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The tumor microenvironment (TME) is a complex network of epithelial and stromal
cells, wherein stromal components provide support to tumor cells during all stages
of tumorigenesis. Among these stromal cell populations are myeloid cells, which
are comprised mainly of tumor-associated macrophages (TAM), dendritic cells (DC),
myeloid-derived suppressor cells (MDSC), and tumor-associated neutrophils (TAN).
Myeloid cells play a major role in tumor growth through nurturing cancer stem cells by
providing growth factors and metabolites, increasing angiogenesis, as well as promoting
immune evasion through the creation of an immune-suppressive microenvironment.
Immunosuppression in the TME is achieved by preventing critical anti-tumor immune
responses by natural killer and T cells within the primary tumor and in metastatic niches.
Therapeutic success in targeting myeloid cells in malignancies may prove to be an
effective strategy to overcome chemotherapy and immunotherapy limitations. Current
therapeutic approaches to target myeloid cells in various cancers include inhibition
of their recruitment, alteration of function, or functional re-education to an antitumor
phenotype to overcome immunosuppression. In this review, we describe strategies to
target TAMs and MDSCs, consisting of single agent therapies, nanoparticle-targeted
approaches and combination therapies including chemotherapy and immunotherapy.
We also summarize recent molecular targets that are specific to myeloid cell populations
in the TME, while providing a critical review of the limitations of current strategies aimed
at targeting a single subtype of the myeloid cell compartment. The goal of this review
is to provide the reader with an understanding of the critical role of myeloid cells in
the TME and current therapeutic approaches including ongoing or recently completed
clinical trials.

Keywords: myeloid cells, Immunotherapy, MDSC, TAM, DC, TME, immune checkpoint blockade, microbiome

INTRODUCTION

Immune cell involvement in inflammatory ailments has long been established; however, their role
in cancer remained unappreciated until the past three decades (Chen and Mellman, 2017). Indeed,
the paradigm of cancer cells being a single player in cancer progression has shifted to models that
include several stromal elements of the tumor microenvironment (TME) (Hanahan and Weinberg,
2011). The TME stroma is composed of endothelial cells, fibroblasts, extra cellular matrix, and
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diverse immune cell populations that act dynamically to
regulate tumor growth. Myeloid cells play a major role in the
body’s defense against infection, tissue homeostasis, as well as
modulation of T cell mediated immunity (Merad et al., 2013;
Cozzo et al., 2017). However, in the tumor, while myeloid cells
initially respond to an injury or wound signal in the TME,
neoantigen within the cancer cell, or some other signal from
growing cancer cells, often the phenotype of immune cells
evolve such that they become our own worst enemy in the
fight against cancer.

Myeloid cells constitute a major stromal cell population in
the TME (De Vlaeminck et al., 2016). They regulate tumor
growth by direct or indirect interaction with cancer cells
(Gabrilovich et al., 2012; Broz and Krummel, 2015). Myeloid cells
comprise mononuclear and polymorphonuclear cells (Engblom
et al., 2016). Macrophages are the major myeloid component of
mononuclear phagocytes and represent the largest population
of immune cell infiltrates in all tumors (Noy and Pollard,
2014), and as such are called “Tumor Associated Macrophages”
(TAMs). TAMs are strongly linked to therapy resistance and
are associated with poor prognosis (Kurahara et al., 2013) due
to soluble factors secreted by infiltrating TAMs that contribute
to drug resistance, metastasis, and immune evasion (Beatty
et al., 2011). Macrophages are highly plastic cells capable of
adopting different phenotypes in response to signals within
various microenvironments (De Palma and Lewis, 2013). Thus,
while TAMs have the capacity to kill cancer cells (Evans and
Alexander, 1970), TAMs can also be modified to promote tumor
growth and metastasis (Mantovani, 1978) - which emphasizes
their critical and complex role in tumor biology.

Dendritic cells (DCs) are another mononuclear myeloid
cell, although less prevalent, DCs are powerful components
of the TME through their role as antigen presenting cells.
Like TAMs, DCs have several phenotypes or subtypes which
include classical DCs (cDCs) which are specialized in antigen
presentation and induction of T cell immunity (Merad et al.,
2013), plasmacytoid DCs (pDCs) which produce interferon-
α which is important in antitumor immunity (Swiecki and
Colonna, 2015), and monocytic DCs (mDCs) which differentiate
from circulating monocytes and present a pro-inflammatory
phenotype (Gopalakrishnan et al., 2018). Another family of
myeloid cells are myeloid-derived suppressor cells (MDSCs),
which are potent immunosuppressive cells that arise in
pathological conditions such as cancer. MDSCs promote tumor
growth, angiogenesis and metastasis, but their main function is to
suppress T cell activation leading ultimately to immune evasion
(Talmadge and Gabrilovich, 2013). MDSCs are an immature
abnormally differentiated class of myeloid cells which comprise
two distinct classes: granulocytic or polymorphonuclear MDSC
(PMN-MDSC) and monocytic MDSC (M-MDSC) (Marvel and
Gabrilovich, 2015). Interestingly, M-MDSCs have been shown
to differentiate into TAMs in tumors, suggesting that targeting
only one subtype of tumor infiltrating myeloid cell such as PMN-
MDSCs may not be sufficient to achieve an effective therapeutic
response (Kumar et al., 2016). In this review, we define the
role of myeloid cells in cancer, with a focus on TAMs and
MDSCs, and how they contribute to immune suppression and

therapy resistance. We also summarize novel molecular targets
in myeloid cells and discuss up-to-date strategies, such as targeted
delivery, to effectively deplete or reconvert our foes to friends in
the TME to increase therapeutic efficacies to best fight cancer.
Our overall goal is to convey to our readers the importance of
targeting myeloid cells in cancer, while critically emphasizing
the limitations of current monotherapies targeting myeloid cells
in malignancies.

MYELOID CELL PHENOTYPES IN
CANCER

Cancer cells exploit myeloid cells to escape immune surveillance
by changing their phenotype from tumoricidal to tumor
supportive and immunosuppressive (Awad et al., 2018). Myeloid
cells play an important role in tissue homeostasis and regulation
of adaptive immune responses by regulating CD4 and CD8 T cell
content and activation. Thus, myeloid cells are highly versatile
and plastic cells making them suitable pharmacologic targets to
attempt to revert their phenotype to overcome immune tolerance
in cancer (Schouppe et al., 2012).

Macrophages
Macrophages are plastic cells of the innate immune system
capable of adopting varied phenotypes in response to signals
in their microenvironment (Okabe and Medzhitov, 2014). In
pathological conditions, macrophages respond to pathogen-
associated molecular patterns (PAMPs) like lipopolysaccharide
(LPS) derived from gram negative bacteria, which then activate
transcription factors such as nuclear factor kappaB (NF-kB)
through toll-like receptor 4 (TLR4) to initiate an inflammatory
response (Kawai and Akira, 2010). Pro-inflammatory (M1-
like) macrophages secrete cytokines such as IL-12, IL-6, and
TNF-α to amplify the pro-inflammatory response against
pathogens by recruiting more leukocytes to the site of
inflammation (Ngambenjawong et al., 2017). In contrast,
alternatively activated macrophages (M2-like) are present in
wound healing environments in response to IL-4 and IL-13
cytokines. This stimulation results in the production of anti-
inflammatory enzymes such as arginase (Arg-1) in a STAT6-
dependent manner, producing a cascade of immunoregulatory
and tissue remodeling events through the secretion of key
cytokines and metabolites by alternatively activated macrophages
(Dyken and Locksley, 2013). Similarly, in the TME, M2-
like macrophages produce cytokines, chemokines, and enzymes
that have tumor promoting properties (Castells et al., 2012).
Recent evidence suggests that most tissue-resident macrophages
arise from fetal precursors in the yolk sac independently
of bone marrow-derived cells and persist throughout life
(Ginhoux and Guilliams, 2016). Yet the origin of TAMs
is complex and dependent upon the tumor milieu (Wynn
et al., 2013). In breast, lung, pancreas, brain, and liver mouse
cancer models, tissue resident-derived TAMs are progressively
diluted by monocyte-derived TAMs (mo-TAMs) during tumor
growth (Lahmar et al., 2016). For example, TAMs in the
MMTV-PyMT mammary tumor model are phenotypically and
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functionally distinct from tissue-resident macrophages and are
derived from circulating monocytes (Franklin et al., 2014). In
contrast, a significant portion of pancreas-resident macrophages
originate from embryonic development in Pancreatic Ductal
Adenocarcinoma (PDAC) mouse models (Zhu Y. et al., 2017).
Despite the controversy regarding the origin of TAMs and
complexity of cancer specificity, together the evidence suggests
that the ontogeny of TAMs is heterogenous and that both
monocyte-derived and tissue resident macrophages constitute
the pool of TAMs that infiltrate primary and metastatic tumors
(De Palma, 2016). For example, in Ccr2-/- mice engrafted with
colorectal cancer, reduction in monocyte-derived TAMs was
associated with reduced tumor burden suggesting a role of mo-
TAMs in tumor growth (Afik et al., 2016). Although monocyte-
derived TAMs and tissue resident TAMs play different roles
during tumor progression, as previously reported in PDAC
and brain cancer mouse models (De Palma, 2016; Zhu Y.
et al., 2017), more evidence is needed to accurately define the
contribution of varied TAM subpopulations to more efficient
targeting in malignancies.

