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Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic

bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes,

together with the mouse pathogen Citrobacter rodentium, belong to the family of

attaching and effacing pathogens that form a distinctive histological lesion in the intestinal

epithelium. The virulence of these bacteria depends on a type III secretion system

(T3SS), which mediates the translocation of effector proteins from the bacterial cytosol

into the infected cells. The core architecture of the T3SS consists of a multi-ring basal

body embedded in the bacterial membranes, a periplasmic inner rod, a transmembrane

export apparatus in the inner membrane, and cytosolic components including an ATPase

complex and the C-ring. In addition, two distinct hollow appendages are assembled

on the extracellular face of the basal body creating a channel for protein secretion: an

approximately 23 nm needle, and a filament that extends up to 600 nm. This filamentous

structure allows these pathogens to get through the host cells mucus barrier. Upon

contact with the target cell, a translocation pore is assembled in the host membrane

through which the effector proteins are injected. Assembly of the T3SS is strictly regulated

to ensure proper timing of substrate secretion. The different type III substrates coexist

in the bacterial cytoplasm, and their hierarchical secretion is determined by specialized

chaperones in coordination with two molecular switches and the so-called sorting

platform. In this review, we present recent advances in the understanding of the T3SS in

attaching and effacing pathogens.

Keywords: A/E pathogens, EPEC, EHEC, Citrobacter rodentium, locus of enterocyte effacement, type III secretion

system, injectisome, secretion hierarchy

INTRODUCTION

The attaching and effacing (A/E) family of gastrointestinal bacterial pathogens induces a singular
phenotype on host cells called the A/E lesion, characterized by the effacement of epithelial microvilli
and the subsequent formation of actin-rich protruding structures known as pedestals right beneath
the adherent bacteria, to which they remain intimately attached (Moon et al., 1983; Knutton
et al., 1989; Nataro and Kaper, 1998). Members of this family include the human pathogens
enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC), as well as the
mouse pathogen Citrobacter rodentium, which is the representative organism used to understand
the molecular basis of A/E lesion formation in an infection animal model (Goosney et al., 2000;
Collins et al., 2014). EPEC is considered one of the predominant causative agents of human diarrhea

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://www.frontiersin.org/cellular_and_infection_microbiology/editorialboard
http://dx.doi.org/10.3389/fcimb.2016.00129
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2016.00129&domain=pdf&date_stamp=2016-10-21
http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:bpedrajo@ifc.unam.mx
http://dx.doi.org/10.3389/fcimb.2016.00129
http://journal.frontiersin.org/article/10.3389/fcimb.2016.00129/abstract
http://loop.frontiersin.org/people/356293/overview
http://loop.frontiersin.org/people/356285/overview
http://loop.frontiersin.org/people/356286/overview
http://loop.frontiersin.org/people/332531/overview


Gaytán et al. T3SS in A/E pathogens

in developing countries, affecting principally infants aged 0–
11 months, representing an important cause of mortality. It
causes moderate to severe protracted diarrhea, accompanied
by mild fever and sometimes vomiting (Nataro and Kaper,
1998; Kotloff et al., 2013). EPEC strains can also colonize
rabbits (REPEC; rabbit-EPEC), mimicking to some extent the
colonization process in humans, so this organism has been used
as a model for studying EPEC infection (Milon et al., 1999;
Zhu et al., 2006). EHEC is an emerging zoonotic pathogen
that can cause acute gastroenteritis and hemorrhagic colitis in
children younger than 5 years and the elderly (Boyce et al.,
1995). It can also colonize ruminants, especially cattle, without
being pathogenic, but rather using them as reservoirs (Su and
Brandt, 1995). In 1982, EHEC serotype O157:H7 was recognized
as a human pathogen during two outbreaks associated with the
ingestion of undercooked meat in the United States of America
(Riley et al., 1983). In severe cases, due to the translocation
of Shiga toxins (Stx1 and Stx2) across the gut, it can produce
hemolytic uremic syndrome, which can lead to kidney failure
and chronic post-infection sequelae or death (Frankel et al., 1998;
Tarr et al., 2005; Spinale et al., 2013). Two main differences
between these pathogens, besides the presence of Shiga toxins
in EHEC, are the infectious dose and cellular tropism. While a
dose between 108 and 1010 bacteria is needed for EPEC to cause
disease in adult volunteers (Donnenberg et al., 1993; Bieber et al.,
1998), it has been estimated from EHEC found in contaminated
food, that only 10–100 colony-forming units are sufficient for
infection (Armstrong et al., 1996).With respect to tropism, EPEC
colonizes the small intestine, specifically the duodenum, terminal
ileum and Peyer’s patches, while EHEC colonizes mainly the
Peyer’s patches and the large bowel (Phillips et al., 2000; Fitzhenry
et al., 2002). Lastly, C. rodentium is a natural mouse pathogen
that is genetically related to E. coli and forms A/E lesions in
intestinal cells (Schauer and Falkow, 1993). Mice infected with
C. rodentium develop transmissible murine colonic hyperplasia,
a disease characterized by proliferation of epithelial colonic cells
that can then turn into diarrhea (Mundy et al., 2005).

A/E lesion development occurs in three stages: (i) initial
adherence, (ii) signal transduction, and (iii) intimate attachment
(Donnenberg and Kaper, 1992). The first stage has been
better characterized for EPEC, where it has been shown that
bacteria adhere to host cells in a localized pattern through
a type IV pilus (T4P) named BFP (bundle-forming pilus),
which is also involved in bacterium-to-bacterium adherence
(Girón et al., 1991). EHEC and C. rodentium also possess T4P,
named HCP (hemorrhagic coli pilus) and CFC (colonization
factor Citrobacter), respectively, that have been proposed to
be involved in cell adherence and colonization (Mundy et al.,
2003; Xicohtencatl-Cortes et al., 2007). Other fimbrial and
afimbrial adhesins have been implicated in the initial adherence
process such as intimin, flagella, and the E. coli common pilus,
among others (Donnenberg and Kaper, 1991; Girón et al.,
2002; Cleary et al., 2004; Rendón et al., 2007; Saldana et al.,
2009). In the second stage, the bacteria interfere with a variety
of signal transduction pathways in the host cell through the
translocation of several virulence proteins, called effectors, via a
highly conserved specialized protein-secretion apparatus called

the type III secretion system (T3SS) (Garmendia et al., 2005).
The number of translocated effectors varies from approximately
22 in EPEC and 29 in C. rodentium, to as many as 39 in certain
EHEC strains (Tobe et al., 2006; Deng et al., 2010, 2012; Petty
et al., 2010). Some changes induced by these proteins include
modification of the host actin cytoskeleton (Campellone et al.,
2004), failure of microtubule function (Hardwidge et al., 2005;
Shaw et al., 2005; Tomson et al., 2005), inhibition of ion transport
(Hodges et al., 2008), and disruption of epithelial barrier function
(Viswanathan et al., 2009). In the third stage, the bacteria bind
intimately to the host cell through an outer membrane protein
called intimin, which functions as the ligand for the translocated
receptor protein Tir inserted in the host cell membrane. The
actin of microvilli surrounding attached bacteria is reabsorbed
and the pedestal-like structure is completed leading to A/E
lesion formation and disease (Jerse and Kaper, 1991; Kenny and
Finlay, 1997; Kenny et al., 1997b). This tight adhesion to the
host’s epithelia would provide an advantage to the pathogen for
outcompeting normal microbiota (Vallance and Finlay, 2000).

As aforementioned, the T3SS plays a crucial role in A/E lesion
formation and is essential to the virulence of these bacteria.
In recent years, a notable progress has been achieved in our
understanding of the T3SS machinery in A/E pathogens. This
review aims to explore the assembly, structure and function of
the T3SS in this important family of pathogens, highlighting its
major differences with archetypical systems from Yersinia spp.,
Salmonella enterica, and Shigella flexneri. Therefore, to allow a
straightforward comparison between homologous proteins, the
unified nomenclature Sct (secretion and cellular translocation;
Hueck, 1998) will also be used throughout the review.

LOCUS OF ENTEROCYTE EFFACEMENT

In A/E pathogens the T3SS is encoded by a ca. 35 kb
chromosomally located pathogenicity island (PAI) named the
locus of enterocyte effacement (LEE) (Jarvis et al., 1995). The LEE
genes are conserved in all A/E pathogens, however it has been
shown that, when introduced in a non-pathogenic E. coli K12
strain, the LEE of EPEC is sufficient for A/E lesion formation,
whereas the LEE of EHEC is not (McDaniel and Kaper, 1997;
Elliott et al., 1999b). The fact that the GC content (ca. 38%) of
these PAIs is significantly lower than that of the average of E. coli
andC. rodentium genomes (50.8 and 54.6%, respectively), reflects
that they were acquired by horizontal gene transfer (Frankel et al.,
1998; Deng et al., 2001; Schmidt and Hensel, 2004).

McDaniel and colleagues described the LEE for the first
time in EPEC E2348/69 (McDaniel et al., 1995). It contains 41
genes organized in seven operons (LEE1 to LEE7) and four
monocistronic units, as illustrated in Figure 1 (Elliott et al.,
1998; Mellies et al., 1999; Sánchez-SanMartin et al., 2001; Barba
et al., 2005; Yerushalmi et al., 2014). The LEE encodes all
the structural components of the T3SS, seven of the effectors
translocated through this system and their cognate chaperones,
proteins involved in bacterial intimate adherence, and proteins
that participate in secretion regulation and LEE expression
(Table 1). All the genes encoded in the LEE of EPEC are
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FIGURE 1 | Genetic structure of the LEE island of Escherichia coli E2348/69 O127:H6 strain (EPEC). Genes are depicted as filled arrows colored according

to their proposed functional category (see enclosed box). The operon organization of the island (LEE1 to LEE7) is indicated by solid black arrows above the LEE

genes, while individual transcriptional units (etgA, cesF, map, escD) are denoted by broken arrows. Schematic representation is drawn at scale (scale bar 5 kb). PG,

peptidoglycan.

TABLE 1 | Functional organization of the LEE encoded T3SS components.

