π , and
∣∣∣ f1 + f2

∣∣∣≤ π .
Bispectrum is a symmetric function as shown in Figure 1. The shaded area is the non-redundant

region of computation of the bispectrum, where f2 ≥ 0, f2 ≥ f1, f1 + f2 ≤ π, which is sufficient to
describe the whole bispectrum [36].

Brain Sci. 2020, 10, x FOR PEER REVIEW 4 of 22 

The third order cumulant sequence, 𝐶ଷ௫(𝜏ଵ, 𝜏ଶ), is identical to its third order moment sequence. 
It can be calculated by taking an expectation over the process multiplied by 2 lagged versions given 
by: 𝐶ଷ௫(𝜏ଵ, 𝜏ଶ) = 𝐸[𝑋(𝑘)𝑋(𝑘 + 𝜏ଵ)𝑋(𝑘 + 𝜏ଶ)]. (3) 

The bispectrum, 𝐵(𝑓ଵ, 𝑓ଶ), is the 2D-Fourier transform of the third order cumulant function is 
given by: 

𝐵(𝑓ଵ, 𝑓ଶ) =   ෍ ෍ 𝐶3𝑥(𝜏1, 𝜏2) expൣ−𝑗൫𝑓1𝜏1 + 𝑓2𝜏2൯൧∞
𝜏2=−∞

∞
𝜏1=−∞ ,    (4) 

for |𝑓ଵ| ≤ 𝜋, |𝑓ଶ| ≤ 𝜋, and |𝑓ଵ + 𝑓ଶ| ≤ 𝜋. 
Bispectrum is a symmetric function as shown in Figure 1. The shaded area is the non-redundant 

region of computation of the bispectrum, where 𝑓ଶ ≥ 0, 𝑓ଶ ≥ 𝑓ଵ, 𝑓ଵ + 𝑓ଶ ≤ 𝜋, which is sufficient to 
describe the whole bispectrum [36]. 

 
Figure 1. Symmetry regions and non-redundant region (Ω) of bispectrum. 

3. Materials and Methods 

3.1. EEG Data 

The EEG database used in this study was collected from stroke patients, with left brain damage 
(LBD), right brain damage (RBD) and normal control (NC) at the Hospital Canselor Tuanku Muhriz 
(HCTM), Kuala Lumpur. (formal approval obtained from UKM Medical Center and Ethics committee 
for human research, reference no.: UKM 1.5.3.5/244/FF-354-2012). The EEG raw signals of 15 subjects 
each from every group (LBD, RBD, and NC) were used for the analysis. The background and 
neurophysiological characteristics of the subjects in the three groups are described in Table 1. The 
subjects passed the Mini-Mental State Examination (MMSE) with scores of more than 24 over a total 
of 30 points which was conducted to exclude dementia. The subjects also passed the Beck Depression 
Inventory (BDI) with scores of less than 18 points, to exclude subjects with psychological problems. 
The Edinburg Handedness Inventory (EHI) was used to determine the handedness of the subjects, 
and measured in a scale from −1 to 1. The scales were interpreted as pure left hander for a score of 
−1, mixed left hander for a score of −0.5, neutral for a score of 0, mixed right hander for a score of 0.5 
and pure right hander for a score of 1. From Table 1, the scores show that all subjects were right 
handers. All subjects were self-reported to have normal vision or corrected to normal vision (with 
spectacles or contact lenses) to ensure better effect of perceiving emotions from audio–visual stimuli. 
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3. Materials and Methods

3.1. EEG Data

The EEG database used in this study was collected from stroke patients, with left brain damage
(LBD), right brain damage (RBD) and normal control (NC) at the Hospital Canselor Tuanku Muhriz
(HCTM), Kuala Lumpur. (formal approval obtained from UKM Medical Center and Ethics committee
for human research, reference no.: UKM 1.5.3.5/244/FF-354-2012). The EEG raw signals of 15 subjects
each from every group (LBD, RBD, and NC) were used for the analysis. The background and
neurophysiological characteristics of the subjects in the three groups are described in Table 1.
The subjects passed the Mini-Mental State Examination (MMSE) with scores of more than 24 over
a total of 30 points which was conducted to exclude dementia. The subjects also passed the Beck
Depression Inventory (BDI) with scores of less than 18 points, to exclude subjects with psychological
problems. The Edinburg Handedness Inventory (EHI) was used to determine the handedness of the
subjects, and measured in a scale from −1 to 1. The scales were interpreted as pure left hander for a
score of −1, mixed left hander for a score of −0.5, neutral for a score of 0, mixed right hander for a score
of 0.5 and pure right hander for a score of 1. From Table 1, the scores show that all subjects were right
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handers. All subjects were self-reported to have normal vision or corrected to normal vision (with
spectacles or contact lenses) to ensure better effect of perceiving emotions from audio–visual stimuli.