Clinically, high densities of macrophages in primary tumors
have been correlated with poor prognosis (Mantovani et al.,
2017). However, both positive and negative outcomes have
been reported in colon, lung, prostate, and bone cancers in
the presence of high TAM content (Zhang et al., 2015). It is
possible that these conflicting data are related to the type and
stage of cancer or to the type of analysis performed (Ruffell
and Coussens, 2015). The presence of the M1-like phenotype in
TME correlates with a better prognosis, while the presence of
the M2-like phenotype usually predicts poorer prognosis (Yuan
et al., 2014). TAMs were also reported to mediate chemotherapy
resistance in various cancer types by activating anti-apoptotic
pathways and/or by providing cancer cells with survival
factors (Ruffell and Coussens, 2015). While detailed causes
of TAM-induced tumor growth and therapy resistance have
yet to be uncovered, emerging therapeutic approaches aiming
to deplete macrophages and/or shift macrophage phenotypes
represent promising therapeutic modalities for cancer patients
(Quail and Joyce, 2017).

Myeloid-Derived Suppressor Cells
(MDSCs)
Myeloid-Derived Suppressor Cells are only found in pathologic
conditions such as cancer, obesity, autoimmunity, or chronic
infection. In contrast to most other myeloid cells, MDSCs are
strongly immunosuppressive. In cancer, MDSCs are derived from
myeloid progenitor cells and accumulate in the bone marrow in
response to signals released by tumors (Condamine et al., 2015a).
Activation of MDSCs results from a continuous stimulation of
myeloid cells with low-strength signals, causing poor phagocytic
capacity, and elevated production of reactive oxygen species
(ROS), nitric oxide (NO), and anti-inflammatory cytokines
(Kumar et al., 2016). The abundance of tumor infiltrating
MDSCs is associated with advanced malignancy stage and an
overall poorer prognosis in various types of cancer (Parker
et al., 2015). For example, patients with stages III and IV

melanoma, non-small cell lung cancer, hepatocellular carcinoma,
pancreatic, bladder, and gastric cancers have higher frequencies
of circulating MDSC in the peripheral blood as compared to
patients with stages I and II of these diseases (Almand et al.,
2001; Gabitass et al., 2011; Eruslanov et al., 2012; Jiang et al.,
2015). Additionally, solid tumor patients who have high levels
of circulating MDSCs respond poorly to immunotherapy such
as immune checkpoint inhibitors (Weber et al., 2018). There
are two types of MDSCs that have been identified in both
mice and humans: polymorphonuclear MDSCs (PMN-MDSC)
that are morphologically similar to neutrophils, and monocytic
MDSCs (M-MDSC) that are similar to monocytes (Condamine
et al., 2015b; Ugel et al., 2015). A third class of MDSCs was
recently described in human peripheral blood mononuclear cell
(PBMC) and is referred to as “early-stage MDSC” (eMDSC).
eMDSCs lack the expression of CD14 which is expressed in
human M-MDSC and CD15 which is expressed in human
PMN-MDSC. However, eMDSC specific role and its mouse
equivalent population are yet to be defined (Bronte et al., 2016).
MDSCs are functionally defined by their ability to suppress
antitumor T cell activity through the secretion or expression
of immune-regulatory factors including Arg1, NO, TGF-β,
and cyclooxygenase 2 (Vasquez-Dunddel et al., 2013; Marvel
and Gabrilovich, 2015). For example, Arg1 depletes arginine
which is an essential amino acid for T cell proliferation and
activation, while reactive oxygen species produced by MDSCs
kills target cells by inducing oxidative stress (Ostrand-Rosenberg
and Fenselau, 2018). PMN-MDSCs are recruited to the tumor
site primarily by the CXC chemokine family which include
CXCL1, 5, 6, 8, and 12 (Kumar et al., 2016). In a mouse model
of hepatocellular carcinoma, increased production of CXCL12
promoted CXCR4-mediated recruitment of PMN-MDSCs to
premetastatic niche sites (Seubert et al., 2015). Similarly, loss of
CXCR2 in a colitis-associated cancer mouse model dramatically
inhibited tumorigenesis through inhibiting infiltration of PMN-
MDSCs into colonic mucosa and the tumor site (Katoh et al.,
2013). In contrast, M-MDSCs are recruited to primary and
metastatic tumor sites through chemokines produced by tumors,
primarily CCL2 and CCL5 (Kitamura et al., 2015; Kumar et al.,
2016). Clinically, MDSCs have been suggested as predictive
biomarkers for disease outcome as high levels of circulating
MDSCs prior to cancer therapy negatively influenced survival
in most cancers suggesting that circulating MDSCs should be
taken into account to improve prognostic evaluation (Wang
P.F. et al., 2018). Taken together, these studies demonstrate the
need for an effective targeting of MDSCs in cancer to overcome
limitations of current treatment options such as chemotherapy
and immunotherapy.

Other Myeloid Cell Subtypes
Dendritic cells are versatile antigen-presenting cells which have
the ability to initiate pro-inflammatory immune responses and
are major contributors to cytotoxic responses in tumors (Worbs
et al., 2016). Conventional DCs (cDCs), among other DC
subtypes, preferentially activate T cells which represent the
foundation of the “cancer-immunity cycle” (Chen and Mellman,
2013). cDCs can be divided into two different subsets: cDC1
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and cDC2 (Merad et al., 2013; Guilliams et al., 2014). cDC1
depend on the transcription factors IRF8, Batf3, and ID2 for
development and express CD103 in mice while CD141 is used
to distinguish cDC1 in humans (Böttcher and Reis e Sousa,
2018; Collin and Bigley, 2018). cDC1 are essential for CD8+
T cell activation as highlighted by several studies using cDC1-
deficient Batf3−/− mice and other in vivo models of cDC1
depletion, which consistently display a loss of cDC1’s ability
to induce a T cell-mediated antitumor immune response (Broz
et al., 2014; Salmon et al., 2016; Sanchez-Paulete et al., 2016;
Spranger et al., 2017). cDCs activate CD8+ T cells by cross-
presenting extracellular antigens on major histocompatibility
complex class molecules (Broz and Krummel, 2015). Hence,
high numbers of tumor infiltrating DCs were associated with
T cell activation resulting in an antitumor immune response
(Dieu-Nosjean et al., 2008; Goc et al., 2014). Additionally, the
presence of cDC1 in the tumor stroma was correlated with
increased overall survival in patients with various types of cancer
(Broz et al., 2014). However, tumors may also alter the anti-
cancer role of DCs (Gabrilovich, 2004) through several factors
present in the TME. For example, IL-10 produced by TAMs
prevents the production of IL-12 by CD103+ DCs leading to the
impairment of T cell activation. Also, tumor microenvironmental
factors such as low pH, hypoxia, and lactic acid impair DC-
mediated T cell activation (Veglia and Gabrilovich, 2017).
Clearly, like so many immune cells in the TME, the specific
cancer, stage, aggressiveness, and other factors influence the
phenotype of DCs. Finally, just like macrophages and DCs,
neutrophils, eosinophils, mast cells, and monocytes have all been
reported to adopt different phenotypes in cancer (Engblom et al.,
2016; Porrello et al., 2018). Thus, myeloid cells represent a
suitable and a major target in cancer despite the challenges they
pose in our ability to distinguish their tumor-promoting versus
inhibitory activities in preclinical models and cancer patients
(Engblom et al., 2016; Porrello et al., 2018). The major tumor-
infiltrating myeloid cell phenotypes in cancer are summarized
in Figure 1.