Extracellular components PG-lytic

enzyme

Adhesin Basal body

Translocation pore Filament Needle IM ring OM ring Inner rod Export apparatus

EspB EspD EspA EscF EtgA Intimin EscD EscJ EscD EscI EscR EscS EscT EscU EscV

Cytoplasmic components

ATPase complex Secretion regulation Transcriptional

regulators

Chaperones

Sorting platform Early substrates Middle substrates Late substrates

EscN EscO EscL EscQ EscK EscP SepL SepD Ler GrlA GrlR EscE EscG CesAB CesD CesD2 CesT CesF CesL

Cytoplasmic components

LEE-encoded effectors

EspG EspZ EspH Map Tir EspF EspB

Proteins encoded in the LEE are ordered according to their assigned function. EscL and EspB are classified into two different categories: EscL as a sorting platform and ATPase complex

component, and EspB as a translocator and effector.

present in the LEE of EHEC in the same order, and have a
high degree of conservation showing an average identity of 94%
at the nucleotide level (Perna et al., 1998). The LEE PAI is
also conserved in C. rodentium, but with some differences with
respect to that of EPEC and EHEC. The LEE islands of EPEC and
EHEC are inserted into the selenocysteine tRNA locus; while the
C. rodentium LEE is inserted in a different chromosomal location
flanked by an IS element followed by an operon encoding an
ABC transport system and plasmid sequences. Furthermore,
the LEE6 operon of C. rodentium, containing the rorf1 and
espG genes, is positioned at the opposite end of the LEE with
respect to EPEC and EHEC (Deng et al., 2001; Petty et al.,
2010).

The proper expression of the LEE is a complex process
that depends on several factors, such as environmental
conditions, quorum sensing, and transcriptional as well as post-
transcriptional regulation (Connolly et al., 2015). The LEE
encodes its own transcriptional regulators, named Ler, GrlA, and
GrlR (Mellies et al., 1999; Deng et al., 2004). Ler is a 15-kDa
protein encoded by the first gene of the LEE1 operon that acts as
the central regulator of LEE gene expression (Mellies et al., 1999).
This protein belongs to the H-NS-like protein family whose
main representative, H-NS, negatively regulates the expression
of several horizontally acquired genetic elements, including the
LEE (Bustamante et al., 2001; Umanski et al., 2002; Dorman,
2004). Ler counteracts the repression exerted by H-NS and thus
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is essential for the expression of the LEE (Bustamante et al.,
2001; Winardhi et al., 2014). Interestingly, Ler also acts as a
negative regulator of its own expression (Berdichevsky et al.,
2005; Bhat et al., 2014). In addition, GrlA and GrlR, encoded in
the bicistronic LEE7 operon, positively and negatively regulate
Ler expression (Deng et al., 2004; Huang and Syu, 2008). GrlA
has been shown to activate LEE gene expression through its
direct binding to the LEE1 promoter (Jiménez et al., 2010), and
Ler controls the expression of the LEE7 operon, thus forming a
positive regulatory loop (Barba et al., 2005). On the other hand,
GrlR represses LEE gene expression, although the mechanism
of repression is still unknown. GrlR has been demonstrated to
interact directly with GrlA (Creasey et al., 2003b; Padavannil
et al., 2013); therefore, it was proposed that GrlR represses LEE
transcription by sequestering GrlA, avoiding its binding to the
LEE1 promoter and thus repressing ler expression (Huang and
Syu, 2008).

Besides these three transcriptional regulators, a fourth LEE-
encoded protein has been proposed to modulate LEE expression
in EHEC (Sun et al., 2016). The Mpc (multiple point controller)
protein, also known as CesL (previously Orf12 or L0036),
was shown to interact with Ler (Tsai et al., 2006; Younis
et al., 2010). When Mpc is overexpressed, it sequesters Ler
impeding its function and leading to the repression of the
LEE encoded genes (Tsai et al., 2006). Furthermore, in typical
EPEC strains containing the EAF (EPEC adherence factor)
plasmid, LEE expression is also positively regulated by PerC, a
transcriptional regulator encoded by the perABC plasmid-located
operon (Gómez-Duarte and Kaper, 1995; Tobe et al., 1996).
EHEC possess three PerC homologous proteins named PchA,
PchB and PchC (Iyoda and Watanabe, 2004), while there is no
known PerC homolog in C. rodentium.

To illustrate the complexity of the regulatory networks that
govern LEE expression suffice it to mention that several global
transcriptional regulators are involved in LEE regulation, such as
BipA, Cpx, Fis, GadE, Hha, H-NS, H-NST, IHF, RgdR, RpoN,
SspA, FusK/R, EutR, LeuO, SdiA, KdpE, QseA, QseC, QseD,
QseE, RcsB, RegA, and GlmY/GlmZ. Besides, LEE expression is
also regulated at the post-transcriptional level by ClpXP, CsrA,
DegP, DsrA, Hfq, RNaseE, and RpoS, reviewed in Deane et al.
(2010), Yang et al. (2010) Levine et al. (2014) and Franzin and
Sircili (2015).

STRUCTURE OF THE TYPE III SECRETION
SYSTEM

The T3SS or injectisome is a complex nanomolecular machine
of about 3.5 MDa consisting of more than 20 proteins. The
injectisome global architecture is conserved among different
bacterial species and resembles that of the evolutionarily related
flagellar system (Hueck, 1998; Erhardt et al., 2010b; Abby and
Rocha, 2012). It is composed of a syringe shaped-structure
protruding above the bacterial surface with a central channel
of 2–3 nm in diameter, and three ring structures embedded in
the inner and outer bacterial membranes, connected through a
periplasmic inner rod (Hueck, 1998; Burkinshaw and Strynadka,

2014; Notti and Stebbins, 2016). Although, the core architecture
of this so-called needle complex is highly similar in bacteria
analyzed so far, the supramolecular structure of the EPEC and
EHEC T3SS shows an extracellular filament assembled on top
of the needle (see below; Ebel et al., 1998; Knutton et al., 1998;
Daniell et al., 2001b; Sekiya et al., 2001). Overall, the components
of the T3SS can be grouped according to the substructures they
form, from outside in: extracellular appendages, basal body and
cytoplasmic components. A schematic representation of the T3SS
in A/E pathogens as well as several solved protein structures are
depicted in Figure 2.

Extracellular Appendages
The Needle
The needle is a superhelical hollow structure comprised of
multiple copies of the EscF protein (Wilson et al., 2001), which
is essential for the secretion of all T3 substrates and hence for
virulence (Deng et al., 2004). EscF associates with the membrane
ring proteins EscC, EscD, and EscJ (Ogino et al., 2006), as well
as with the filament protein EspA (Wilson et al., 2001), forming
a continuous channel that connects the bacterial cytoplasm with
the host cell (Figure 2). It also associates in the cytoplasm with
two chaperones, EscE and EscG that prevent its premature
polymerization and are essential for its assembly (Sal-Man et al.,
2013).

In EPEC, the needle is 23 nm in length and 8–9 nm in width
(Sekiya et al., 2001; Ogino et al., 2006;Monjarás Feria et al., 2012).
Although, the inner diameter of the needle central conduit in
A/E pathogens has not been determined, in other T3S systems
it ranges from about 1.3 to 2.5 nm (Blocker et al., 2001; Fujii
et al., 2012; Loquet et al., 2012). The size of this channel is
not wide enough to accommodate folded proteins; therefore,
effectors should be unfolded prior to transport through to the
T3SS (Feldman et al., 2002; Akeda and Galán, 2005; Fujii et al.,
2012). This hypothesis was demonstrated by the fusion of a
stable protein, or bulky proteins containing a knotted motif, to
the C-terminal ends of T3 substrates. The fusion proteins were
trapped inside the needle, blocking further secretion and allowing
its co-purification with isolated T3S needle complexes (Dohlich
et al., 2014; Radics et al., 2014). Visualization of the trapped
recombinant substrates by cryo-EM provided direct evidence for
the passage of unfolded proteins through this structure (Radics
et al., 2014).

The EPEC needle structure is one of the smallest
characterized, compared to those of S. enterica (25–80 nm)
(Kubori et al., 1998; Kimbrough and Miller, 2000; Marlovits
et al., 2006), S. flexneri (45–50 nm) (Tamano et al., 2000), Y.
pestis (41 nm), and Y. enterocolitica (58 nm) (Journet et al., 2003).
The needle length is strictly regulated by and correlates with the
size of a family of proteins named type III secretion substrate
specificity switch (T3S4) proteins (Journet et al., 2003; Büttner,
2012). In A/E pathogens, the EscP protein belongs to the T3S4
protein family, and in EPEC it was demonstrated to directly
interact with EscF (Monjarás Feria et al., 2012). This interaction
is important for needle length regulation in a process that will
be discussed below. Furthermore, in other bacteria it has been
proposed that the needle plays an active role in mammalian cell
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FIGURE 2 | Schematic representation of the type III secretion system of A/E pathogens. (A) The T3SS is divided into three main parts, from top to bottom (i)

extracellular appendages: translocation pore (inserted into the host membrane, HM), filament and needle; (ii) basal body: consisting of three membrane rings that span

the inner and outer membrane (IM and OM, respectively) connected through a periplasmic inner rod. The IM rings house the export apparatus components; (iii)

cytoplasmic components: the C-ring, the ATPase complex and the gatekeeper protein. The outer membrane protein intimin and the PG lytic enzyme EtgA are also

illustrated. (B) Solved protein structures of the depicted T3SS components. Protein Data Bank (PDB) accession numbers: SepL, 5C9E; EscN, 2OBM; cytoplasmic

C-terminal domain of EscU, 3BZL; periplasmic domain of EscC, 3GR5; EtgA, 4XP8; periplasmic domain of EscJ, 1YJ7; the EspA structure was obtained from that of

the CesAB/EspA complex, 1XOU, chain A; transmembrane beta-domain of intimin, 4E1S and its C-terminal domain, 1F00. Protein structures are displayed as ribbon

diagrams and were colored according to their secondary structure.

sensing and substrate secretion regulation (Kenjale et al., 2005;
Torruellas et al., 2005); however, no direct evidence about this
process has been reported in A/E pathogens.

Remarkably, the number of needle complexes in EPEC has
been estimated to be 12 per cell, based on the observed EspA
filaments (Daniell et al., 2001b; Wilson et al., 2001), which is
fewer than the number seen in Salmonella (10–100; Kubori et al.,
1998) and Yersinia (30–100; Hoiczyk and Blobel, 2001).