Table 1. Background and neurophysiological characteristics (mean ± std) of left brain damage (LBD),
right brain damage (RBD), and normal control (NC) subjects.

Variables LBD RBD NC p-Value

Sample size, N 15 15 15 NA
Age (year) 56.73 ± 6.15 55.87 ± 6.21 51.87 ± 4.19 0.05979
Female/male 5/10 5/10 12/3 NA
MMSE score (range: 0–30) 26.93 ± 1.77 27.2 ± 1.87 28.87 ± 0.81 0.00392
BDI scale (range: 0–21) 7.07 ± 2.91 6.20 ± 1.90 5.47 ± 1.20 0.14936
EHI (range: −1 to 1) 0.85 ± 0.50 0.85 ± 0.47 0.89 ± 0.40 0.96493
Duration of disease (year) 1.74 ± 1.47 2.24 ± 1.97 NA NA

The EEG data were collected using a 14-channel wireless EEG device, Emotiv EPOC headset,
with built in digital 5th order Sinc filter. The electrode placement was based on the international
standard 10–20 system as shown in Figure 2. The EEG data were collected at sampling frequency of
128 Hz. One of the limitations of the EEG is that it has poor spatial resolution as compared to high
resolution brain imaging devices, such as functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) scans [37]. However, the Emotiv EPOC device has 14 electrodes with
2 references providing appropriate spatial resolution as well as practical in terms of time and money
for this study. Moreover, the EEG device provides high temporal resolution data that record the neural
activity changes in milliseconds, which is impossible for fMRI and PET scans.
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To collect the emotional EEG data, an emotional elicitation protocol was designed to stimulate the
emotional states of subjects. The data collection protocol is shown in Figure 3. The stimuli used to
evoke the emotions in subjects were audio–visual in the form of video clips edited from International
Affective Picture System (IAPS) and International Affective Digital Sound (IADS). Six emotional content
video clips were presented to stimulate six discrete emotions, namely anger (A), disgust (D), fear (F),
happiness (H), sadness (S) and surprise (SU) [12].
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Figure 3. Data collection protocol.

Prior to the experiment, the subjects were asked to complete the MMSE, BDI, and EHI tests and
informed consent was given to them. Then, instruction about the experimental procedure was given to
the subjects. The experiment started with a sample video clip, followed by six trials of video clips
which were displayed continuously. Emotional EEG signals were recorded during the six trials video
clips display. After that, the EEG recording was stopped for self-assessment, where the subjects were
asked about the emotions they felt or perceived from the video clips. The self-assessment time was at
least 1 min and it was subject-dependent. During this period, subjects were asked to relax and get
ready for the next video. This was to avoid stimulus order effects. Then the experiment began with
the sadness emotion. The same experimental procedures were repeated for happiness (H), fear (F),
disgust (D), surprise (SU) and anger (A) emotions. There were a total of 42 video clips, including
those of the sample video clips. The duration of each video clip was 46 s to 1 min, therefore, the total
duration of the data collection was between 90 to 120 min.

3.2. Preprocessing

There were a total of 36 trials of EEG signals collected from each subject in all groups (LBD, RBD
and NC). The collected EEG signals were preprocessed to remove the effects of noises and artifacts
that caused interference to the raw signals. The preprocessing of the EEG signals was performed
using MATLAB.

The artifacts due to eye blinks were filtered using thresholding method, where the potentials
higher than 80 µV and lower than −80 µV were offset from each EEG raw signal [32]. A 6th order
Butterworth bandpass filter was used to filter the EEG signals with cut-off frequencies from 0.5 to
49 Hz to extract the delta to gamma frequency bands [32].