NOVEL MOLECULAR TARGETS IN
TUMOR ASSOCIATED MYELOID CELLS

Given the critical role that myeloid cells play in cancer, the
need to identify novel molecular targets to block the recruitment
of myeloid cells to the tumor site, shift their phenotype
to an anticancer one, or simply deplete them may be of
the utmost importance. Here we summarize recent findings
of novel key players that modulate myeloid cell phenotypes
in malignancies.

PI3Kγ
The phosphoinositide 3-kinase (PI3K)-AKT-mTOR pathway
controls key cellular processes such as growth, proliferation, and
metabolism in cancer cells and is one of the most dysregulated
pathways in malignancies (Thorpe et al., 2015; Janku et al.,
2018). The class I PI3K lipid kinases drive metabolic and
transcriptional pathways in inflammation and cancer (Martini

et al., 2014). The PI3K Class 1A isoforms include PI3Kα and
PI3Kβ which are widely expressed in epithelial and endothelial
cells, while the Class IA isoform PI3Kδ is expressed mainly in
lymphocytes. Importantly, the class 1B isoform PI3Kγ has a
unique structure and is largely expressed in myeloid cells. PI3Kγ

plays a major role in myeloid cell migration and accumulation in
tumor tissues (Schmid et al., 2013; Martini et al., 2014). Recent
studies have reported that PI3Kγ constitutes a molecular switch
which controls macrophage polarization during inflammation
and cancer (Kaneda et al., 2016b). PI3Kγ promoted immune
suppression in malignancies through activation of Akt and
mTOR signaling and prevention of NF-κB activation. Selective
inactivation of PI3Kγ with the specific inhibitor IPI-549 (Evans
et al., 2016) stimulated and prolonged NF-κB activation, thus
alleviating immune suppression and restored CD8+ T cell
cytotoxicity (Kaneda et al., 2016b). In two PDAC mouse models,
pharmacologic blockade of PI3Kγ with the selective inhibitor
TG100-115 reprogrammed TAMs to stimulate CD8+ T cell-
mediated tumor suppression and inhibited tumor cell metastasis
and desmoplasia, a fibrotic phenotype associated with TAMs and
poor therapeutic efficacy (Kaneda et al., 2016a). Also, genetic
or pharmacological inhibition of PI3Kγ or its downstream
signaling molecule integrin α4 blocked MDSC recruitment
to tumors and immune suppressive myeloid cell polarization,
thus increasing expression of pro-inflammatory cytokines and
reducing expression of anti-inflammatory cytokines. Moreover,
inhibition of either PI3Kγ or integrin α4 stimulated DC and
CD8+ T cell recruitment to the tumor site, thereby promoting
tumor cell cytotoxicity (Foubert et al., 2017). In sum, targeting
myeloid cell PI3Kγ in cancer patients can enhance the efficacy of
current therapy regimens and may constitute a novel approach
to improve the long-term survival of cancer patients (Gunderson
et al., 2016; Kaneda et al., 2016b).

PD-1- PD-L1 Axis
The programmed cell death protein 1 (PD-1) and programmed
cell death ligand 1 (PD-L1) pathway are key components of the
immunosuppressive TME (Rosenblatt and Avigan, 2017). PD-L1
is expressed on a variety of cell types including mesenchymal
cells such as adipocytes (Wu et al., 2018), and is also found
on hematopoietic cells such as lymphocytes and myeloid cells
(Sharpe and Pauken, 2017). PD-1 is expressed during T cell
activation and engages its ligands PD-L1 and PD-L2, thus
inhibiting effective T cell cytotoxicity resulting in poor anti-
tumor immunity (Greenwald et al., 2005; Sun et al., 2018).
PD-L1 is expressed on TAMs, and the response rate to anti-
PD-L1 antibody in patients where at least 10% of macrophages
express PD-L1 was as high as 80% (Herbst et al., 2014). PD-
L1 is also expressed on DCs, MDSCs, and monocytes (Sipe
et al., 2020). In vitro treatment of macrophages with anti-
PD-L1 antibody led to the activation of multiple macrophage
pro-inflammatory pathways (Hartley et al., 2018). Additionally,
combined treatment of anti-PD-1 and anti-PD-L1 antibodies
cured half of the treated mice in an established melanoma
mouse model (Hartley et al., 2018). These findings suggest that
PD-L1 induces an immune-suppressive macrophage phenotype
while treatment with anti-PD-L1 antibody reverses macrophage
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FIGURE 1 | Myeloid cell phenotypes in cancer. In cancer, myeloid cells are generated in the bone marrow from the common myeloid progenitors and migrate to the
tumor microenvironment in response to factors released by tumors. Suppressor myeloid cells such as MDSCs and M2 macrophages promote tumor growth by
suppressing innate and adaptive immunities via production of immune suppressive factors such as arginase 1 and other cytokines. These factors promote an
immunosuppressive tumor microenvironment by altering innate anticancer immunity and T cell functions. On the other hand, M1 macrophages and DCs have
antitumor potential via production of pro-inflammatory and antitumor factors such as IL-12 and iNOS. While the role of macrophages, MDSCs, and DCs are best
studied and are the main focus of this review, the role of monocytes, and less prevalence (lower density cells) mast cells and eosinophils in tumor promotion and
suppression is less clear and is an active area of research while further evidence is required to fully elucidate their role in cancer immunity (Jachetti et al., 2018; Rigoni
et al., 2018; Gorzalczany and Sagi-Eisenberg, 2019).

polarization, thereby triggering a potent macrophage-mediated
anti-tumor immune response (Hartley et al., 2018). In another
study, depletion of myeloid cells in a Kras-driven pancreatic
cancer mouse model prevented tumor initiation and, in some
cases, arrested tumor growth by restoring CD8+ T cell anti-
tumor immunity. These results suggest that myeloid cells
inhibit CD8+ T cell antitumor capacity by inducing PD-L1
expression in tumor cells (Zhang et al., 2017). Interestingly, PD-1
expression is not restricted to lymphocytes, but is also expressed
by TAMs (Gordon et al., 2017). PD-1 expression in TAMs
correlated positively with disease stage in both mice and humans
with primary cancers. PD-1 expression by TAMs prevented
phagocytosis of tumor cells by macrophages, whereas blockade
of the PD-1-PD-L1 pathway in vivo restored macrophage
phagocytic potential. These data suggest that PD-1 and PD-L1
blockade may also directly act on macrophages (Gordon et al.,
2017). Consequently, myeloid cells represent an additional highly
prevalent and potentially potent target for immune checkpoint
blockade therapies in cancer.

Iron Metabolism
Iron is a vital nutrient that enables cell proliferation and
growth (Torti and Torti, 2013). It is required for oxygen
transport, DNA biosynthesis, and the production of adenosine

triphosphate (ATP) via electron exchange (Kosman, 2010;
Soares and Hamza, 2016). There is ample evidence that iron
overload is associated with cancer (Torti and Torti, 2013;
Manz et al., 2016). Macrophages play a major role in iron
homeostasis by recycling iron from senescent and dying red
blood cells (RBC) back into the circulation and different
tissues in the body (Andrews, 1999; Ganz, 2012; Hubler
et al., 2015). Additionally, macrophage polarization is closely
associated with iron metabolism (Dong et al., 2019). Studies
have shown that over 60% of iron metabolism-related genes
are differentially expressed between the M1/M2 macrophage
axis (Recalcati et al., 2010). It is now established that M1-
like macrophages express high levels of iron storage protein
ferritin and low levels of iron export protein ferroportin
(Fpn) which favor an iron-sequestration macrophage phenotype.
On the other hand, M2-like macrophages display the iron-
export phenotype by increased expression of ferroportin and
decreased expression of ferritin (Recalcati et al., 2010; Jung
et al., 2015). Consistent with these findings, higher iron
availability in the TME was linked with accelerated ferroportin-
mediated iron release by TAMs, which further validates the pro-
tumorigenic properties of TAMs (Biswas and Mantovani, 2010;
Marques et al., 2014). Moreover, iron-export TAMs express
high levels of CD163, a high-affinity scavenger receptor
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for haptoglobin that also binds to hemoglobin. Activation
of CD163 by binding to either hemoglobin or haptoglobin
induces the transcription of ferroportin (Marro et al., 2010;
Gnerlich et al., 2011). Previous evidence suggested that a
high density of CD163+ TAMs positively correlated with poor
prognosis in many cancer types (Heusinkveld and van der
Burg, 2011). A recent study revealed that CD163+ TAMs
promoted expression of IL-6 and CXCL2 by cancer cells
while inhibition of either IL-6 or CD163 macrophage-induced
tumorigenesis in a co-culture in vitro system and a sarcoma
mouse model (Shiraishi et al., 2018). In addition, a study has
shown that inhibition of heme oxygenase 1 (HO-1; which
is an enzyme that degrades heme to release iron) in TAMs
induced M1 polarization in macrophages and reduced tumor
growth in a breast cancer mouse model (Mertens et al.,
2016). Remarkably, the macrophage iron phenotype becomes a
suitable target for iron chelators and iron oxide nanoparticles
(IONs). Iron chelators have been explored as a monotherapy,
or as an adjuvant therapy for the treatment of various
malignancies (Heath et al., 2013). IONs on the other hand,
have been broadly explored in preclinical and clinical studies
in the past decade (Hu et al., 2018). IONs accumulation in
macrophages increased intracellular iron levels, thus promoting
the proinflammatory phenotype (Laskar et al., 2013; Dong et al.,
2019). Ferumoxytol, an FDA-approved ION for the treatment
of anemia, inhibited tumor growth and metastatic spread in a
xenograft mouse model by shifting TAM polarization toward
the M1-like phenotype (Zanganeh et al., 2016). Consequently,
modulation of iron metabolism in macrophages may represent
a promising monotherapy, or combination therapeutic approach
for cancer patients.