The Filament
The filament is an extracellular appendage found in the T3S
systems of A/E pathogens (also present in Bordetella spp.) that

functions as an adaptor between the needle and the translocation
pore formed in the host cell membrane (Figure 2; Knutton et al.,
1998; Ide et al., 2001; Medhekar et al., 2009). In A/E pathogens,
it is assembled by the polymerization of multiple subunits of the
EspA protein with a helical symmetry of 5.6 subunits per turn
(Knutton et al., 1998; Daniell et al., 2003; Wang et al., 2006),
forming a hollow structure of 12 nm in width that allows the
passage of substrates through a 2.5 nm central channel (Daniell
et al., 2001b, 2003; Crepin et al., 2005b). Unlike the needle, the
EspA filament has a variable length that can reach more than
600 nm, which seems to be dependent on the availability of EspA
subunits given that it can be enlarged by increasing the amount of
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EspA in the cytoplasm (Sekiya et al., 2001; Crepin et al., 2005b).
The average length of the filament is ca. 90 nm and it elongates
by addition of EspA subunits at the tip of the structure (Daniell
et al., 2003; Crepin et al., 2005b).

The EspA protein has a coiled-coil domain at its C-terminal
region that is required for subunit polymerization and assembly
of the filament (Delahay et al., 1999). Since this protein
undergoes spontaneous polymerization, it requires the assistance
of chaperone proteins in the cytoplasm. CesAB was the first EspA
chaperone to be described (Creasey et al., 2003c). The crystal
structure of the CesAB-EspA complex showed that the coiled-
coil domain of EspA is also the one involved in the interaction
with CesAB, thus revealing the mechanism that prevents EspA
premature oligomerization (Yip et al., 2005a). Besides CesAB,
EspA has a second chaperone named CesA2 (formerly Orf29,
renamed EscG in EPEC) that assists EspA stabilization in the
cytoplasm (Su et al., 2008). In EHEC it has also been reported
that EspA binds to EscL, a component of the ATPase complex,
and that this interaction is required to preserve EspA stability,
although not via a chaperoning mechanism (Ku et al., 2009).
EspA can also directly bind to EscF and EspB, forming a
continuous channel from the bacterial cytoplasm to the host cell
cytosol (Hartland et al., 2000; Daniell et al., 2001b).

Apart from its role as a translocation conduit, and similarly to
the needle, the EspA filament has been proposed to participate in
sensing the presence of mammalian cells, and there is evidence
that involves this structure in adhesion to epithelial cells and
biofilm formation (Ebel et al., 1998; Knutton et al., 1998; Cleary
et al., 2004; Moreira et al., 2006). However, the EspA filaments are
not present over the entire course of infection; once the intimate
attachment has been established, they are eliminated and so are
absent from the mature A/E lesion. Indeed, it has been reported
that expression of the espA gene, and thus the presence of EspA
filaments, is downregulated after 6 h of infection (Knutton et al.,
1998; Dahan et al., 2004).

The Translocation Pore
The translocation pore is a protein complex formed by the
hetero-oligomerization of EspB and EspD subunits. These
proteins interact with each other and insert into the host
membrane, forming a channel that allows the direct translocation
of effectors from the bacteria to the host cell cytoplasm (Figure 2;
Ide et al., 2001). The EspB and EspD proteins are predicted
to have one and two transmembrane domains, respectively,
involved in their membrane anchoring (Delahay and Frankel,
2002; Dasanayake et al., 2011). It has been shown that they
can insert into erythrocyte membranes causing red blood cells
(RBCs) hemolysis (Warawa et al., 1999). Moreover, both of
these hydrophobic translocators interact with the hydrophilic
translocator EspA, forming the so-called translocon (Hartland
et al., 2000; Luo and Donnenberg, 2011). Mutants in any of
the translocon components are still able to secrete proteins to
the medium, but fail to translocate them to the host cell, thus
impairing adhesion, A/E lesion formation and virulence (Lai
et al., 1997; Kresse et al., 1999; Deng et al., 2004).

Analysis with low resolution atomic force microscopy showed
that the pores formed by EspB and EspD in diffusely adhering

EPEC (DA-EPEC) are composed of six to eight subunits with a
minimal pore size of 3–5 nm (Ide et al., 2001). In addition, EspD,
which is able to interact with itself through a C-terminal coiled-
coil domain (Daniell et al., 2001a), spontaneously incorporates
into unilamellar vesicles, forming a pore with an inner diameter
of 2.5 nm and a molecular mass of 280–320 kDa, which would
consist of six to seven subunits (Chatterjee et al., 2015). In
agreement with this, analysis of RBC membranes during EPEC-
mediated hemolysis showed that EspD was the only bacterial
protein membrane-associated, suggesting it plays a dominant
role in pore formation. In contrast, EspB seems to have a
secondary role in pore formation since a 1espB mutant caused
only a slight reduction in hemolysis (Shaw et al., 2001).

Although, significant advances have been made in
determining the components that form the translocation
pore, and to a lesser extent, its stoichiometry, little is known
about their topology when inserted into the host membrane.
For P. aeruginosa translocator proteins PopB and PopD (EspD
and EspB homologs, respectively), it has been shown that
PopB is inserted into the host membrane with both the N- and
C-terminus facing the outer leaflet of host plasma membrane.
Likewise, the C-terminus of PopD is located toward the
extracellular milieu, where it docks to the needle tip formed by
PcrV (EspA in A/E pathogens), while its N-terminus is facing
the host cytoplasm (Discola et al., 2014; Armentrout and Rietsch,
2016). The proposed membrane orientation of PopD differs
from that reported for EspB in EPEC where, by introducing
sequences recognized by a host kinase, it was demonstrated that
the C-terminal domain of EspB is localized in the host cytoplasm
while the N-terminal domain remains extracellular (Luo and
Donnenberg, 2011).

Additionally, it has been reported that cholesterol membrane
content plays an important role in EPEC and EHEC adherence,
protein translocation and pedestal formation (Hayward et al.,
2005; Riff et al., 2005). In fact, it was shown that the EspD
homologs in Salmonella (SipB) and Shigella (IpaB) bind with
high affinity to cholesterol, which is required for efficient delivery
of effectors into host cells (Hayward et al., 2005). However,
even though it was initially reported that EspD inserts into
Triton X-100 resistantmembrane domains (Wachter et al., 1999),
and binds to vesicles with a lipid composition that resembles
that of the eukaryotic outer leaflet of the membrane, it was
later demonstrated that cholesterol is not required for EspD
binding or pore formation; instead, addition of anionic lipids
such as phosphatidylserine or phosphaditylglycerol induces pore
formation of EspD in unilamellar vesicles (Chatterjee et al., 2015).
It is possible that cholesterol is necessary for the function of
effectors associated with the host membrane rather than for the
translocon assembly per se (Allen-Vercoe et al., 2006; Chatterjee
et al., 2015); however, this issue remains a matter of debate.
Recently, the translocon pore-forming activity was demonstrated
to be regulated by the serine protease autotransporters EspC
and EspP in EPEC and EHEC, respectively (Guignot et al.,
2015). EspC degrades EspA and EspD after host cell contact,
regulating the translocation pore forming activity, which in turn
downregulates the cytotoxicity induced by EPEC (Guignot et al.,
2015). This is in agreement with previous findings showing that
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EspC interacts with EspA (Vidal and Navarro-García, 2008) and
that a mutant defective in the EspC ortholog in C. rodentium
displayed increased virulence in an in vivo infection model
(Vijayakumar et al., 2014).

Besides its role as a pore-forming component, EspB is as
well translocated into host cells, where it binds to myosin,
inhibiting its interaction with actin and contributing to microvilli
effacement and EPEC phagocytosis inhibition (Taylor et al.,
1998; Wolff et al., 1998; Iizumi et al., 2007). It has also
been demonstrated to bind and recruit α-catenin at the EHEC
adherence site, helping to the development of the A/E lesion
(Kodama et al., 2002). EspD and EspB are assisted in the bacterial
cytoplasm by three chaperones CesD, CesD2, and CesAB that
maintain them in an unfolded state and prevent their premature
oligomerization (Wainwright and Kaper, 1998; Creasey et al.,
2003c; Neves et al., 2003).

Basal Body
The basal body consists of three membrane rings connected
through a periplasmic inner rod. The proteins EscD and EscJ
form two concentric rings in the inner membrane (IM) and the
EscC protein forms the outer membrane (OM) ring (Figure 2).
The estimated values for the external widths of the OM and IM
rings are 16.7 ± 1.9 nm and 18.1 ± 2.5 nm, respectively (Sekiya
et al., 2001). These ring dimensions are similar to those reported
for Shigella (15± 1.3 nm and 26.1± 1.3 nm; Tamano et al., 2000),
and Y. enterocolitica (12 and 18 nm; Kudryashev et al., 2013). The
height of the basal body, 31.4 ± 4.3 nm in EPEC and 31.6 ±

0.3 nm in Shigella, is also quite similar and presumably sufficient
to traverse the bacterial membranes and the peptidoglycan layer
(Sekiya et al., 2001).

EscD possesses a predicted transmembrane domain (amino
acids 120–141) as well as seven predicted myristoylation sites
(Kresse et al., 1998; Ogino et al., 2006). Like its Yersinia homolog
YscD, it contains a cytoplasmic forkhead associated (FHA)
domain, which mediates phosphoprotein-recognition, and at
least one putative phospholipid-binding domain (BON; bacterial
OsmY and nodulation domain) in its periplasmic portion (Pallen
et al., 2002, 2005; Gamez et al., 2012). The FHA domain of
Y. pestis YscD is essential for T3SS formation and that of S.
flexneri MxiG interacts with phosphorylated Spa33 (the EscQ
homolog; Ross and Plano, 2011; Barison et al., 2012); however,
its role in EscD function remains to be determined. The EscD
protein associates with the OM ring protein EscC and the needle
component EscF; yet, no direct interaction with the IM ring
protein EscJ has been demonstrated (Creasey et al., 2003b; Ogino
et al., 2006). Nevertheless, by analogy to its homologs in other
systems (Kimbrough and Miller, 2000; Blocker et al., 2001;
Schraidt et al., 2010), EscD is believed to form the outermost
IM ring that surrounds the EscJ ring. EscJ is produced as a pre-
protein and is presumed to be translocated to the periplasm in
a Sec-dependent manner (Crepin et al., 2005a). Crystal packing
analysis of the solved structure of this protein showed that it
forms a 24 subunit ring of 18 nm width and 5.2 nm height that
fits the dimensions of the IM rings observed by transmission
electron microscopy (TEM) (Sekiya et al., 2001; Yip et al., 2005b).
Unlike its homologs, EscJ does not possess a transmembrane

helix in its C-terminal domain; instead, it is anchored to the outer
leaflet of the IM through an N-terminal lipid modification site
(Figure 3A). Hence, EscJ forms a periplasmic ring positioned
on top of the IM rather than within it (Crepin et al., 2005a;
Yip et al., 2005b). The EscJ flagellar homolog FliF, also self-
assembles in an annular structure in the IM forming the MS
(membrane and supramembrane) ring of the flagellar T3SS
(Ueno et al., 1992; Bergeron, 2016). In contrast to its virulence
counterparts, FliF contains two transmembrane helices and a
C-terminal cytoplasmic domain that directly interacts with the
C-ring component FliG (Marykwas et al., 1996; Levenson et al.,
2012).