3.3. Feature Extraction

The indirect method was used in this study to estimate bispectrum using the bispeci function in
the MATLAB Higher Order Statistics Toolbox. The number of points used to form each fast Fourier
transform (NFFT) was 1024. The bispectrum features were extracted from data by using 50% overlap
with Hanning window. The preprocessed time domain EEG data were segmented into six seconds
length for every channel. Each data segment is also known as an epoch, and contains 768 data. Three
types of EEG frequency sub-bands were used for analysis, namely the alpha (8–13) Hz, beta (13–30) Hz
and gamma (30–49) Hz bands.

Bispectrum features were computed from the non-redundant region (Ω) of bispectrum The features
extracted from each epoch were variance (v), sum of logarithmic of bispectrum (H1), sum of logarithmic
of diagonal elements in the bispectrum (H2), first moment of diagonal elements in the bispectrum (H3),
second moment of diagonal elements in the bispectrum (H4) and moment of bispectrum (H5).

The variance, v of the bispectrum was computed as:

v =
1

N − 1

N∑
i=1

∣∣∣Bi − µ
∣∣∣2, (5)
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where N is the total number of bispectrum in Ω, µ is the mean of bispectrum in Ω, Bi is the bispectrum
series for i = 1, 2, 3, . . . , N.

Sum of logarithmic amplitudes of bispectrum (H1):

H1 =
∑

Ω

log
(∣∣∣B( f1, f2)

∣∣∣), (6)

where Ω is the non-redundant region of bispectrum, f1 and f2 are frequency variables of bispectrum
and B( f1, f2) is the bispectrum feature of f1 and f2 in Ω.

The sum of logarithmic amplitudes of diagonal elements in the bispectrum (H2):

H2 =
∑

Ω

log
(∣∣∣B( fm, fm)

∣∣∣), (7)

where Ω is the non-redundant region of bispectrum and B( fm, fm) is the diagonal element of bispectrum
feature in Ω.

The first-order spectral moment of amplitudes of diagonal elements in the bispectrum (H3):

H3 =
N∑

m=1

m· log
(∣∣∣B( fm, fm)

∣∣∣), (8)

where B( fm, fm) is the diagonal element of bispectrum feature in Ω, N is the total number diagonal
elements of bispectrum in Ω, and m = 1, 2, 3, . . . , N.

The second-order spectral moment of the amplitudes of diagonal elements in the bispectrum (H4):

H4 =
N∑

m=1

(m−H3)2
· log

(∣∣∣B( fm, fm)
∣∣∣), (9)

where B( fm, fm) is the diagonal element of bispectrum feature in Ω, N is the total number diagonal
elements of bispectrum in Ω, and m = 1, 2, 3, . . . , N.

The moment of bispectrum (H5):

H5 =
(√

f 2
1 + f 2

2

)
·

∣∣∣B( f1, f2)
∣∣∣, (10)

where f1 and f2 are frequency variables of bispectrum and B( f1, f2) is the bispectrum feature of f1 and
f2 in Ω.

3.4. Statistical Analysis

One-way analysis of variance (ANOVA) was used to test the significant difference of the bispectrum
features among the six emotions classes for LBD, RBD and NC respectively. The use of ANOVA was
to statistically analyze the bispectrum features for whether there were differences among the class
means of the six emotions. The use of ANOVA requires the assumption that the observations from
the feature were approximately normally distributed, the observations were independent and the
variances of the classes were equal. The null hypothesis was: “All the emotions of the extracted feature
have equal mean”. The null hypothesis was rejected and the bispectrum features were validated
as statistically significant among the six emotional states if the p-value is less than or equal to 0.05.
When the null hypothesis was not rejected, it implies that all the emotions of the extracted feature have
equal mean, thus the feature that failed to reject the null hypothesis was not suitable to be used for
emotion classification.
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3.5. Classification

Each feature used for classification has a total of 90 trials (6 trials × 15 subjects) with 84 feature
vectors (14 channels × 6 windows) for each emotion. The k-nearest neighbor (KNN) and probabilistic
neural network (PNN) classifiers were used to classify the six emotions in the three groups (LBD, RBD
and NC). The KNN is one of the most widely applied classifier due to it lower complexity and fast
decision making. The KNN searches for the nearest distance or to examine for the most likeliness
between the unknown sample and the training dataset. The distance of the unknown sample and the
training dataset is determined by the distance metric. In this study, the Cityblock distance metric was
implemented in the KNN classification [38].