Microbiome
In recent years, the microbiome has emerged as a contributor
of cancer progression in a variety of malignancies including
colon and primary liver cancers (Plottel and Blaser, 2011).
A recent study found that the malignant pancreas comprises
a more abundant microbiome than the normal pancreas in
both mice and humans (Pushalkar et al., 2018). Bacterial
ablation in PDAC bearing mice reduced MDSC populations,
increased M1 macrophage populations, promoted differentiation
of CD4+ T cells, and activated CD8+ T cells to reduce
tumor growth. These data suggest that endogenous microbiota
promote immune suppression in PDAC patients and propose
the microbiome as a potential target for the modulation of
PDAC progression (Pushalkar et al., 2018). Another recent
study has shown that Peptostreptococcus anaerobius which is an
anaerobic bacterium, adheres to colorectal cancer cell mucosa
and accelerates colorectal cancer development. Mechanistically,
a Peptostreptococcus anaerobius surface protein, putative cell
wall binding repeat 2 (PCWBR2) interacts with α2/β1 integrin
in colon cancer cells which leads to the activation of the
PI3K-Akt pathway resulting in NF-κB activation. NF-κB in
turn triggers a pro-inflammatory response and leads to a
significant expansion of MDSCs and TAMs. Pharmacological
blockade of integrin α2/β1 impairs Peptostreptococcus anaerobius
attachment and decreases tumor burden. These findings propose

Peptostreptococcus anaerobius-induced PCWBR2-integrin α2/β1
axis as a potential therapeutic target in colorectal cancer (Long
et al., 2019). The adaptor protein Caspase Recruitment Domain-
containing protein 9 (CARD9) is exclusively expressed in myeloid
cells and is required for the activation of innate immunity
(Jia et al., 2014). Recent evidence suggests that CARD9 deficiency
impaired macrophage fungicidal functions which led to increased
fungal loads and a notable increase in Candida tropicalis in a
colorectal cancer mouse model (Wang T. et al., 2018).C. tropicalis
expansion induced accumulation of MDSCs which promoted
tumor growth. Treatment of CARD9 deficient tumor-bearing
mice with an anti-fungal fluconazole suppressed tumor growth in
the colorectal cancer mouse model (Wang T. et al., 2018). These
findings suggest a direct role of the microbiome in generating
MDSCs and that targeting certain fungal populations within the
microbiome may represent an attractive therapeutic approach
in patients with colorectal cancer. In addition, macrophage-
secreted human cationic antimicrobial protein 18 leucine leucine-
37 (hCAP-18/LL-37) increased pancreatic cancer stem cell (CSC)
pluripotency genes, self-renewal, and tumorigenicity. hCAP-
18/LL-37 is an antimicrobial peptide secreted by activated
macrophages, but its tumorigenic properties were previously
unknown. Indeed, pharmacological inhibition of formyl peptide
receptor 2 (FPR2) and/or P2X purinoceptor 7 receptor (P2X7R)
on CSCs which are the receptors of hCAP-18/LL-37 inhibited
tumor formation in a PDAC mouse model. Thus, hCAP-
18/LL-37 is a novel, previously unrecognized target in TAMs
to overcome CSC-induced relapse in cancer patients and
an excellent example of microbially-mediated modulation of
cancer progression.

CXCR2
CXCR2 is a G-protein coupled receptor of the CXC chemokine
family which is predominantly expressed on neutrophils and
MDSCs (Dart, 2016). The primary immune function of CXCR2
is the regulation of neutrophil and MDSC migration and
recruitment to inflammation including tumor sites (Cacalano
et al., 1994; Eash et al., 2010; Bian et al., 2014; Highfill
et al., 2014). Previous studies have reported that CXCR2
promotes tumorigenesis in skin and colon cancers (Jamieson
et al., 2012). In a PDAC mouse model, genetic ablation of
CXCR2 abrogated metastasis while pharmacological inhibition
of CXCR2 decreased tumor growth. Inhibition of CXCR2
altered neutrophil/MDSC recruitment and enhanced T cell
infiltration into the tumor site (Steele et al., 2016). In a
breast cancer mouse model, CXCR2+ MDSCs promoted tumor
growth and metastasis by secretion of IL-6 and modulation
of CD4+ and CD8+ T cell recruitment to the tumor site.
CXCR2+ MDSCs also upregulated the expression of inhibitory
immune checkpoints PD-1, PD-L1, and cytotoxic T lymphocyte
antigen 4 (CTLA4) as well as lymphocyte activation gene
protein 3 (LAG3) on CD4+ and CD8+ T cells promoting
immunosuppression (Zhu H. et al., 2017). Together, these
findings propose CXCR2 as a suitable target to alleviate myeloid
cell-induced immune suppression for a better therapeutic
outcome in cancer patients.
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SPECIFIC NOVEL MOLECULAR
TARGETS IN MYELOID CELLS

Herein, we summarize the major novel molecular targets of
myeloid cells in cancer from recent literature. Previous reviews
have discussed other molecular targets in more detail which may
be of interest (Noy and Pollard, 2014; Engblom et al., 2016;
Mantovani et al., 2017).

Molecular Targets in TAMs
Proteins secreted from or present in TAMs that have been
recently published include mediators of fibrosis, inflammatory
signaling, phagocytic capacity, lipid metabolism, and growth
factors. First, TAMs in PDAC secrete granulin that activates
resident hepatic stellate cells, which then secrete periostin,
resulting in a fibrotic TME that promotes metastatic tumor
growth. Alteration of TAM recruitment or granulin secretion
abrogated liver metastasis (Nielsen et al., 2016). In a follow-
up study, macrophage-derived granulin expression was induced
in response to CSF-1 and caused CD8+ T cell exclusion in
metastatic livers. Interestingly, genetic depletion of granulin
diminished the establishment of a fibrotic stroma, thus restoring
T cell infiltration at the metastatic site. Furthermore, depletion
of granulin sensitized PDAC tumors to anti-PD-1 therapy,
and dramatically reduced metastasis, suggesting that targeting
TAM-derived granulin may sensitize PDAC tumors to immune
checkpoint blockade therapies (Schmid et al., 2018). Second,
TAM NOD-like receptor family pyrin domain-containing 3
(NLRP3) signaling promoted CD4+ T cell differentiation into
regulatory T cell populations while inhibiting CD8+ T cell
activation in an IL-10-dependent manner in a PDAC mouse
model. Genetic or pharmacological inhibition of the NLRP3
complex resulted in the restoration of innate and adaptive
anti-tumor immune response, suggesting that NLRP3 may
represent a suitable target to sensitize PDAC to immunotherapy
(Daley et al., 2017). Third, neuropilin-2 (NRP2), which is
a member of the membrane-associated neuropilin family, is
expressed during macrophage differentiation and is induced
by tumor cells (Dai et al., 2017; Miyauchi et al., 2018).
NRP2 in TAMs induced efferocytosis, which is the phagocytic
clearance of dying cells, and promoted tumorigenesis because
efferocytosis induces an M2-like anti-immune phenotype in
macrophages (Morioka et al., 2018). Inhibition of NRP2 in
TAMs increased secondary necrosis by impairing the clearance
of dying cancer cells and promoted CD8+ T cell and natural
killer (NK) cells infiltration (Roy et al., 2018). Fourth, caspase-
1 was reported to promote TAM differentiation by cleaving
peroxisome proliferator-activated receptor gamma (PPARγ) (Niu
et al., 2017). PPARγ fragments then interacted with and
attenuated medium-chain acyl-CoA dehydrogenase (MCAD)
resulting in the promotion of TAM differentiation. Caspase-1
inhibition substantially inhibited tumor growth, thus proposing
the caspase-1/PPARγ/MCAD pathway as a promising target to
prevent TAM-induced tumorigenesis (Niu et al., 2017). Fifth, in
BRAF-mutant models, BRAF inhibitors activated the mitogen-
activated protein kinase (MAPK) pathway in macrophages