The OM ring component EscC is essential for T3 secretion
and needle complex formation (Gauthier et al., 2003; Deng
et al., 2004; Ogino et al., 2006). EscC belongs to the secretin
family of proteins that function as channels for secretion of
bacterial proteins across the OM in several secretion systems.
They consist of two major domains: an N-terminal periplasmic
region and a highly conserved C-terminal region embedded in
the outer membrane (Genin and Boucher, 1994). EscC possesses
a signal sequence that is cleaved after its Sec-dependent export
across the IM. In many T3S systems, the oligomerization of the
secretin and its insertion in the OM is promoted by a lipoprotein
called pilotin (Crago and Koronakis, 1998; Schuch and Maurelli,
2001; Burghout et al., 2004). However, this protein has not been
identified in the T3SS of A/E pathogens and, in agreement, the
C-terminal pilotin binding domain is absent in the EscC protein
of EPEC, as shown in Figure 3B. In this regard, it has been
reported that the proper OM localization of EscC requires the
aid of other T3 apparatus components (Gauthier et al., 2003).

The crystal structure of the periplasmic region of the secretin
EscC (residues 21–174) revealed a modular architecture of two
small domains connected by a linker region that has a similar
fold to the IM proteins EscJ and PrgH (EscD homolog in
Salmonella). This suggests that the conserved fold might provide
a common ring assembly motif for oligomerization of OM and
IM rings in T3S systems (Spreter et al., 2009). EscC oligomerizes
into a 17 nm diameter ring (Ogino et al., 2006). The cryo-
EM of InvG (EscC homolog in Salmonella) suggests that the
OM ring is composed of 15 subunits (Schraidt and Marlovits,
2011; Bergeron et al., 2013), while the cryo-EM and scanning-
TEM analysis of Yersinia YscC and Shigella MxiD indicate that
these secretins are composed of 12 subunits (Hodgkinson et al.,
2009; Kowal et al., 2013). In the case of EscC, Spreter and
colleagues built 12- and 14-subunit ring models, which were
then docked to the cryo-EM maps of the S. enterica T3SS
basal body (Marlovits et al., 2004). Although both models fitted
the density maps, there is currently more evidence favoring
the 12-mer model (Spreter et al., 2009), anyhow the OM ring
stoichiometry in the T3SS of A/E pathogens remains to be
demonstrated.

Regarding EscC protein interactions it has been demonstrated
that it associates with the IM ring EscD (Creasey et al., 2003b;
Ogino et al., 2006) and with injectisome axial components like
the inner rod EscI and the needle EscF (Creasey et al., 2003b;
Sal-Man et al., 2012b). In addition, it has been shown that EscC
interacts with EscO (previously EscA; Sal-Man et al., 2012a), an
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FIGURE 3 | Basal body components of A/E pathogens possess distinctive features. (A) EscJ lacks the C-terminal transmembrane segment typically present

in proteins of the SctJ family. Multiple protein alignment of the C-terminal domain of the lipoproteins EscJ (EPEC), MxiJ (S. flexneri), PrgK (S. enterica), and YscJ

(Y. pestis) forming the inner membrane ring. The schematic comparison of EscJ and MxiJ domain organization is shown at the bottom. (B) The proposed

pilotin-binding domain is absent in the EscC secretin. Multiple alignment of the C-terminal domain of secretins EscC (EPEC), MxiD (S. flexneri), InvG (S. enterica), and

YscC (Y. pestis). The schematic comparison of EscC and MxiD domain organization is shown at the bottom. Even though only the basal body proteins from EPEC are

depicted, all A/E pathogens share these features. TM, transmembrane helix; L, lipidation site; RBM, ring-building motif; Secretin, secretin domain (PF00263); N,

secretin N domain (PF03958); P, pilotin-binding domain.

ATPase complex component (Romo-Castillo et al., 2014), yet the
functional relevance of this interaction remains to be established.

It is presumed that the OM and IM rings are connected
through a periplasmic inner rod formed by the oligomerization
of the EscI protein (Pallen et al., 2005; Sal-Man et al., 2012b).
When visualized by EM the inner rod appeared to have a small
ring-like structure at the base (10 nm in diameter), and a stem
portion of 9 nm in width which is identical to the diameter of
the needle; the entire length of the rod is approximately 20 nm
(Ogino et al., 2006). In contrast, a recent study of the inner rod in
S. enterica showed that this structure is made of only one helical
turn composed of six PrgJ subunits (Zilkenat et al., 2016).

Additionally, the EscI homologs in Yersinia and Salmonella
have been shown to be involved in the process that regulates
T3 substrate secretion (Marlovits et al., 2006; Wood et al., 2008;
Lefebre and Galán, 2014). In agreement, in EPEC it has been
demonstrated that EscI interacts with EscU (Sal-Man et al.,
2012b) and with EscP (Monjarás Feria et al., 2012), components
involved in substrate secretion regulation as will be discussed
below.

Injectisome assembly faces a physical barrier; it must traverse
the peptidoglycan (PG) layer. In EPEC this task is accomplished
by the use of a specialized PG degrading enzyme named EtgA
(Pallen et al., 2005) that localizes to the periplasm to exert its PG
lytic activity and which is required for efficient T3SS assembly
(García-Gómez et al., 2011). The recently solved structure of
EtgA disclosed similarities in its active site with both lytic
transglycosylases and lysozyme (Burkinshaw et al., 2015a). This
enzyme has been shown to interact directly with the inner
rod subunit EscI (Creasey et al., 2003b; Burkinshaw et al.,
2015a). Moreover, the enzymatic activity of EtgA is enhanced
in the presence of EscI, suggesting that this interaction not
only spatially restricts the activity of EtgA but also stimulates it
(Burkinshaw et al., 2015a).

Export Apparatus
One of the most conserved components of the injectisome is
the export apparatus. This membrane-embedded complex is
essential for T3S function and, in A/E pathogens, is built of five
different proteins: EscR, EscS, EscT, EscU, and EscV (EscRSTUV;
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Deng et al., 2004; Diepold and Wagner, 2014; Portaliou et al.,
2016). These five polytopic proteins, which have been annotated
by sequence comparison to its homologs in Yersinia (Elliott et al.,
1998; Pallen et al., 2005), are presumed to assemble in a patch of
the cytoplasmic membrane enclosed by the two inner membrane
rings of the basal body (Figure 2; Yip et al., 2005b; Moraes et al.,
2008; Wagner et al., 2010a).

Apart from its requirement for T3 protein secretion, little
is known about the integral membrane components of the
export apparatus, although considerable information has also
been obtained from the homologous proteins in the flagellar
T3SS (Minamino, 2014). EscU and EscV, as well as their
respective homologs, which possess large cytoplasmic domains,
are the most studied components of this protein complex. EscU
belongs to the YscU/FlhB family of proteins, whose members
are predicted to have two major domains connected through
a conserved flexible linker: an N-terminal domain of ca. 200
amino acids that contains four predicted transmembrane regions,
and a cytoplasmic C-terminal domain of ca. 100 amino acids
that undergoes autocleavage in its NPTH amino acid motif.
This autoproteolytic event between the asparagine and proline
residues has been proposed to participate in substrate specificity
switching (discussed below; Lavander et al., 2002; Fraser et al.,
2003; Ferris et al., 2005; Sorg et al., 2007; Deane et al., 2008a;
Zarivach et al., 2008; Björnfot et al., 2009; Lountos et al., 2009;
Smith et al., 2009; Wiesand et al., 2009; Lorenz and Büttner,
2011; Thomassin et al., 2011). EscU interacts directly with EscP
and EscI, and both interactions have also been implicated in the
switching event (Zarivach et al., 2008; Thomassin et al., 2011;
Monjarás Feria et al., 2012; Sal-Man et al., 2012b).

EscV, the major constituent of the T3 export apparatus, is also
composed of two main domains: an N-terminal region with eight
transmembrane helices and a C-terminal cytoplasmic domain of
ca. 340 amino acids, which is much larger than that of EscU
(Ghosh, 2004; Moraes et al., 2008). MxiA, its homolog in Shigella,
assembles into a homononameric ring that aligns with the
secretion channel at the base of the inner membrane machinery
(Abrusci et al., 2013). The cytoplasmic domain of several flagellar
and virulence EscV homologs has been crystallized, showing
that the proteins of the FlhA/YscV family conserve a structural
fold of four subdomains, some of which participate in the self-
association of themonomers that form the nonameric export gate
ring (Bange et al., 2010; Lilic et al., 2010; Moore and Jia, 2010;
Saijo-Hamano et al., 2010; Worrall et al., 2010). Furthermore,
it has been shown that members of this protein family such as
FlhA and HrcV (the EscV homolog in Xanthomonas campestris)
interact with different T3S substrates, suggesting that they might
play a role in substrate recognition (Bange et al., 2010; Minamino
et al., 2012; Hartmann and Buttner, 2013; Kinoshita et al., 2013).
In addition, both virulence and flagellar EscV homologs have
been implicated in energy conversion from proton-motive force
(pmf) into protein export work (Hara et al., 2011; Minamino
et al., 2011; Lee et al., 2014). In agreement, it has been proposed
that members of the SctV family could actually form a proton
channel for energy transduction, coupling proton flow to the
T3 secretion process (Minamino et al., 2011; Lee and Rietsch,
2015).