The PNN uses the Parzen window for nonparametric approximation of the probability distribution
function (PDF) of each class and applies Bayes’ rule to allocate the new input data to the class with
the highest probability by using the PDF of each class [39]. The classifier parameter is the spread
value and is proportional to the standard deviation of the Parzen window in PNN. A small spread
value gives narrow PDF, whereas a large spread value gives wide PDF and the classifier becomes
less selective [40,41].

In this work, the k values of 1 to 15 were tested in KNN and the spread values of 0.1 to 1.5 with an
increment of 0.1 were used in PNN to classify the features. The performance of the classifiers was
validated through 10-fold cross validation, where 90% of the data were used for training and 10% of
the data were used for testing.

4. Results and Discussions

Bispectrum features were extracted from the EEG signals in three groups of subjects (LBD, RBD,
and NC) for the analysis of six emotions, namely anger (A), disgust (D), fear (F), happiness (H),
sadness (S), and surprise (SU). The contour plots of the estimated bispectrum using the anger emotion
of one subject from the LBD group was plotted for the alpha, beta and gamma bands as shown in
Figure 4. The plots of the bispectrum magnitude show the relationship between the two bispectrum
frequency variables, f1 and f2, of the anger emotion. In Figure 4, the f1 (x-axis) and f2 (y-axis) are phased
coupled. Frequency variables that are phase coupled indicate the presence of quadratic phase coupling
(QPC) [31], where the QPC represents the underlying neuronal interaction of the emotional state at
the frequencies ( f1 and f2). The higher magnitude indicates stronger QPC between the frequencies.
The red color represents the greatest increase in the magnitude of bispectrum, while the blue color
represents the greatest decrease in the magnitude of bispectrum.

The distribution of the bispectrum over the ( f1, f2) plane differs in each frequency band. The alpha
band in Figure 4a shows more bispectrum distribution at lower phase coupled frequencies, which is
between (0.04, 0.04) Hz and (0.1, 0.1) Hz in the non-redundant region and other symmetry regions.
Whereas the beta band in Figure 4b and gamma band in Figure 4c show the bispectrum distribution at
higher phase coupled frequencies. These are between (0.1, 0.1) Hz and (0.2, 0.2) Hz in the beta band
and between (0.3, 0.3) Hz and (0.4, 0.4) Hz in the gamma band. Moreover, the maximum magnitude of
the bispectrum in the alpha band is the lowest among the three frequency bands. The beta band has
larger maximum bispectrum magnitude than the alpha band, while the gamma band has the largest
maximum bispectrum magnitude among the frequency bands.
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Figures 5–7 show the bispectrum plots in the non-redundant region and one symmetry region
of the six emotions of Subjects #1 from NC, LBD and RBD groups, respectively. From these figures,
the different emotional states have different bispectrum distribution over the plane with different
phased coupled peaks and maximum magnitude for each. In the past studies, bispectrum has been
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claimed as a useful signal classification method as it is able to show distinctive distribution in different
conditions, such as the left-hand motor imagery and the right-hand motor imagery [42]. The bispectrum
provides an EEG feature that is able to recognize these two conditions. Another study has shown
that the bispectrum feature is different before meditation and during meditation [43]. This study
revealed that the bispectrum exhibit more phase-coupled distribution during meditation than the state
before meditation. In addition, the maximum bispectrum magnitude increased during meditation.
For the non-human experiment, the “induced” ischemic stroke in rat showed the difference bispectrum
distribution in different states of ischemia [44]. In this study, the bispectrum distribution decreased as
the rat turns from normal state to ischemic state. Consequently, the distinctive bispectrum pattern of
the six emotional states presented in this study implies that the emotional states of each group were
distinguishable by applying bispectrum analysis. The significant difference of the emotional states
using the bispectrum feature is further validated by the statistical analysis using ANOVA as shown
in Table 2.

Table 2. Statistical validation results of LBD, RBD, and NC by using ANOVA (statistically significant at
p ≤ 0.05).