which then produced VEGF to promote melanoma tumor
growth. Macrophage-mediated resistance to BRAF inhibitors in
melanoma was then reversed by blocking the MAPK pathway
or macrophage-secreted VEGF. These results suggest that
targeting TAMs may benefit BRAF-mutant melanoma patients
(Wang et al., 2015). Sixth, ornithine decarboxylase (ODC) is
an enzyme that limits polyamine biosynthesis. Consistent
with previous literature reporting that ODC reduces M1
polarization in infection sites, a new study revealed that
macrophage ODC also impaired the M1 phenotype and
promoted colitis-associated colon carcinogenesis (Singh et al.,
2018). Mice lacking ODC in myeloid cells demonstrated
improved disease outcomes, suggesting that macrophage ODC
is a suitable target for colon cancer chemoprevention (Singh
et al., 2018). Finally, migration of TAMs is an exciting
pathway to target. TAM mesenchymal migration is protease-
dependent in mouse and human tumors, providing a new
strategy for macrophage immunotherapy by targeting TAM
motility (Gui et al., 2018). TAMs secrete interleukin 35 (IL-
35) at metastatic sites which activates the JAK2/STAT6/GATA3
signaling pathway to reverse epithelial-mesenchymal transition
(EMT) in cancer cells to a mesenchymal- epithelial transition
(MET) phenotype, therefore enabling metastatic colonization
(Lee et al., 2018). These findings propose TAM-secreted IL-
35 as a potential target to intercept metastasis in cancer
patients (Lee et al., 2018). Lastly, colony-stimulating factor
1 (CSF-1) and its receptor CSF-1R regulate survival and
differentiation of phagocytic myeloid cells and macrophages
in particular (Cannarile et al., 2017). In vitro, in vivo, and
clinical blockade of macrophage CSF-1R with a monoclonal
antibody (RG7155) strongly reduced TAM migration and
infiltration into the tumor site and the CD8+/CD4+ T cell
ratio (Ries et al., 2014). Moreover, targeting of TAMs with
a selective CSF-1R inhibitor (AZD7507) in a genetic PDAC
mouse model dramatically reduced tumor growth, enhanced
T cell immune response and increased mouse survival in a
difficult-to-treat model (Candido et al., 2018). In summary, these
recent publications support that TAMs are feasible and tenable
targets in cancer.

Molecular Targets in MDSCs
Several MDSC mediated pathways have recently been published
highlighting these myeloid cells as novel targets. First, key
transmembrane receptor tyrosine kinases (TAM RTK) regulate
the innate immune system by dampening inflammatory
responses including TYRO3, AXL, MERTK (Graham et al.,
2014). TAM RTK are stimulated by protein ligands such as
GAS6 and PROTEIN S (Geng et al., 2017). MDSCs were
found to dramatically up-regulate TAM RTK and their ligands
(Holtzhausen et al., 2019). Genetic or pharmacological inhibition
of TAM RTK diminished MDSC suppressive capacity, slowed
tumor growth, increased CD8+ T cell infiltration to the
tumor site, and augmented anti-PD-1 therapy effect in a
melanoma syngeneic mouse model (Holtzhausen et al.,
2019). Thus, TAM RTK represents a novel MDSC target in
melanoma and potentially other cancers. Second, like TAMs,
lipid metabolism is also critical to phenotype. PMN-MDSCs
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upregulate fatty acid transport protein 2 (FATP2). Genetic
deletion or pharmacologic inhibition of FATP2 abrogated
the suppressive activity of PMN-MDSCs and delayed tumor
growth in multiple syngeneic mouse models. Additionally,
FATP2 inhibition blocked tumor growth in combination with
immune checkpoint inhibitors, thus highlighting FATP2 as
an attractive novel target of MDSCs (Veglia et al., 2019).
Makowski lab has demonstrated that FATP1 was critical to
the anti-inflammatory M2-like macrophage phenotype, but
the role of myeloid FATP1 in the TME is unknown (Johnson
et al., 2016; Zhao et al., 2017). Third, AMP-activated protein
kinase alpha 1 (AMPKα) is another novel MDSC target
which has been previously well documented in other immune
populations (Rao et al., 2015, 2016; Zhu et al., 2015). AMPKα

upregulation in MDSCs was induced by tumor-secreted
granulocyte-monocyte colony-stimulating factor (GM-CSF)
in a STAT5-dependent manner. Genetic or pharmacological
ablation of AMPKα in several syngeneic mouse models
of different cancer types inhibited the immunosuppressive
potential of MDSCs, induced CD8+ T cell infiltration into
tumor sites, and improved efficacy of immunotherapy (Trillo-
Tinoco et al., 2019). These findings support the therapeutic
use of AMPK-inhibitors to overcome various immune cell
including MDSC-induced immune suppression in cancer
(Trillo-Tinoco et al., 2019). Fourth, another novel MDSC
target, tumor necrosis factor-alpha-induced protein 8-like 2
(TIPE2), was recently described. TIPE2 expression on MDSCs
is induced by reactive oxygen species (ROS) produced by
tumor cells. Genetic deletion of TIPE2 or pharmacological
inhibition of ROS markedly reduced tumor growth in mice.
These findings indicate that TIPE2 plays a critical role in
the functional polarization of MDSCs and represents a novel
therapeutic target in cancer immunotherapy (Yan et al.,
2019). Fifth, therapeutic liver-X nuclear receptor (LXR)
agonism reduced MDSC abundance in several syngeneic
mouse models and in patients in phase I clinical trials.
LXR agonism depletion of MDSC was mediated by its
transcriptional target ApoE, where LXR/ApoE activation
therapy enhanced T cell activation and potentiated a robust
antitumor immune response. Additionally, LXR agonism
improved immune checkpoint inhibitor therapies in several
preclinical mouse models, thus suggesting LXR agonism as
a novel therapeutic approach to deplete MDSCs in cancer
patients (Tavazoie et al., 2018). Finally, in contrast to MDSC
depletion, a recent study shows that p53 activation induced
MDSC differentiation to cross-presenting DCs. Pharmacological
activation of p53 induced MDSC differentiation to Ly6C+
CD103 DCs, which are essential to potentiate a CD8+ T cell
antitumor immune response. Mice with a targeted deletion
of p53 in myeloid cells selectively lost the Ly6C+ CD103+
DC population and failed to respond to multiple forms of
immunotherapy. In contrast, p53 agonism markedly enhanced
efficacy and duration of response during immunotherapy.
Taken together, these recent findings propose a novel
therapeutic approach to induce MDSC differentiation to
antigen-presenting cells rather than causing their depletion
(Sharma et al., 2018).

PHARMACOLOGIC STRATEGIES TO
TARGET MYELOID CELLS IN CANCER

Recent advances revealing the role of myeloid cells in cancer
are drawing more interest in developing effective therapies that
would improve prognosis of patients with different cancer types.
Recent strategies for targeting the myeloid cell compartment
in cancer consist of monotherapies, combination therapies,
and/or targeted therapies such as nanoparticles. Recent ongoing
and completed clinical trials specifically targeting TAMs and
MDSCs in cancer are summarized in Table 1. Here we
summarize novel preclinical approaches targeting myeloid cells
in cancer (Figure 2).