Altogether, considering what has been reported for the
homologous proteins, the membrane components of the export
apparatus EscRSTUV would contribute to the recruitment and
regulation of initial insertion of substrates into the injectisome.
Specifically, the C-terminal domains of the flagellar EscV
and EscU homologs form a transmembrane export gate that
controls substrate access to the T3SS central channel (Minamino
and Namba, 2008; Minamino et al., 2010). Regarding the
stoichiometry of these membrane components, it was recently
demonstrated that the Salmonella SPI-1 export apparatus is
composed of 5 SpaP (EscR), 1 SpaQ (EscS), 1 SpaR (EscT),
1 SpaS (EscU), and 9 InvA (EscV) subunits (Zilkenat et al.,
2016). The export apparatus components EscRSTU are encoded
in the LEE1 operon whose expression is activated immediately
after T3SS induction, while the expression of other LEE operons
is activated 70min after induction (Yerushalmi et al., 2014).
In the SPI-1 encoded Salmonella T3SS, the EscRST homologs
(SpaPQR) are necessary for the recruitment and assembly of the
remaining components of the needle complex (Wagner et al.,
2010a). However, in the case of EPEC, interfering with the
timing of expression of the LEE1 operon barely affected the T3SS
assembly efficiency (Yerushalmi et al., 2014).

Cytoplasmic Components
ATPase Complex
The ATPase complex is formed by the EscN, EscL, and
EscO proteins (Figure 2), all of which are important for T3SS
function (Deng et al., 2004; Andrade et al., 2007; Ku et al.,
2009; Biemans-Oldehinkel et al., 2011; Romo-Castillo et al.,
2014). This virulence-associated complex is homologous to
the flagellar FliI/FliH/FliJ ATPase complex (Minamino and
MacNab, 2000b; Ibuki et al., 2011). The crystal structure of
the ATPase EscN has been solved, and like FliI, it shows
structural similarity to the F1-ATPase α and β subunits (Imada
et al., 2007; Zarivach et al., 2007). EscL, like FliH, has
been evolutionarily linked to the b and δ subunits of the
F1 ATPase (Pallen et al., 2005, 2006). Even more, despite
the lack of sequence conservation, in silico and functional
data suggest that EscO is the evolutionary counterpart of the
flagellar FliJ protein, which in turn has been related to the γ

subunit of the F1-ATPase (Ibuki et al., 2011; Romo-Castillo
et al., 2014). The functional relatedness of EscO and FliJ was
confirmed by heterologous complementation of the motility of
a 1fliJ mutant with a plasmid encoding EscO (Romo-Castillo
et al., 2014). Taken together, these similarities would imply
that an energy-producing enzyme, a motility machinery, and
an interkingdom protein transport device, share a common
evolutionary ancestor.

EscN is a peripheral membrane protein located at the base
of the needle complex that energizes the secretion process,
probably by releasing the substrate from its cognate chaperone
and unfolding it for further secretion, as has been reported
for Salmonella InvC, and functioning as a docking site for
chaperone-substrate complexes (Gauthier and Finlay, 2003;
Akeda and Galán, 2005; Thomas et al., 2005; Chen et al., 2013).
This enzyme oligomerizes into a homohexameric ring structure
and the oligomeric state of the protein affects its specific activity
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(Andrade et al., 2007; Zarivach et al., 2007). EscN interacts with
EscL, a negative regulator that inhibits its ATPase activity, and
with EscO, which conversely, stimulates EscN ATPase activity
(Biemans-Oldehinkel et al., 2011; Romo-Castillo et al., 2014).

A model proposed for the ATPase complex function that
includes previous findings in the flagellar and virulence T3S
systems, suggests that the formation of the EscN-EscL complex
in the cytoplasm ensures that the ATPase activity is inhibited
until ATP hydrolysis can be coupled to protein secretion,
preventing futile energy expenditure (Minamino and MacNab,
2000b; Blaylock et al., 2006; Stone et al., 2011). Once the
EscN/EscL/EscO complex is formed near the vicinity of the
export apparatus through protein-protein interactions with the
C-ring, both EscL and EscO, in a similar way to their T3SS
counterparts, interact with the major export gate component
EscV (Zhu et al., 2002; González-Pedrajo et al., 2006; Morita-
Ishihara et al., 2006; Hara et al., 2012; Cherradi et al., 2014; Lee
et al., 2014), promoting a conformational change that allows
EscO to stimulate EscN oligomerization and, subsequently, its
ATPase activity (Claret et al., 2003; Evans et al., 2006; Ibuki et al.,
2011; Romo-Castillo et al., 2014).

EscO has also been localized in the EPEC periplasm and as
previously mentioned, it was found to interact with the OM
ring protein EscC (Sal-Man et al., 2012a). In addition, similarly
to what has been observed for FliJ, EscO interacts with the
chaperones CesA2 (EscG) and CesL (Mpc) (Lin et al., 2014),
suggesting that this protein performs additional roles during the
T3S process. Likewise, EscL has been recently implicated as a
component of the sorting platform as will be discussed next
(Lara-Tejero et al., 2011; Hu et al., 2015).

C-ring/Sorting Platform
In A/E pathogens the C-ring is proposed to be a cytoplasmic
annular structure located at the base of the basal body, formed
mainly by the EscQ protein (formerly known as SepQ), which
belongs to the YscQ/FliN (SctQ) protein family (Figure 2; Pallen
et al., 2005; Biemans-Oldehinkel et al., 2011). Other members of
this family are YscQ (from Yersinia spp.), SpaO (from S. enterica
SPI-1), Spa33 (from S. flexneri), SsaQ (from S. enterica SPI-2),
andHrcQ (fromXanthomonas spp.) (Morita-Ishihara et al., 2006;
Lara-Tejero et al., 2011; Yu et al., 2011; Bzymek et al., 2012;
Lorenz et al., 2012; Notti et al., 2015). Three different proteins,
FliM, FliN, and FliG, form the corresponding flagellar C-ring,
and it has been shown that members of the SctQ family have an
evolutionary relationship with FliM and FliN (Zhao et al., 1996;
Hueck, 1998; Pallen et al., 2005; Thomas et al., 2006). The mRNA
from most of the sctQ homologs contains an internal alternative
translation site, giving rise to a full-length protein (SctQ-Full of
approximately 300 amino acids) resembling the flagellar FliM
protein, and to a shorter C-terminal version (SctQ-C of ca. 100
amino acids) similar to FliN. Both translation products, SctQ-
Full and SctQ-C, are required for T3S assembly and function
(Bzymek et al., 2012; Notti et al., 2015; McDowell et al., 2016)
with the exception of SsaQ-C from Salmonella SPI-2 that serves
as a chaperone for SsaQ-Full but is not essential for T3S (Yu et al.,
2011). To date it remains unclear whether EscQ has an internal
translation start site.

The SctQ-Full and SctQ-C proteins have been shown to
interact in a 1:2 ratio, and it is proposed that this complex
assembles into higher order oligomers that form a ring shaped
structure (Bzymek et al., 2012; Diepold et al., 2015; McDowell
et al., 2016). The SctQ-Full:SctQ-C protein ratio seems to be
important for proper injectisome assembly as it was shown that
there is a linear correlation between the SctQ-Full structure
assembly and the expression levels of SctQ-C protein (Diepold
et al., 2015). The injectisome SctQ-Full/SctQ-C complex is
believed to mirror the FliM/FliN basic building block of the
flagellar C-ring (Bzymek et al., 2012; McDowell et al., 2016). The
solved structures of several SctQ proteins revealed the presence of
SpoA domains that mediate both SctQ-C-SctQ-C homotypic and
SctQ-Full-SctQ-C heterotypic associations (Bzymek et al., 2012;
Notti et al., 2015; McDowell et al., 2016). It was recently reported
that the Y. enterocolitica C-ring is formed by 22 ± 8 YscQ-
Full subunits per injectisome and has an estimated diameter
of 30.2 nm, making it similar to that of the flagellum (Diepold
et al., 2015). Furthermore, Hu and colleagues determined the
structure of the S. flexneri C-ring by cryoelectron tomography
and showed that it is formed by six pod-like structures made
out of multiple copies of Spa33, arranged in a hexagonal array
of 32 nm in diameter and 24 nm in height. The top portion of the
pods, suggested to be composed of Spa33-Full and MxiK, links
the entire C-ring to the membrane-associated components of the
basal body. The bottom of each pod, proposed to be formed by
a homotetramer of Spa33-C, is connected to the ATPase Spa47
(SctN) through six spoke-like densities made out of MxiN (SctL)
(Hu et al., 2015). The ultrastructural details of the C-ring in A/E
pathogens have not yet been addressed. In Y. enterocolitica it has
been shown that the C-ring is a highly dynamic substructure
that exchanges subunits between a YscQ cytosolic pool and the
assembled structure at the base of the injectisome, and that the
rate of this subunit exchange correlates with the effector secretion
status (Diepold et al., 2015).

Co-immunoprecipitation experiments in EPEC revealed that
EscQ interacts with the ATPase complex components EscN
and EscL. Moreover, EscQ was found to be located in the
cytoplasm as well as associated with the membrane and this
subcellular localization was independent of its binding partners
(Biemans-Oldehinkel et al., 2011). Likewise, the EscQ homologs
Spa33, YscQ, and SpaO have been shown to interact with
members of the SctK and SctL families (MxiK/MxiN, YscK/YscL,
OrgA/OrgB; Jackson and Plano, 2000; Jouihri et al., 2003; Lara-
Tejero et al., 2011). In S. enterica, SpaO, OrgA, and OrgB form a
large molecular weight complex that interacts with translocators
and effectors in a sequential order, leading to the suggestion
that the C-ring may act as a sorting platform, queuing the
different substrate categories to establish the correct secretion
hierarchy. Both chaperones and molecular switch proteins have
an active role in this selection process, acting in concert with
the sorting platform to ensure an orderly secretion (Lara-
Tejero et al., 2011). In Y. enterocolitica and S. enterica the
formation of the C-ring/sorting platform substructure depends
on the presence of both SctK (YscK and OrgA) and SctL (YscL
and OrgB) proteins (Lara-Tejero et al., 2011; Diepold et al.,
2015). In contrast, the sorting platform visualized from Shigella
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1mxiN minicells showed that structural pods are assembled
even in absence of the MxiN (SctL) protein (Hu et al., 2015).
Based on the information for the homologous proteins, in
A/E pathogens the sorting platform might be formed by EscQ,
EscL, and EscK (formerly Orf4), a component that has been
associated with the SctK protein family (Abby and Rocha, 2012;
Barison et al., 2013). Like other members of the SctK protein
family such as OrgA from Salmonella and MxiK from Shigella,
EscK is critical for T3 secretion (Sukhan et al., 2001; Jouihri
et al., 2003; Deng et al., 2004). The precise composition and
function of the sorting platform in A/E pathogens remains to be
investigated.