Group Features
Alpha Beta Gamma

F Value p-Value F Value p-Value F Value p-Value

LBD

v 11.403 <0.001 8.081 <0.001 28.332 <0.001
H1 49.542 <0.001 37.080 <0.001 36.839 <0.001
H2 35.788 <0.001 48.353 <0.001 78.123 <0.001
H3 35.993 <0.001 50.731 <0.001 78.527 <0.001
H4 1.716 0.127 1.347 0.241 1.595 0.158
H5 27.171 <0.001 31.501 <0.001 41.921 <0.001

RBD

v 3.091 0.009 18.464 <0.001 9.743 <0.001
H1 11.070 <0.001 4.255 0.001 10.508 <0.001
H2 18.778 <0.001 14.958 <0.001 28.436 <0.001
H3 18.529 <0.001 15.113 <0.001 26.585 <0.001
H4 1.785 0.112 8.005 <0.001 2.676 0.020
H5 7.429 <0.001 27.299 <0.001 25.434 <0.001

NC

v 6.256 <0.001 14.068 <0.001 8.138 <0.001
H1 2.993 0.011 6.004 <0.001 10.874 <0.001
H2 4.887 <0.001 20.415 <0.001 38.428 <0.001
H3 4.903 <0.001 20.139 <0.001 36.136 <0.001
H4 2.335 0.040 0.442 0.820 1.550 0.171
H5 6.704 <0.001 11.123 <0.001 13.184 <0.001

From the experiment, six types of bispectrum features were extracted from preprocessed EEG
data of LBD, RBD and NC. The statistical test using ANOVA was performed on the extracted features
and the degrees of freedom were 45,354. The results are shown in Table 2 in three different frequency
bands for LBD, RBD and NC respectively. For a p-value less than or equal to 0.05, this indicates
that the differences between some of the means of the emotional states are statistically significant.
The significant bispectrum features imply that there is an interaction of neuronal subcomponents at
different frequencies in different emotional states. The shaded p-values show the feature which are
statistically not significant between the means of emotion classes as they are larger than 0.05. All the
bispectrum features were statistically significant in LBD, RBD and NC except the second moment of the
diagonal elements in bispectrum (H4), thus, H4 was discarded in classification. Moreover, from Table 2,
the F values are higher in H1 and H3 for LBD, H2 and H5 in RBD and v, H5, and H2 in NC. The highest
overall F values are in the LBD group, while NC has comparably smaller values compared to both
LBD and RBD groups.
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In emotion classification, the features were trained with varying k values for KNN and spread
values for PNN. The classifiers were tested for all groups and frequency bands. Figures 8–10 show the
classification performance of varying k values in three individual EEG frequency sub-bands (alpha,
beta, and gamma) and the combination of the three bands using Cityblock KNN classifier. From the
figures, the average accuracy of the bispectrum features was similar across all k values tested for alpha,
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beta, and gamma bands. However, the k value of 1 achieved the highest average accuracy when using
the features from the combination of the alpha to gamma band. Moreover, the combination of the alpha
to gamma band significantly performs better than other frequency bands for all k values as shown in
Figures 8–10. The beta band, on the other hand, is the single band that performs best among the three
EEG sub-bands.Brain Sci. 2020, 10, x FOR PEER REVIEW 14 of 22 
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Figure 8. Average classification performance of bispectrum features by varying k values for the LBD
group using k-nearest neighbor (KNN).
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Figure 9. Average classification performance of bispectrum features by varying k values for the RBD
group using KNN.
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Figure 10. Average classification performance of bispectrum features by varying k values for the NC
group using KNN.

In Figures 11–13, the average accuracy of the emotion classification of varying spread values using
PNN classifier are plotted for LBD, RBD and NC, respectively. For most of the features, the accuracies
are consistent at the spread value between 0.1 and 0.6. Then the accuracy is observed to gradually drop
when spread value is larger than 0.6 and further declines when spread value increases. The spread
value of 0.4 was chosen to classify the six emotional states as it has achieved the optimum accuracy for
most of the features. Similarly, the combination of frequency bands has the highest average accuracy
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for all spread values. The beta frequency band is the best performance individual frequency band
among the three frequency sub-bands in all groups.Brain Sci. 2020, 10, x FOR PEER REVIEW 15 of 22 
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Figure 11. Average classification performance of bispectrum features by varying spread values for the
LBD group using probabilistic neural network (PNN).
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Figure 12. Average classification performance of bispectrum features by varying spread values for the
RBD group using PNN.
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Figure 13. Average classification performance of bispectrum features by varying spread values for the
NC group using PNN.