Novel Single Agent-Based Potential
Therapies
Chemotherapy has been in clinical use since the 1940’s. Paclitaxel
is a chemotherapeutic agent isolated from the bark extract of
the Pacific Yew Tree in the 1960s. It stabilizes β-tubulin thus
blocking mitosis, causing cell cycle G0-phase arrest, and is
currently approved by the FDA for the treatment of several
cancer types (Wani and Horwitz, 2014; Barbuti and Chen,
2015). Because of the extreme hydrophobicity of paclitaxel,
nanoparticle albumin-bound paclitaxel (nab-paclitaxel) has been
formulated and approved by the FDA as a first-line treatment
of cancer types such as PDAC (Hennenfent and Govindan,
2006). Recent evidence revealed that paclitaxel not only induces
cell-cycle arrest, but also promotes antitumor immunity by
skewing TAMs toward the M1 phenotype. In vitro and in vivo
tumor models showed that paclitaxel reprogrammed M2-TAMs
to the M1-like phenotype in a Toll-like-receptor 4 (TLR4)-
dependent manner (Wanderley et al., 2018). In a similar
study, nab-paclitaxel was internalized by macrophages via
macropinocytosis and induced the M1 phenotype in a TLR4-
dependent manner in PDAC in vitro and in vivo models
(Cullis et al., 2017). These data provide a rationale for
combination of paclitaxel and immunotherapies as an anticancer
treatment approach.

Additionally, a recent study found that the pattern
recognition scavenger receptor (MARCO) on TAMs drives
immunosuppression. Treatment of breast and colon carcinoma
mouse models with an anti-MARCO monoclonal antibody
reprogrammed TAMs to a pro-inflammatory phenotype and
increased tumor immunogenicity, suggesting that targeting
MARCO in TAMs represents a promising mode of cancer
treatment (Georgoudaki et al., 2016). Also, all-trans retinoic
acid (ATRA) is an active derivation of vitamin A which has an
anticancer effect mostly in hematological malignancies (Wansley
et al., 2013; Ying et al., 2016). In an osteosarcoma in vitro and
in vivo models, ATRA inhibited osteosarcoma metastasis via
inhibiting M2 polarization of TAMs independent of STAT3/6 or
C/EBPβ signaling, thus proposing ATRA as an anti-metastatic
potential treatment in osteosarcoma patients (Zhou et al., 2017).
Another metabolite with potent signaling in myeloid cells is
phosphatidylserine. Phosphatidylserine is a phospholipid that
contributes to the establishment of an immunosuppressive
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TABLE 1 | Current clinical trials targeting Myeloid Derived Suppressor Cells and Tumor Associated Macrophages.

Compound (target) Clinical phase
(status)

Tumor type Combination partner(s) ClinicalTrial.gov
references

MDSCs

Ibrutinib (BTK) Phase I (ongoing) Solid tumors Nivolumab NCT03525925

Tadalafil (PDE5) NA (completed) Head and Neck cancer NA NCT00843635

RGX-104 (LXR
agonism)

Phase I (ongoing) Solid tumors and lymphoma Nivolumab/Ipilimumab/Docetaxel/Pembrolizumab,
Carboplatin and Pemetrexed

NCT02922764

IPI-549 (Pi3kγ) Phase II (ongoing) Breast cancer and renal cell
carcinoma

Atezolizumab/nab-
paclitaxel/Bevacizumab

NCT03961698

VESANOID (ATRA) Phase II (ongoing) Melanoma Ipilimumab NCT02403778

Entinostat (HDAC) Phase I (ongoing) Breast cancer Ipilimumab/Nivolumab NCT02453620

Hydroxychloroquine
(autophagy)

Phase I/II (ongoing) Renal cell carcinoma IL-2 NCT01550367

Omaveloxolone
(NF-κB)

Phase I/II (completed) Melanoma Ipilimumab/Nivolumab NCT02259231

beta-glucan (adjuvant) NA (ongoing) Non Small Lung cancer NA NCT00682032

Capecitabine
(thymidylate synthase)

Phase I (ongoing) Glioblastoma Bevacizumab NCT02669173

P53MVA (p53) Phase II (ongoing) Ovarian cancer Pembrolizumab NCT03113487

TAMs

Pexidartinib
(CSF-1R)

Phase I/I (ongoing)
(completed)

Sarcoma
Glioblastoma
Breast cancer
Acute myeloid leukemia

Sirolimus
Radiotherapy and temozolomide
Neoadjuvant chemotherapy
NA

NCT02584647
NCT01790503
NCT01042379
NCT01349049

AMG 820 (Anti CSF-1R
antibody)

Phase I (completed) Solid tumors NA NCT01444404

LY3022855
(Anti CSF-1R antibody)

Phase I (completed) Solid tumors
Breast/prostate cancer
Solid tumors

Durvalumab and Tremelimumab
NA
NA

NCT02718911
NCT02265536
NCT01346358

Ibrutinib (Bruton kinase) Phase I (completed) Pancreatic adenocarcinoma FOLFIRINOX NCT02436668

IPI-549 (Pi3kγ) Phase II (ongoing)
Phase I (ongoing)

Breast cancer and renal cell
carcinoma
Bladder/urothelial cancer
Breast/ovarian cancer

Atezolizumab/nab-
paclitaxel/Bevacizumab
Nivolumab
AB928/liposomal
doxorubicin/nab-paclitaxel

NCT03961698
NCT03980041
NCT03719326

PF-04136309
(CCR2)

Phase I (completed) Pancreatic adenocarcinoma FOLFIRINOX NCT01413022

Carlumab (Anti-CCL2
antibody)

Phase I (completed) Solid tumors Gemcitabine/paclitaxel/carboplatin NCT01204996

CP-870,893
(CD40 agonist)

Phase I (completed) Melanoma
Solid tumors
Pancreatic adenocarcinoma

NA
Paclitaxel/carboplatin
Gemcitabine

NCT02225002
NCT00607048
NCT01456585

Hu5F9-G4 (Anti-CD47
antibody)

Phase I (completed) Myeloid leukemia NA NCT02678338

BMS-813160 (CCR2) Phase I/II (ongoing) Colorectal/pancreatic cancer Nivolumab/nab-
paclitaxel/gemcitabine/5-
FU/leucovorin/irinotecan

NCT03184870

MCS110 (Anti-M-CSF
antibody)

Phase II (ongoing) Triple negative breast cancer Carboplatin/gemcitabine NCT02435680

Data were obtained using http://clinicaltrials.gov. BTK, Bruton Tyrosine Kinase; PDE5, phosphodiesterase type 5; LXR, Liver X Receptor; Pi3kγ , Phosphoinositide 3-
Kinase gamma; ATRA, All Trans Retinoic Acid; HDAC, Histone deacetylase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; CSF-1R, Colony
Stimulating Factor Receptor 1; CCR2, C-C chemokine receptor type 2; CCL2, C-C chemokine ligand type 2). FOLFIRINOX is a chemotherapy cocktail composed of:
folinic acid, fluorouracil, irinotecan, oxaliplatin.

TME by preventing inflammatory reactions (McDonald
et al., 1999). Treatment of prostate tumor-bearing mice with
phosphatidylserine-targeting antibody 2aG4 in combination with
docetaxel potently suppressed tumor growth, decreased M2 TAM

and MDSC populations, and increased M1 macrophage and DC
populations in the tumors. Furthermore, 2aG4 repolarized M2
TAMs toward the M1 phenotype, and induced the differentiation
of MDSCs into M1 macrophages and DCs in vitro. These
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FIGURE 2 | Novel strategies to target myeloid cells in cancer. MDSCs can be differentiated to DCs with ATRA (All Trans Retinoic Acid), p53 activators, or
phosphatidylserine blockade. Novel molecular targets altering MDCS suppressive function include inhibition of targets: TAM RTK (TAM Receptor Tyrosine Kinase),
FATP2 (Fatty Acid Transport Protein 2), AMPK (5′ AMP-activated protein kinase), TIPE2 (TNF-α-induced protein 8-like 2), STAT3 (Signal Transducer and Activator of
Transcription 3) and in contrast, agonism of LXR (Liver X Receptor). Recruitment of MDSCs to the tumor site can be achieved by inhibiting: CXCR2 (C-X-C Motif
Chemokine Receptor 2), Pi3kgamma (Phosphoinositide 3-kinase gamma), CCR5 (C-C chemokine receptor type 5). TAMs can be targeted by blocking their
recruitment to the tumor site by blocking CSF-1R (Colony Stimulating Factor 1 Receptor) or CCR2, or metformin treatment. Reversing TAM polarization from M2-like
to M1-like phenotype can be achieved by inhibition of: Pi3Kgamma, PD-L1 (Protein Death Ligand 1), HO-1 (Heme Oxygenase 1), microbiome ablation, MARCO
(macrophage receptor with collagenous structure) blockade, iron accumulation, TLR4 (Toll-like Receptor 4) activation, and IL-12 (Interleukin 12) nanoparticles. Finally,
altering TAM function is achieved by inhibition of granulin, NLRP3 ( NOD-, LRR- and pyrin domain-containing protein 3), NRP2 (Neuropilin 2), Caspase-1, MAPK
(mitogen-activated protein kinase) and IL-35. Depletion of either MDSC and/or M2-like TAMs relieves the immune suppressive burden on T cells and the combination
of ICB antibodies further prevents immune evasion by cancer cells leading to tumor suppression.