Effectors and Chaperones
The ultimate goal of T3SS assembly is to modulate host
cell functions for the benefit of the bacterium, and this is
accomplished by the interplay of the biochemical activities
displayed by injected effectors. A/E pathogens share seven
effectors encoded in the LEE-PAI, and additionally each pathogen
has its own suite of effectors encoded outside the LEE,
termed non-LEE-encoded (Nle) effectors, which are encoded on
prophages or other integrative elements (McDaniel et al., 1995;
Deng et al., 2003, 2004, 2010; Tobe et al., 2006; Iguchi et al., 2009).

The LEE-encoded effectors are Tir, Map, EspF, EspG,
EspH, EspZ, and EspB (Garmendia et al., 2005). It has been
shown in EPEC that LEE-encoded effectors are hierarchically
secreted/translocated into host cells, being Tir the first effector
to be injected followed by EspZ, EspF, EspH, EspG, and Map
(Thomas et al., 2007; Mills et al., 2008). As previously mentioned,
although EspB is a structural translocon component, it is also
translocated into host cells but in much lower levels compared
to the other effectors, thus precluding a meaningful analysis of its
translocation hierarchy (Wolff et al., 1998; Mills et al., 2008). The
total number of effectors varies between pathogens, C. rodentium
possesses a reported repertoire of at least 29 effectors, while EPEC
E2348/69 encodes ca. 22 and EHEC O157:H7 encodes 39 (Tobe
et al., 2006; Dean and Kenny, 2009; Petty et al., 2010). Some
of the Nle effectors, like NleA/EspI, NleB, NleE, NleF, NleG,
NleH, EspJ, and EspL, are common to all LEE-encoding species
sequenced to date (Petty et al., 2010). A more recent hierarchical
translocation order was reported including both LEE and Nle
effectors, in which Tir is again the first one to be injected followed
by EspZ, NleA, NleH1, EspF, EspH, NleH2, EspJ, Map, EspG,
NleD, NleF, NleB1, NleE1, NleB2, NleC, NleG, NleE2, EspG2, and
EspL2 (Mills et al., 2013). For a detailed description of the specific
function of effectors in A/E pathogens, we refer to reviews on the
subject (Dean and Kenny, 2009; Jayamani and Mylonakis, 2014;
Santos and Finlay, 2015).

In general, effectors contain one or more C-terminal catalytic
domains that manipulate host cell functions, while their
N-termini mediates chaperone recognition and transport via
the T3SS (Ghosh, 2004). The first ca. 20 amino acids contain
the secretion signal sequence necessary and sufficient for T3
secretion (Crawford and Kaper, 2002; Munera et al., 2010;
Deng et al., 2015). The chaperone-binding domain is located
downstream of the N-terminal secretion signal, usually between
amino acids 50 and 100 (Blocker et al., 2003). This domain adopts

a linear conformation and wraps around the chaperone dimer
through a β-motif (Lilic et al., 2006).

The T3SS-associated chaperones are small and acidic
cytoplasmic proteins important for efficient secretion of their
cognate substrates (Feldman and Cornelis, 2003). They promote
T3 substrate secretion by contributing to protein stability, aiding
in substrate recognition and targeting, preventing premature
oligomerization and unspecific interactions, and participating
in the establishment of a secretion hierarchy (Wainwright and
Kaper, 1998; Abe et al., 1999; Elliott et al., 1999a; Gauthier and
Finlay, 2003; Neves et al., 2003; Parsot et al., 2003; Creasey et al.,
2003a,c; Thomas et al., 2005, 2007; Su et al., 2008; Chen et al.,
2013; Sal-Man et al., 2013; Allison et al., 2014). T3 chaperones
function in an ATP-independent manner, although chaperone
dissociation from the substrate-chaperone complex is an ATP-
dependent process (Akeda and Galán, 2005). These proteins
have been grouped into three classes depending on their binding
substrates: class I chaperones that bind effectors (class IA, one
effector and class IB, multiple effectors), class II chaperones that
bind translocators, and class III chaperones that bind the needle
component (Cornelis and Van Gijsegem, 2000; Page and Parsot,
2002; Parsot et al., 2003; Cornelis, 2006).

The LEE encodes eight proteins that have been characterized
as chaperones: CesF, CesL, CesT, CesAB, CesD, CesD2, EscE,
and EscG/CesA2 (Wainwright and Kaper, 1998; Elliott et al.,
1999a, 2002; Luo et al., 2001; Creasey et al., 2003a,c; Neves et al.,
2003; Thomas et al., 2005; Younis et al., 2010; Ramu et al.,
2013; Sal-Man et al., 2013). These proteins, with the exception of
CesF and CesD2, are critical for C. rodentium virulence in mice
(Deng et al., 2004). CesT was originally classified as a class IA
chaperone for the Tir effector, but subsequent reports showed
that it interacts with 10 additional effectors: Map, NleA, NleF,
NleH, NleH2, EspH, EspZ, EspF, NleG, and EspG, being re-
classified as a multicargo class IB chaperone (Abe et al., 1999;
Elliott et al., 1999a; Creasey et al., 2003a,b; Thomas et al., 2005,
2007; Mills et al., 2008). CesF is a class IA chaperone that binds
EspF (Elliott et al., 2002) and is required for its translocation
(Mills et al., 2008). Additionally, based on sequence similarity
searches, CesL was recently classified as a class I chaperone
for SepL although it is a special case, since its substrate seems
to be an aberrant effector that is not secreted (Younis et al.,
2010).

Four class II chaperones have been described in A/E
pathogens: CesD, CesD2, CesAB, and CesA2. CesD assists
EspD and EspB secretion, although it has only been shown
to directly interact with EspD (Wainwright and Kaper, 1998),
which has an additional chaperone, CesD2 (Neves et al., 2003).
The CesAB chaperone differs from the others in that it has a
basic pI. It interacts specifically with EspA and EspB, preventing
their polymerization, maintaining them partially unfolded and
promoting their stabilization (Creasey et al., 2003b; Yip et al.,
2005b). Finally, CesA2 was identified in EHEC as a second
chaperone for EspA (Su et al., 2008). However, it was later
demonstrated in EPEC that CesA2 is a class III chaperone that
binds to the needle subunit EscF and therefore, it was named
EscG, which together with EscE avoid premature polymerization
of the needle (Sal-Man et al., 2013).
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SECRETION REGULATION

Efficient assembly and function of the T3SS depend on the
hierarchical and temporal control of substrate secretion. The
assembly of the injectisome is a sequential process that initiates
with a Sec-dependent secretion stage in which the OM and
IM ring proteins, as well as the export apparatus components,
are integrated into the bacterial membranes, then, the ATPase
complex and C-ring constituents associate with the basal body
to form a functional T3SS (Diepold et al., 2010; Wagner et al.,
2010a). Subsequently, the remaining components are secreted
in a T3SS-dependent and ordered manner. T3 substrates are
classified into three categories according to their temporal
secretion: early (inner rod and needle), middle (translocators),
and late (effectors) substrates. The hierarchical secretion of
these proteins is regulated by two substrate specificity-switching
mechanisms that involve protein complexes referred to as
molecular switches (Tree et al., 2009; Deane et al., 2010; Büttner,
2012). The secretion regulation mechanisms are reviewed below
and a working model for A/E pathogens, based on recent studies
in the field, is illustrated in Figure 4.

Molecular Switch 1: EscP/EscU
The transition from early to middle and late substrate secretion
occurs once the needle reaches its proper length, a mechanism
regulated, as mentioned above, by T3S4 proteins (Minamino
et al., 2004; Büttner, 2012), such as EscP from EPEC, YscP
from Yersinia, InvJ from Salmonella, Spa32 from Shigella, HpaC
from Xanthomonas and FliK in the flagellar T3SS (Kubori et al.,
2000; Magdalena et al., 2002; Tamano et al., 2002; Journet et al.,
2003; Minamino et al., 2004; Lorenz et al., 2008; Monjarás Feria
et al., 2012). Most T3S4 proteins are secreted, and its absence
results in the assembly of abnormally long needle/hook structures
(Hirano et al., 1994; Kawagishi et al., 1996; Minamino et al., 1999;
Payne and Straley, 1999; Kubori et al., 2000; Stainier et al., 2000;
Magdalena et al., 2002; Tamano et al., 2002; Agrain et al., 2005;
Waters et al., 2007; Monjarás Feria et al., 2012). Interestingly,
HpaC, the only non-secreted T3S4 protein is not involved in
pili length regulation (Büttner et al., 2006). The absence of YscP,
Spa32, HpaC, and FliK also leads to a reduction or complete
absence of middle and/or late substrate secretion, suggesting
that besides controlling needle/hook length, T3S4 proteins also
promote the secretion substrate specificity switch (Hirano et al.,
1994; Kawagishi et al., 1996; Williams et al., 1996; Minamino
et al., 1999; Stainier et al., 2000; Magdalena et al., 2002; Tamano
et al., 2002; Edqvist et al., 2003; Journet et al., 2003; Botteaux et al.,
2008; Morris et al., 2010; Lorenz and Büttner, 2011; Schulz and
Büttner, 2011). In EPEC, however, elimination of escP results in
a reduced secretion of middle substrates but enhanced secretion
of effectors, this led to the proposal that EscP is not indispensable
for substrate switching, although it increases the efficiency of the
switching event (Monjarás Feria et al., 2012). In agreement, a
1spa32 mutant can still form translocation pores and display
some RBCs hemolytic activity, indicating that it autonomously
switches substrate specificity (Shen et al., 2012).

Substrate switching is regulated by the interaction of T3S4
proteins with members of the SctU export apparatus protein

family. T3S4 proteins interact with the C-terminal domain of
SctU, as shown for EscP/EscU, Spa32/Spa40, HpaC/HrcU, and
FliK/FlhB (Minamino and Macnab, 2000a; Botteaux et al., 2008;
Lorenz et al., 2008; Morris et al., 2010; Monjarás Feria et al.,
2012). This interaction is proposed to induce conformational
changes in SctU proteins that in turn change their specificity
of substrate secretion, regulating the switching event. The
finding that extragenic suppressor mutations of fliK and yscP
are localized in the C-terminal domains of YscU and FlhB,
respectively, supports this idea (Kutsukake et al., 1994; Williams
et al., 1996; Edqvist et al., 2003).