Table 3 shows the average accuracy of all emotional states of the bispectrum features from the
combination of all bands from alpha to gamma using KNN and PNN classifiers. For both classifiers,
the optimum parameters for LBD, RBD and NC are found to be the same. The optimum k value in
KNN classification for all three groups is 1, and the optimum spread values in PNN classification is
0.4. In Table 3, the KNN is observed to have higher average accuracy than the PNN classifier for all
three groups. Notably, the H3 feature is seen to have the highest average accuracy feature in all three
groups using KNN, whereas the H3 feature achieves the highest accuracy in the LBD group using PNN.
Meanwhile, the H1 feature obtains highest average accuracy in RBD and NC using PNN. According to
the results obtained, the top three features are H3, H1, and H2 for all the groups, whereas the worst
performing bispectrum feature is the variance. The highest average classification accuracy is 65.40% in
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the NC group using KNN. Hence the H3 feature is considered the most effective bispectrum feature in
this study.

Table 3. Summary of average accuracy of all emotions of different bispectrum features using the
combination of alpha to gamma bands.

Classifier KNN PNN

Group LBD RBD NC LBD RBD NC

k/Spread 1 1 1 0.4 0.4 0.4
v 31.02 30.28 32.72 28.43 28.30 28.70

H1 58.27 61.79 63.67 53.24 55.06 57.41
H2 55.59 60.06 62.90 49.88 49.72 55.25
H3 58.67 62.22 65.40 54.57 52.84 56.11
H5 46.54 47.38 47.10 40.46 40.31 38.83

The confusion matrix of the H3 feature in KNN emotion classification is presented in Tables 4–6
for LBD, RBD and NC, respectively. From Table 4, the highest predicted class is happiness in LBD.
In Table 5, the RBD group has the highest predicted value in sadness and surprise emotions, whereas
the NC group has the highest predicted value in sadness emotion in Table 6. For PNN classification,
the confusion matrix is presented in Tables 7–9 for each subject group. Likewise, the PNN classification
predicted the happiness emotion correctly in the LBD group, as shown in Table 7. In addition,
the sadness emotion has the highest classification accuracy in RBD and NC groups as shown in
Tables 8 and 9.

Table 4. Confusion matrix of the LBD group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 35 8 4 3 2 8
D 4 31 6 3 5 5
F 5 5 31 3 2 2
H 3 2 7 41 7 3
S 3 3 5 4 35 5

SU 4 5 1 0 3 31

Table 5. Confusion matrix of the RBD group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 36 3 5 3 0 3
D 2 35 4 3 2 4
F 4 10 32 3 6 3
H 3 4 9 36 5 4
S 1 1 2 6 38 2

SU 8 1 2 3 3 38

Table 6. Confusion matrix of the NC group using the H3 feature in KNN classification.

Actual

A D F H S SU

Predicted

A 39 4 1 4 1 6
D 2 40 3 0 3 9
F 1 4 34 4 3 4
H 2 3 6 38 5 0
S 2 1 6 6 41 1

SU 8 2 4 2 1 34
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Table 7. Confusion matrix of the LBD group using the H3 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 32 6 3 4 1 7
D 8 32 7 3 4 1
F 5 5 30 3 4 2
H 5 4 5 37 7 7
S 3 2 6 5 35 3

SU 1 5 3 2 3 34

Table 8. Confusion matrix of the RBD group using H1 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 27 4 0 1 1 6
D 5 35 5 2 4 5
F 7 3 32 8 4 1
H 4 2 6 34 2 5
S 1 2 6 6 41 2

SU 10 8 5 3 2 35

Table 9. Confusion matrix of the NC group using the H1 feature in PNN classification.