data suggest that targeting phosphatidylserine could reactivate
antitumor immunity in the clinical setting (Yin et al., 2013).
Metformin was originally established as the first-line agent for
the treatment of type-2 diabetes. However, accumulating data
suggest an anticancer effect of metformin in several cancer types
(Schuler et al., 2015; Han et al., 2017; Tong et al., 2017; Guo
et al., 2019). By using a transgenic adenocarcinoma of the mouse
prostate (TRAMP) mouse model, a new study revealed that
metformin delayed prostate cancer progression by inhibiting
recruitment and infiltration of macrophages to the tumor site.
Additionally, metformin inhibited inflammatory macrophage
infiltration by downregulating both COX2 and PGE2 in tumor
cells, suggesting that metformin suppresses prostate cancer by
altering tumor TAM infiltration (Liu et al., 2018). Additional
pharmacological approaches use phosphodiesterase-5 (PDE-5)
inhibitors such as sildenafil to deactivate MDSCs by interfering
with Arg1 and iNOS expression (Serafini et al., 2006), N(G)-
Nitro-L-Arginine Methyl Ester (L-NAME) which is another
compound that inhibits Arg1 activity (Capuano et al., 2009), and
N-hydroxy-L-Arginine (NOHA), a potent physiologic inhibitor
of Arg1 (Stuehr et al., 1991). In this review, we focused on

some recent strategies to inhibit MDSCs in cancer. Additional
information regarding other MDSC inhibitors are detailed
in another review (Wesolowski et al., 2013). In summary,
we suggest several novel targets as a single therapy approach to
primarily inhibit immunosuppression by targeting myeloid cell.
Although monotherapies targeting myeloid cells in cancer have
shown some promising results preclinically and clinically, they
still face challenges such as resistance, partial reduction of tumor
growth, and the existence of positive crosstalk between myeloid
cells and other stromal components which can alter the efficiency
of myeloid cell-induced antitumor immunity. It is likely that
some of these challenges can be overcome using combination
therapies and/or targeted therapies for a greater antitumor effect.

Potential Combination Therapies
Targeting Myeloid Cells in Cancer
In healthy conditions, tumor cells are eliminated by immune
surveillance, mainly through T cell infiltration and activation
that respond to tumor neoantigens presented by major
histocompatibility complex (MHC) (Vesely et al., 2011;
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Matsushita et al., 2012). However, increased presentation
of neoantigens likely leads cancer cells to escape immune
surveillance through co-evolution in an immunosuppressive
TME (Moon et al., 2014; Khalil et al., 2016). Thus, targeting more
than one cellular component of TME in primary and metastatic
tumors may provide a solution to immune surveillance evasion
by cancer cells to induce a more favorable therapeutic outcome in
patients with malignancies. Here, we summarize novel potential
combination therapies involving myeloid cells in cancer.

As we have previously mentioned in this review article,
targeting PI3Kγ in myeloid cells restored antitumor immunity by
switching macrophage polarization toward the proinflammatory
phenotype, and induced CD8+ T cell infiltration into the tumor
site (Kaneda et al., 2016b). Combination of a PI3Kγ selective
inhibitor (IPI-549) with ICB antibodies restored sensitivity of
resistant cancers to ICB therapies in preclinical mouse models
(De Henau et al., 2016). Likewise, inhibition of MDSCs with
IPI-145, a selective inhibitor of PI3Kδ and PI3Kγ isoforms, in
combination with anti-PD-L1 induced CD8+ T cell-dependent
tumor growth reduction in a head and neck cancer mouse model
(Davis et al., 2017). Combination of IL-12-expressing oncolytic
herpes simplex virus (oHSV), which selectively replicates in
cancer cells, with ICB antibodies (PD-1, CTLA-3, or PD-
L1) slightly improved survival of a glioma mouse model.
However, triple combination of the IL-12-expressing virus, anti-
PD-1, and anti-CTLA-4 cured most mice with an increase of
M1 macrophages and T effector to T regulatory ratio into
tumors, suggesting that combination macrophage-targeting IL-
12-expressing virus and ICB antibodies may have a synergistic
curative effect in glioblastoma patients (Saha et al., 2017). As
we have previously described in this review, targeting of CSF-
1R with a monoclonal antibody (RG7155) potently inhibited
TAM recruitment into the tumor site while increasing the anti-
tumor CD8+/CD4+ T cell ratio (Ries et al., 2014). A positive
effect of CSF-1R blockade plus ICB (anti-PD-1) combination
has been reported (Peranzoni et al., 2018). However, a more
recent study has identified the mechanism that limited the
therapeutic effect of CSF-1R blockade. Carcinoma-associated
fibroblasts (CAF) are major recruiter of granulocytes into the
tumor site via chemokine secretion (Kumar et al., 2017). CSF-1R
blockade induced a profound increase in CAF-mediated MDSC
recruitment to the tumor site, thus explaining the mechanism
behind CSF-1R therapy limitations. Triple combination of a CSF-
1R inhibitor, a CXCR2 antagonist, and anti-PD-1 antibody lead
to a significant inhibition of tumor growth in several cancer
mouse models. These data propose a novel combination therapy
to disrupt the crosstalk between different stromal cell populations
for the most efficacious disease outcome in cancer patients
(Kumar et al., 2017). In a short communication article, Lorio
et al. reported that blocking anti-Bcl-2-Associated athanoGene
3 (BAG3) with an antibody resulted in an increased number of
CD8+ T cell infiltration to the tumor site in a PDAC mouse
model. Furthermore, combination of anti-BAG3 and anti-PD-1
antibodies further increased CD8+ T cell-mediated antitumor
immunity suggesting a novel potential therapeutic approach for
the treatment of PDAC (Iorio et al., 2018). Entinostat is an
orally bioavailable class I-specific histone deacetylase inhibitor

(HDACi) that interrupts immune suppression in the TME (Shen
et al., 2012, 2016). Combination of entinostat with anti-PD-1
antibody enhanced the ICB antitumor effect in two syngeneic
tumor mouse models by reducing tumor growth and neutralizing
both M-MDSC and PMN-MDSC populations (Orillion et al.,
2017). Dual targeting of CXCR2+ neutrophils and CCR2+
TAMs increased antitumor immunity by disrupting myeloid
recruitment to tumors of a PDAC mouse model and improved
response to FOLFIRINOX chemotherapy (including folinic
acid, fluorouracil, irinotecan, oxaliplatin). However, targeting
of either myeloid subtype (neutrophils or TAMs) resulted in a
compensatory response of the other myeloid subset, resulting
in disease relapse cite. These data suggest that combination
therapies aiming at targeting more than one myeloid subtype in
cancer might provide a solution to compensatory mechanisms
between stromal cells and may further ameliorate the overall
survival of cancer patients (Nywening et al., 2018). In PDAC
mouse models, activation of macrophages using a CD40 agonist
induced interferon-γ and CCL2 release, which in turn caused
macrophages to deplete fibrosis through matrix metalloprotease
activity (Beatty et al., 2015; Long et al., 2016). Moreover,
combination of CD40 agonist and chemotherapy induced
T cell-dependent reduction in tumor growth (Beatty et al.,
2015; Long et al., 2016). Combinations involving blockade
of leucine-rich repeat-containing G-protein-coupled receptor 4
(Lgr4) in lung cancer (Tan et al., 2018), inhibition of IL-6
in melanoma-bearing mice (Tsukamoto et al., 2018), dietary
protein restriction (Orillion et al., 2018), inhibition of casein
kinase 2 (Hashimoto et al., 2018), and blockade of receptor-
interacting serine/threonine protein kinase 1 (RIP1) in PDAC
mouse model (Wang W. et al., 2018) in myeloid cells; and ICB
(anti-PD-1, anti-PD-L1, anti-CTLA-4) therapy, synergistically
enhanced the antitumor immune response. Taken together,
these findings emphasize the importance of targeting myeloid
cells in combination with ICB therapies and other therapeutic
approaches to enhance the antitumor immune response in
cancer patients.