The YscU/FlhB protein family undergoes spontaneous
autocleavage in the NPTHmotif found in an exposed region at its
C-terminal domain. The two resulting cleavage products remain
tightly associated, as has been demonstrated for EscU in EPEC,
YscU in Yersinia, Spa40 in Shigella and FlhB in the flagellar T3SS
(Minamino and Macnab, 2000a; Deane et al., 2008a; Björnfot
et al., 2009; Monjarás Feria et al., 2012). The autoproteolytic
event changes the orientation of the PTH loop and is proposed
to create a potential interaction surface for other T3SS proteins
(Lavander et al., 2002; Ferris et al., 2005; Deane et al., 2008a;
Zarivach et al., 2008; Björnfot et al., 2009; Lountos et al.,
2009; Wiesand et al., 2009). Since non-cleavable mutants reduce
secretion of intermediate and late substrates, it is thought that
a docking surface for different T3S substrates might be created
upon proteolytic cleavage of SctU proteins (Fraser et al., 2003;
Sorg et al., 2007; Zarivach et al., 2008; Lorenz and Büttner, 2011;
Thomassin et al., 2011). In EPEC, a subtle conformational change
in a conserved surface was observed in non-cleavable mutants
(Zarivach et al., 2008). Besides this change in structure, in a non-
cleavable EscU mutant background, the membrane association
of the multicargo chaperone CesT is reduced, suggesting that
the cleavage is important for substrate docking; however, no
direct interaction between CesT and EscU could be demonstrated
(Thomassin et al., 2011). In any case, although indispensable for
secretion regulation, the cleavage event per se is not the signal that
triggers the substrate secretion change; instead, it might allow
YscU/FlhB protein family members to acquire the conformation
required for its substrate switching function (Minamino and
Macnab, 2000a; Zarivach et al., 2008; Monjarás Feria et al., 2015).

The molecular mechanisms that regulate needle/hook length
and the secretion substrate specificity switch have been
extensively studied in various systems, leading to the proposal of
different models that will be discussed below.

Single Ruler Model
The observation that the size of YscP correlates with the length of
the needle, led Journet and colleagues to propose that this protein
functions as a molecular ruler that directly measures needle
length (Journet et al., 2003). In this static ruler model, YscP is
positioned within the inner channel of the growing needle, with
its N- and C-terminal domains probably contacting the needle tip
and the T3SS base, respectively, allowing the secretion of needle
subunits. When the molecular ruler is completely stretched,
it interacts with YscU at the T3SS base to switch substrate
secretion, and gets secreted, finishing the export of needle
subunits and permitting middle and late substrate secretion
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FIGURE 4 | Model for T3 secretion regulation in A/E pathogens. (A) Rod and needle assembly occur simultaneously (Marlovits et al., 2006; Lefebre and Galán,

2014). EscP directly interacts with early substrates (EscI and EscF, rod and needle subunits, respectively), regulating its secretion. EscP is secreted occasionally during

needle assembly. (B) Once rod and needle assembly is completed, EscP makes contact with the full-length needle, causing a pause in substrate secretion that allows

the productive interaction between EscP and the pre-cleaved C-terminal domain of EscU (EscUcc) (Monjarás Feria et al., 2012). This interaction is proposed to

promote a conformational change in EscUcc that flicks substrate specificity, probably generating a docking site for a different category of substrates (Zarivach et al.,

2008; Thomassin et al., 2011). (C) Translocator secretion is now allowed. The SepL/SepD/CesL complex targets translocator/chaperone complexes to the sorting

platform (formed by EscQ, EscL, and EscK; Lara-Tejero et al., 2011). SepL also interacts with the export gate component EscV and probably modifies its affinity for

certain substrate classes; it has also been proposed that it might block access of effectors to the export gate (Lee et al., 2014; Shen and Blocker, 2016). SepL

interacts with the effector Tir, preventing its secretion (Wang et al., 2008). (D) Upon host cell contact, the SepL/SepD/CesL complex might disengage from the export

gate component and the sorting platform, alleviating the effector recognition blockade exerted on EscV and allowing effector translocation into host cells.

(Journet et al., 2003). Afterwards it was demonstrated that only
one YscP molecule was required for length control and that,
while measuring needle length, it preserved its helical structure
(Wagner et al., 2009, 2010b). However, since the diameter of an
α-helix is approximately 10 Å and that of the secretion channel
is 13 Å, it is impossible to fit a ruler protein and a secreted
needle subunit in it (Fujii et al., 2012). Under these same physical
constraints, the simultaneous secretion of FliK and hook subunits
in the flagellar system was also suggested to be improbable, and
therefore an alternative model was proposed for hook length
regulation (Shaikh et al., 2005; Moriya et al., 2006).

Infrequent Ruler Model
In agreement with the previous model, FliK, Spa32, and
InvJ have also been demonstrated to act as molecular
rulers (Shibata et al., 2007; Botteaux et al., 2008; Erhardt
et al., 2011; Wee and Hughes, 2015). However, the proposed
needle/hook measurement mechanisms are different. The
alternative dynamic-ruler model was originally proposed in the

flagellar system by Moriya et al. (2006). This model suggests
that during hook assembly FliK is occasionally exported, and
that when found in the central channel secretion is briefly
paused, allowing the measurement of hook length through the
temporary interaction of the N- and C-terminal domains of
FliK with the hook cap FlgD and FlhB, respectively. Short
hooks do not allow productive interactions with FliK, inducing
its rapid secretion, however, as the hook assembles, more
frequent interactions between FliK and the growing structure
occur, slowing the secretion rate. Finally, when the hook length
reaches approximately 55 nm, the slow secretion rate enables
the completely stretched FliK to successfully interact with FlhB,
which flips the switch in substrate secretion (Erhardt et al.,
2010a, 2011). A similar mechanism was proposed for the needle
length control in EPEC. EscP, which directly interacts with
EscF, measures needle length upon intermittent secretion during
needle assembly (Figure 4A). When this structure reaches its
final length, all subdomains of EscP can make contact with
the needle, promoting a pause in secretion that allows EscP
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to interact with EscU, inducing a conformational change that
modifies its specificity from early to middle and late substrates
(Figure 4B; Monjarás Feria et al., 2012).

Role of the Inner Rod in Needle Length and Substrate

Switching
An alternative model was proposed for the SPI-1 injectisome
in S. enterica, which states that the assembly of the inner
rod determines the size of the needle. Therefore, the substrate
switching is the result of conformational changes produced
at the base of the T3SS in response to inner rod assembly
completion (Marlovits et al., 2006). Many pieces of evidence
support this model. An invJ null mutant, which assembles
long needles (Kubori et al., 2000), secretes high levels of the
inner rod subunit PrgJ, but fails to assemble this structure,
thus, InvJ was proposed to promote inner rod assembly. In
addition, the overexpression of PrgJ results in the assembly of
shorter needles, apparently because of faster inner rod assembly
(Sukhan et al., 2003; Marlovits et al., 2006). Moreover, mutations
in PrgJ that slowed the rate of rod assembly, presumably
due to impaired subunit-subunit interactions, lead to the
assembly of longer needles (Lefebre and Galán, 2014). Likewise,
a role of the inner rod component in substrate specificity
switching has been proposed in Y. pseudotuberculosis. It was
shown that the inner rod protein YscI is hypersecreted in a
yscP mutant background and that a suppressor mutation in
YscU reestablishes normal YscI secretion, suggesting that the
inner rod assembly is important for the substrate specificity
switching mechanism (Wood et al., 2008). In EPEC, EscP
was shown to directly interact with the inner rod subunit
EscI, and it is proposed to regulate its secretion, since an
escP null mutant hypersecretes EscI (Monjarás Feria et al.,
2012). Besides, EscI has also been shown to interact with the
export gate protein EscU (Creasey et al., 2003b; Sal-Man et al.,
2012b).

It is possible that a combination of these models will
contribute to the molecular mechanism of needle length control
and substrate specificity switching. Finally, the outcome of the
first molecular switch is the assembly of a proper size needle and
the trigger of middle and late substrate secretion.

Molecular Switch 2: SepL/SepD
The secondmolecular switch regulates differentially the secretion
of translocators and effectors. A family of proteins known as
gatekeepers participates in this switch. It comprises proteins like
SepL from A/E pathogens (Kresse et al., 2000; Deng et al., 2004;
O’Connell et al., 2004),MxiC from Shigella (Botteaux et al., 2009),
InvE and SsaL from Salmonella SPI-1 and SPI-2, respectively
(Kubori and Galán, 2002; Coombes et al., 2004), CopN from
Chlamydia (Fields and Hackstadt, 2000), YopN/TyeA from
Yersinia (Forsberg et al., 1991; Iriarte et al., 1998), and PopN/Pcr1
from Pseudomonas (Yang et al., 2007). In the latter two cases, the
protein is divided in two polypeptide chains that correspond to
the N- and C-terminal domains of the full-length proteins.

In A/E pathogens, elimination of SepL abolishes secretion
of the translocators and increases secretion of effectors (Deng
et al., 2004; O’Connell et al., 2004; Wang et al., 2008). This

phenotype is identical to that of the ssaLmutant in the Salmonella
SPI-2 (Coombes et al., 2004; Yu et al., 2010). In the case of
MxiC and InvE, their absence results in a decreased secretion
of translocators and increased secretion of effectors (Kubori
and Galán, 2002; Botteaux et al., 2009; Martinez-Argudo and
Blocker, 2010), while elimination of YopN leads to a constitutive
secretion of both translocators and effectors (Forsberg et al.,
1991; Day and Plano, 1998). These mutant phenotypes suggest
that these proteins are bifunctional, promoting translocator
secretion (with exception of YopN) and avoiding the premature
secretion of effectors (Figure 4C). In EPEC and EHEC SepL
interacts with SepD, whose deletion in A/E pathogens results
in the same phenotype as the sepL null mutant (Deng et al.,
2004; O’Connell et al., 2004). Aside from its role in secretion
regulation, no further information has been published on SepD
function.

Promoting Translocator Secretion
The mechanism of translocator secretion regulation is not
completely understood; however, in Salmonella it was shown
that InvE directly interacts with the chaperone/translocator
complex, though not with its individual components (Kubori
and Galán, 2002). Additionally, the Chlamydial gatekeeper CopN
interacts with the translocator-specific chaperone Scc3, and this
interaction is important not only for translocator secretion
but also for timely secretion prior to effectors (Archuleta and
Spiller, 2014). Likewise, Shigella MxiC was shown to interact
with the translocator chaperone IpgC (Cherradi et al., 2013).
These results highlight the importance of the interaction of
the gatekeeper with the translocator/chaperone complex or its
individual components in the establishment of the secretion
hierarchy. Furthermore, as aforementioned, in a seminal work
Lara-Tejero et al. demonstrated the existence of a sorting
platform that selects substrates for secretion. Translocators are
loaded into the sorting platform in an InvE dependent manner,
and elimination of translocators or the gatekeeper results instead
in the loading of effectors (Lara-Tejero et al., 2011).