Actual

A D F H S SU

Predicted

A 32 3 2 2 1 8
D 5 35 10 4 6 8
F 5 3 33 2 4 3
H 4 5 5 35 3 2
S 3 2 3 9 40 3

SU 5 6 1 2 0 30

The classification rates using the KNN classifier for individual emotions are show in Figure 14.
From the figure, the emotion with highest accuracy in all groups was sadness, where the LBD group
achieved 65.37%, RBD group achieved 71.48% and NC group achieved 75.56%. Meanwhile, the fear
emotion recorded the lowest accuracy in all the three groups, which was 53.52%, 57.96% and 60.74%
for LBD, RBD and NC respectively.
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The accuracy of the individual emotional states classified using the PNN classifier is shown in
Figure 15. The PNN classifier has the same highest accuracy emotion with KNN, which was the sadness
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emotion. The LBD group has 57.41%, RBD has 62.59% and NC has 65.19% classification accuracy for
sadness emotion using PNN. In Figure 15, the lowest classification accuracy for LBD and NC groups is
the surprise emotion, which is 50.93% and 47.22%, respectively. In the RBD group, on the other hand,
disgust emotion recorded the lowest classification accuracy of only 50.00%.Brain Sci. 2020, 10, x FOR PEER REVIEW 19 of 22 
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Figure 15. The accuracy of each emotional state using the PNN classifier.

In this work, the surprise and fear achieved lower recognition rates compared to other emotions.
The happiness was the most accurately recognized emotion, as well as the facial expressions for anger,
sadness and disgust [45,46]. According to past studies, there is no convincing evidence for the surprise
and fear emotions to be accurately recognized [47–49].

The emotional state that shows highest classification accuracy in each group (LBD, RBD and NC)
indicates that the emotion is more significant compared to other emotional states in the respective
groups. From this current result, all of the LBD, RBD and NC groups show highest classification
accuracy for sadness. Meanwhile, NC group exhibits the highest average accuracy for both classifiers,
followed by RBD with LBD trailing behind.

As a result, in this study, the LBD and RBD stroke patients have recorded a lower classification
accuracy compared to the NC. This suggests that the emotional states of NC are more significant than
the stroke patients. In order to validate the significant differences among the three groups, ANOVA
was used to test the statistical difference among the average accuracy obtained from the KNN classifier
and the resultant p-value was less than 0.05. Hence, the emotion classification accuracy for LBD,
RBD and NC were statistically significant. This signifies the significant difference among the three
groups, which implies that there are differences in the emotional experiences between LBD, RBD and
NC groups. From this work, the NC group was observed to have the highest emotion classification
accuracy, followed by the RBD group and the LBD group performed worst. Therefore, the NC group
has the highest efficiency in EEG emotional classification with the use of machine learning, while the
LBD group the lowest.

This work is significant to those past studies in which only second order measures of statistics,
such as the power spectrum [50,51], which is a linear feature, was used. The power spectrum can only
reveal the amplitude information about the EEG signals, the phase information, such as the phase
coupling in the signal, cannot be observed by applying the power spectrum. Furthermore, the use of
linear approaches has ignored the nonlinear characteristics of the EEG signals, thus, bispectrum was
implemented in this study to detect and characterize the nonlinearities of EEG signals. Also, this current
study using the bispectrum was able to provide distinctive information for different emotional states
which was useful for emotion classification by achieving the highest accuracy of 75.56% using the H3.
bispectrum feature.
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5. Conclusions

The importance of emotion assessment of stroke patients stems from the need to seek information
on the severity of emotional impairment symptoms. Therefore, an accurate emotion assessment
approach is required to identify the symptoms of mood disorders in stroke patients. This work
proposed the use of the bispectrum feature to classify the discrete emotions (anger, disgust, fear,
happiness, sadness and surprise) of stroke patients and normal people. This study aims to develop an
accurate emotion identification method, which can be used to recognize the current emotional state of
strokes patient during diagnosis.

In this work, the bispectrum reveals the presence of QPC in the EEG signals and exhibits different
QPC relations in each emotional state. This difference in the harmonic components and peaks were
shown in the bispectrum contour plots arising from the nonlinear interactions between neuronal
populations in each emotional state. In this study, the proposed method of emotion classification
by using the bispectrum feature and KNN classifier has shown its effectiveness in the combination
of alpha to gamma frequency bands. In addition, the bispectrum feature, H3, was able to provide
an accuracy of 75.56% in the NC group. Moreover, the proposed method gave a comparable result
with some current studies in emotion classification, However, there were only six types of bispectrum
features implemented in this study and there are more to be explored. Also, future works could also
focus on the optimization of the classification accuracy.

To conclude, bispectrum-based features are effective to analyze the nonlinearity EEG signals,
and therefore is a useful feature for emotion assessment. Bispectrum feature was able to provide the
emotional information of stroke patients and hence can be used as the substitute for conventional
observation-based or scoring methods.
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