Targeting Myeloid Cells in Cancer Using
Nanoparticles
There has been a growing interest in using nanotechnology
for the treatment of cancer in the past few years, which is
mainly due to its broad use ranging from drug delivery to
diagnosis and imaging (Swartz et al., 2012; Kearney and Mooney,
2013). Nanoparticles are particles of any shape which size ranges
between 1 and 100 nm, as defined by the International Union
pf Pure and Applied Chemistry (IUPAC) (Shi et al., 2016).
The immune system is characterized by its unique specificity
in targeting antigens and cancer cells through the innate
branch, while its adaptive branch enables long-term activity
through memory-driven responses. Thus, manipulating these
unique properties of the immune system are desirable, yet come
with risks such as immune-related adverse events or “cytokine
storm/cytokine release syndrome” (Shimabukuro-Vornhagen
et al., 2018). Thus lowering doses and/or targeting specific cells
of interest is paramount to ensure patient safety. Nanoparticles
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are thus excellent candidates to modulate the immune system
(Amoozgar and Goldberg, 2015). Here, we briefly summarize
recent progress in targeted delivery to specifically myeloid
cells in cancer using nanocarriers. Nanoparticle uptake by
macrophages is influenced by size, rigidity, shape, surface charge,
and composition of the nanoparticle (Tabata and Ikada, 1988;
He et al., 2010; Sosale et al., 2015). Also, nanoparticles with
either highly positive or highly negative zeta potential, which is
defined as the potential difference between dispersion medium
and the stationary layer of fluid attached to the particle, are more
favorably internalized compared to nanoparticles with neutral
or slightly negative charges (Tabata and Ikada, 1988). Several
groups have taken advantage of the ability to coat nanoparticles
in molecules such as the sugar mannose to target specific
myeloid cells. Mannose receptor (CD206) is overexpressed in
M2 macrophages and TAMs and represents a suitable target for
mannose nanoparticles. Polyethylene glycol (PEG)-sheddable,
mannose-modified nanoparticles were developed and efficiently
targeted TAMs via mannose-CD206 binding after pH-sensitive
PEG dissociated in the acidic TME, while their uptake by normal
macrophages was reduced due to efficient PEG shielding at
neutral pH (Zhu et al., 2013). Indeed, delivery of silencing
molecules (siRNA) to target pro-tumor transcription factors has
been undertaken with positive outcomes in an in vitro model
of ovarian cancer (Ortega et al., 2016). Folic acid liposome
nanoparticles were also developed to deliver zoledronic acid to
TAMs. Folic acid engaged its receptor folate receptor β (FRβ)
which is also overexpressed on TAMs (Hattori et al., 2015).
Legumain and transferrin receptors are also overexpressed on
TAMs, but all nanoparticle systems that have been developed
to target these two receptors are mainly tailored toward
targeting cancer cells, but no reports involving TAMs have
been communicated yet (Wu et al., 2006; Lin et al., 2013;
Ngambenjawong et al., 2017). In another study, IL-12-loaded
tumor environment sensitive poly-β-amino ester nanoparticles
reeducated TAMs to a macrophage M1 phenotype both in vitro
and in vivo and selectively accumulated in the tumor site
while extending IL-12 circulation time (Wang et al., 2017). In
summary, we selectively summarized some approaches aiming
at targeting myeloid cells in cancer using nanocarriers. Other
reviews have extensively detailed other approaches using targeted
delivery of myeloid cells in cancer (Amoozgar and Goldberg,
2015; Ngambenjawong et al., 2017; Silva and Al-Jamal, 2017;
Singh et al., 2017).

Toll-Like Receptor Activation in Myeloid
Cells
Toll-like receptors (TLR) are transmembrane proteins that
induce the activation of inflammatory innate immune responses
after binding to microbially derived molecules (Kawai and
Akira, 2011; O’Neill et al., 2013). TLR7 and TLR8 agonist R848
potently drove the M1 macrophage phenotype in vitro. R848-
loaded β-cyclodextrin nanoparticles (CDNP-R848) induced M1
macrophage phenotype, reduced tumor growth, and protected
the animals against tumor re-challenge in multiple tumor
mouse models. Furthermore, combination of CDNP-R848 and

anti-PD-1 antibody improved ICB response (Rodell et al., 2018).
In another study, STAT3 small interfering (si)RNA conjugated to
cpG oligonucleotide agonist of TLR9 targeted tumor associated
myeloid cells by silencing STAT3, thus leading to a potent
antitumor immune response in multiple tumor mouse models
(Kortylewski et al., 2009) and prostate cancer patients (Hossain
et al., 2015). These data demonstrate that activating TLR in
myeloid cells using agonists conjugated to therapeutic agents may
represent a promising therapeutic approach for patients with
different cancer types. Food and Drug Administration (FDA)-
approved Toll-like receptor 7 (TLR7) agonist imiquimod is being
tested in more than 100 clinical trials as a monotherapy, or
in combination with chemotherapy or ICB (Locy et al., 2018).
Although imiquimod induces local accumulation and activation
of DCs, it may also promote MDSC expansion, which can limit
vaccine efficiency (Dang et al., 2012). The mechanism responsible
for MDSC activation by some adjuvant therapies is likely
due to MDSC’s susceptibility to be triggered by inflammatory
signals (Gabrilovich et al., 2012; Fernandez et al., 2014; Kumar
et al., 2016). Hence, some TLR agonists therapies have to be
combined with agents targeting MDSCs to prevent MDSC-
induced immune suppression.

CONCLUDING REMARKS

Before the recent advances in the field of immunotherapy,
efforts aimed at targeting cancer were purely one-dimensional by
focusing only on cancer cells as a single element in the equation
using chemotherapy as early as the 1940’s. With the discovery
of TME dynamics and the emergence of immunotherapy,
other stromal cell populations are increasingly considered.
It is now well established that myeloid cells play a pivotal
role in cancer. Their involvement in tumor progression and
immune suppression is generating enthusiasm in the cancer
research community, especially with the increasing number
of novel molecular target discoveries. Although initiatives
that aim at targeting myeloid cells in the TME have shown
promising results, there still are challenges that need to be
resolved. For instance, monotherapies targeting a single myeloid
cell phenotype may show promising but limited efficacy.
Combination therapies involving different immunotherapeutic
approaches show improved anticancer effects in preclinical
studies but have not yet lived up to their promises. Perhaps
it is essential to discover novel mechanisms involving different
stromal components such as the direct and compensatory
crosstalk involving CAFs, TAMs, and MDSCs described above
(Kumar et al., 2017). In this study, single targeting of TAMs
using CSF-1R blockade did not result in a prolonged antitumor
immune response. The authors showed that targeting TAMs
using CSF-1R blockade triggered a compensation mechanism
wherein CAFs recruited more PMN-MDSCs in a CXCR2-
depedent manner. Triple combination using CSF-1R, CXCR2,
and ICB resulted in an improved antitumor immune response.
Thus, discovery of unknown pathways between immune stromal
cells may improve cancer treatment by addressing the complexity
of stromal interactions in the TME. Moreover, several strategies
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aiming at achieving an effective combination with ICB are under
active investigation (Popovic et al., 2018). The central dogma
of these strategies consists of increasing effector T cells in
immunologically “cold” tumors which are defined by having low
neoantigen burden and a paucity of T cells and DCs (Popovic
et al., 2018). One strategy to induce T cells and overcome a
“cold” tumor’s TME burden uses vaccines such as the FDA-
approved Toll-like receptor 7 (TLR7) agonist imiquimod. As
we previously mentioned, imiquimod activates MDSCs and
their immunosuppressive capacity thus dampening imiquimod’s
antitumor efficacy. Hence, strategies that enhanced DC and T cell
antitumor potential while altering MDSC’s suppressive function
are likely to be effectively combined with ICB for a maximum
therapeutic benefit. Nevertheless, myeloid cells remain a major
player that can determine disease outcome in cancer patients

because of their exceptional phenotypic plasticity. It is therefore
essential to efficiently modulate myeloid cells’ plastic nature for
the development of a whole new range of therapeutic strategies
against cancer and turn the foes to friends.
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