Recently, the crystal structure of SepL from EPEC was
determined (Burkinshaw et al., 2015b). It showed that despite
the low sequence similarity between gatekeeper proteins, its
overall structure is well conserved, with a general architecture
consisting of three helical X-bundle domains.When compared to
the solved structures of CopN, YopN/TyeA and MxiC (Schubot
et al., 2005; Deane et al., 2008b; Archuleta and Spiller, 2014),
the SepL structure showed that among the regions conserved
between these proteins one corresponds to the binding site of
the translocator chaperone Scc3 in CopN. Protein sequence
analysis highlighted the presence of three highly conserved
residues: Tyr188, Phe327 and Arg333 (Burkinshaw et al., 2015b).
In CopN, Arg365 (equivalent to Arg333 in SepL) is essential
for the CopN/Scc3 interaction (Archuleta and Spiller, 2014). In
contrast, alanine substitution of Arg333 in SepL did not affect
the secretion phenotype (Burkinshaw et al., 2015b), though an
interaction between SepL and translocators or their chaperones
in A/E pathogens has yet to be demonstrated. In conclusion,
the precise molecular mechanism through which gatekeepers
promote translocator secretion remains an open question.
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Preventing Premature Secretion of Effectors
The prevention of effector secretion before host cell contact is a
common feature of all gatekeeper proteins. For some of them,
this regulatory function relies in their ability to be secreted, e.g.,
YopN, MxiC, CopN, and PopN (Day and Plano, 1998; Fields
and Hackstadt, 2000; Yang et al., 2007; Botteaux et al., 2009). In
the case of Yersinia, YopN functions like a plug that physically
blocks the secretion channel while being attached to the T3SS
base through its interaction with TyeA, however, in response to
low calcium concentration, this interaction is disrupted, YopN
is secreted and the blockade is relieved allowing the secretion
of Yops (Cheng et al., 2001). In Chlamydia, the secretion of
CopN is also essential for secretion of effectors (Archuleta and
Spiller, 2014; Shen et al., 2015). Additionally, a recent model of
effector secretion control in Pseudomonas suggests that the PopN
complex (PopN, Pcr1, PscB, and Pcr2) is tethered to the T3S
apparatus via the Pcr1/PcrD (SepL C-terminal domain/EscV)
interaction, blocking the access of effectors to the secretion
apparatus. However, when the appropriate signal for effector
secretion is received, PopN is secreted, permitting the loading of
effectors onto the sorting platform and its subsequent docking
to the export gate for secretion (Lee et al., 2014). A similar
mechanism was proposed for MxiC from Shigella, in which its
interaction with the inner rod protein MxiI, blocks access of
effectors to the entry gate. Nevertheless, since this mechanism is
also conserved for InvE in Salmonella, which is not secreted, its
regulationmight rely instead in the ability ofMxiC to engage with
the rod and not in its secretion capacity (Botteaux et al., 2009;
Cherradi et al., 2013).

In A/E pathogens, neither SepL nor SepD have been observed
to be secreted. Therefore, a different secretion regulation
mechanism was proposed in EHEC, in which SepL was shown
to bind to the effector Tir. It was demonstrated that while
translocators are secreted, the interaction of Tir with SepL delays
its secretion, avoiding the premature export of all other effectors,
which suggests that this interaction controls the proper timing
of secretion (Figure 4C; Wang et al., 2008). This mechanism is
supported by the demonstration that Tir secretion is important
for the secretion of the rest of the effectors (Thomas et al.,
2007). In addition, as aforementioned, there is an established
hierarchy in the secretion of effectors in which Tir is the first
effector to be secreted (Figure 4D; Mills et al., 2008, 2013). In this
regard, it has also been shown that although Tir translocation is
not essential for the translocation of other effectors, its absence
negatively influences their translocation efficiency (Mills et al.,
2013). Finally, it was suggested that different interacting partners
of SepL are required for its secretion regulatory function. This is
sustained by the fact that the same region of SepL that is required
for Tir binding is also essential for its interaction with EscD
(Wang et al., 2008).

Even though SepL is not secreted, it was proposed to be
an aberrant effector because when fused to a reporter protein,
its N-terminal domain is able to mediate protein secretion.
Moreover, the SepL-SepD complex was shown to interact with
a third protein named CesL, which like SepD, is suggested
to function as a SepL chaperone (Younis et al., 2010). The
SepL-SepD-CesL complex resembles the YopN/TyeA-YscB-SycN

complex in Yersinia (Day and Plano, 1998), PopN/Pcr1-PscB-
Pcr2 complex in Pseudomonas (Yang et al., 2007), CopN-Scc4-
Scc1complex in Chlamydia (Silva-Herzog et al., 2011) and SsaL-
SpiC-SsaM complex in Salmonella SPI-2 T3SS (Yu et al., 2010).
An outstanding work by Yu and colleagues demonstrated that
the SsaL-SpiC-SsaM complex regulates the secretion hierarchy in
response to pH changes. This protein complex associates with
the T3SS base under the acidic conditions of the Salmonella-
containing vacuole, allowing the secretion of translocators while
blocking the secretion of effectors. When the translocation pore
assembles in the vacuolar membrane, an increase in pH is
detected and transmitted to the T3SS base, which in turn causes
dissociation of the SsaL-SpiC-SsaM complex and the degradation
of its individual components, permitting the secretion of effectors
(Yu et al., 2010). In A/E pathogens it has been shown that,
upon removal of calcium from the growth medium, translocator
secretion is reduced while effector secretion is increased, a
phenotype that partially mimics that of the sepL or sepDmutants
(Kenny et al., 1997a; Ide et al., 2003; Deng et al., 2005). This
suggests that the absence of calcium might be the environmental
cue that regulates the secretion hierarchy, probably through the
SepL/SepD complex (Deng et al., 2005).

CONCLUDING REMARKS

Enteropathogenic and enterohemorrhagic E. coli are an
important cause of gastroenteric disease worldwide. These E. coli
pathotypes remain as a major public health concern both in the
third world population, where EPEC infections predominate,
and in developed countries where EHEC is responsible for
food-borne outbreaks. The T3SS is an essential virulence trait in
the pathogenesis of these bacteria, thus, it is crucial to understand
the mechanistic and functional characteristics of this complex
machinery. Remarkable advances have been made in the T3SS
field in A/E pathogens. To date, almost all of the genes encoded
in the LEE PAI have an assigned function, with rorf1 being the
exception. Nevertheless, the function of some proteins, such
as EscK, has only been deduced based on similarities shared
with proteins of other T3S systems. Hence, to have a complete
understanding of the injectisome, we must expand our efforts
to uncover the precise role of such unexplored components.
Moreover, numerous crystal structures of A/E pathogens
T3SS components have been solved, contributing to a deeper
understanding of protein function and interactions, as well
as of the overall architecture and assembly of the injectisome.
However, there are still several structural and mechanistic
details that need to be elucidated, such as determining the
precise composition and function of the export apparatus and
cytoplasmic components and unraveling the mechanism of
protein transport through a 600 nm filament. In addition, C.
rodentium has proved to be an invaluable tool for in vivo analyses
of T3SS function. Nonetheless, cheaper and more practical
invertebrate models such as Galleria mellonella are emerging
to understand the virulence mechanisms of A/E pathogens
(Leuko and Raivio, 2012). T3S regulation has also been studied
in A/E pathogens, showing that highly conserved mechanisms
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involving two molecular switches and a sorting platform act in
coordination to establish a strict hierarchy of substrate secretion.
Yet, the physiological signal that triggers effector translocation
upon host cell contact is still unknown.

Recent advances in fluorescence microscopy, cryo-electron
tomography and single molecule super-resolution techniques
have greatly contributed to deciphering the architecture of
this complex machine. The use of these tools showed that
the T3S systems are not static structures, but instead are
dynamic molecular machines that undergo several changes
to adapt to different secretion states; for example, employing
FRAP (fluorescence recovery after photobleaching), the C-ring
main component was demonstrated to exchange between a
cytoplasmic and an assembled state (Diepold et al., 2015). In
addition, by performing TIRF-FRAP (total internal reflection
fluorescence and FRAP) experiments, the ATPase complex was
proposed to function as both, a dynamic substrate carrier and
a static substrate loader (Bai et al., 2014). Moreover, cryo-
electron tomography revealed that these cytoplasmic complexes
are structurally stabilized, and the basal body adopts a compacted
conformation, upon host cell contact (Nans et al., 2015). Thus,
these real time experiments in A/E pathogens are required to
disclose the dynamic nature of the T3SS in action. Despite all
this knowledge, there are multiple open questions that remain
elusive, e.g., the signaling cascade from host cell sensing to
signal transduction and response of the cytoplasmic components,
substrate targeting and docking and the energizing of the
secretion process. An intriguing issue is how the T3SS basal
machinery recognizes the secretion signal of T3 substrates and
which is the precise interaction path that substrate-chaperone
complexes have to follow. Likewise, although it has been
proposed that the proton motive force is the main energy source
for protein transport (Minamino et al., 2011; Lee et al., 2014),
the components involved in proton flow coupling to protein
secretion are still unknown. The in vitro reconstitution of the
T3SS could open up possibilities to solve these problems.

The comprehensive understanding of the structure and
function of this complex secretion nanomachine will help to
elucidate a way to interfere with this system, preventing bacterial
pathogenicity. Drug discovery efforts to inhibit T3SS-mediated
virulence in A/E pathogens must be guided by new rational
approaches such as molecular docking, design of synthetic
peptides and high-throughput screenings (Pan et al., 2007;
Larzábal et al., 2010; Kimura et al., 2011; Duncan et al., 2012).
Recently, the controlled expression of EPEC injectisomes in a
non-pathogenic E. coli K-12 strain (Ruano-Gallego et al., 2015),
showed the feasibility and the potential of using the T3SS of A/E
pathogens as a molecular tool for biotechnological applications
and therapeutic purposes. Finally, since poverty, malnutrition
and enteric diseases are closely linked, measures to ensure access
to clean water sources and basic sanitation services in susceptible
communities must be guaranteed.
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