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Abstract
Research in the macaque monkey suggests that cortical areas with similar microstructure are more likely to be connected.
Here, we examine this link in the human cerebral cortex using 2 magnetic resonance imaging (MRI) measures: quantitative
T1 maps, which are sensitive to intracortical myelin content and provide an in vivo proxy for cortical microstructure, and
resting-state functional connectivity. Using ultrahigh-resolution MRI at 7 T and dedicated image processing tools, we
demonstrate a systematic relationship between T1-based intracortical myelin content and functional connectivity. This
effect is independent of the proximity of areas. We employ nonlinear dimensionality reduction to characterize connectivity
components and identify specific aspects of functional connectivity that are linked to myelin content. Our results reveal a
consistent spatial pattern throughout different analytic approaches. While functional connectivity and myelin content are
closely linked in unimodal areas, the correspondence is lower in transmodal areas, especially in posteromedial cortex and
the angular gyrus. Our findings are in agreement with comprehensive reports linking histologically assessed microstructure
and connectivity in different mammalian species and extend them to the human cerebral cortex in vivo.
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Introduction
Comprehensive research in macaque monkeys has revealed an
intricate link between cortical microstructure and connectivity

(see Pandya et al. 2015 for a review). In particular, long-range con-
nections preferentially occur between areas with similar micro-
structural features (e.g. Pandya and Sanides 1973; Pandya and
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Yeterian 1985, 1990; Barbas and Pandya 1989). Microstructural
similarity has therefore been suggested as a general connectivity
principle—or wiring rule—of the mammalian cortex (Barbas 2015;
Pandya et al. 2015). This claim is supported by quantitative ana-
lyses of the macaque (Beul et al. 2015), cat (Beul et al. 2014), and
mouse (Goulas et al. 2016a) connectomes, but remains largely
unexplored in the human brain.

The aforementioned animal studies rely on combined tract-
tracing and postmortem histology, invasive approaches that
are unsuitable to study the human brain. While magnetic res-
onance imaging (MRI)-based techniques to assess cortical con-
nectivity have been widely adopted, the analysis of human
cortical microstructure remains challenging. Some recent stud-
ies have related cytoarchitectonic data, available from the lit-
erature, to connectivity measures derived from MRI in a
separate group of subjects. Thus, van den Heuvel et al. (2015,
2016) demonstrated that the degree of connectivity of an area
is related to the size and complexity of its layer III pyramidal
neurons, a finding that is in line with previous work in
macaque monkeys (Scholtens et al. 2014). Moreover, Goulas
et al. (2016b) showed that the existence of connections between
2 areas is partly predicted by their similarity in supragranular
cell density. These findings lend strong support for a relation-
ship between macroscale connectivity and microstructural fea-
tures in the human cortex. Here, we investigate this link
in vivo, using high-resolution MRI measures, sensitive to con-
nectivity and microstructural features, both acquired from the
same subjects.

With recent advances in MRI technology, it has become
possible to derive measures related to cortical microstructure
in the living human brain. Classic histological approaches to
describe cortical microstructure focus on the distribution of
cells (“cytoarchitectonics” e.g. Brodmann 1909) or myelinated
fibers (“myeloarchitectonics” e.g. Vogt and Vogt 1919) within
the cortical sheet. Because the longitudinal relaxation time
(T1) in MRI is sensitive to gray-matter myelin content (Bock
et al. 2009; Stüber et al. 2014), maps of intracortical T1 have
been introduced as an in vivo proxy for cortical microstruc-
ture and revived interest in myeloarchitectonic approaches
(Nieuwenhuys 2013). These maps exhibit a decrease in esti-
mated myelin content from primary to transmodal areas
(Glasser and Van Essen 2011; Tardif et al. 2015), which is in
line with findings from histological studies (e.g., Hopf 1955,
1956; Hopf and Vitzthum 1957). The co-occurrence of local
changes in intracortical T1 maps with certain architectonic
(Geyer et al. 2011; Glasser and Van Essen 2011), functional
(Bridge et al. 2005; Sigalovsky et al. 2006), and topographic
(Dick et al. 2012; Sereno et al. 2013) boundaries, as well as
rapid changes in functional connectivity patterns (Glasser
et al. 2016), exemplifies their usefulness to investigate cortical
organization.

Cortical connectivity patterns are now commonly investi-
gated in vivo through resting-state functional connectivity
(Biswal et al. 1995). While functional connectivity can reflect
indirect links between areas (Adachi et al. 2012), it is largely
constrained by anatomical connections (Skudlarski et al. 2008;
Honey et al. 2009; Hermundstad et al. 2013).

With this study, we investigate the relationship between
in vivo measures sensitive to intracortical myelin and func-
tional connectivity in the human cerebral cortex. We employ
ultrahigh field MRI and dedicated image processing tools to
compare functional connectivity patterns with cortical differ-
ences in T1-based myelin estimates at a submillimeter reso-
lution. Motivated by the coherent findings in other mammalian

species, we hypothesize that similarity in intracortical myelin
relates to functional connectivity, thereby constituting a wiring
rule of human cerebral cortex.

Materials and Methods
Data

MRI data were acquired and published previously in 2 independ-
ent studies (Gorgolewski et al. 2015; Tardif et al. 2016). Here,
we use data sets of 9 subjects who took part in both studies
(5 females, mean age = 24.8 years, standard deviation = 1.2 years,
see Supplementary Table 1 for subject identifiers). All subjects
gave written informed consent and the studies were approved
by the Ethics Committee of the University of Leipzig. Data
were acquired on a 7T MR scanner (MAGNETOM, Siemens
Healthcare) equipped with a 24-channel Nova head coil. In the
first study (Tardif et al. 2016), a structural scan was acquired at
an isotropic resolution of 0.5mm using the MP2RAGE sequence
(Marques et al. 2010, inversion time (TI)1/TI2 = 900/2750ms,
repetition time (TR) = 5 s, echo time (TE) = 2.45ms, α1/α2 = 5°/3°,
bandwidth = 250Hz/px, echo spacing = 6.8ms, partial Fourier =
6/8, scan time = 28min per hemisphere) and an optimized radio-
frequency pulse to minimize sensitivity to B1 inhomogeneity
(Hurley et al. 2010). The resulting images were used to generate
whole brain T1 maps. In the second study (Gorgolewski et al.
2015), a total of 4 whole brain resting-state scans were acquired
in 2 sessions at an isotropic resolution of 1.5mm, using a T2*-
weighted echo-planar imaging sequence (field of view = 192 ×
192mm2, 70 slices, TR = 3 s, TE = 17ms, α = 70°, bandwidth =
1116Hz/Px, partial Fourier 6/8, GRAPPA acceleration with iPAT
factor of 3, 300 volumes per scan). In the first of these 2 sessions,
an additional short structural scan (11min) was acquired using
the MP2RAGE sequence with similar parameters as above but an
isotropic resolution of 0.7mm. The uniform T1-weighted (T1w)
image generated from this scan was used as an intermediate
registration target to project the resting-state data into the space
of the high-resolution T1 map and will be referred to as the “low-
resolution T1w image.”

System Environment and Software

All data processing and analyses were performed on Linux ser-
vers running Ubuntu 12.04.5 LTS. The following software tools
were used for data processing: CBS Tools (v3.0, Bazin et al. 2014)
as a plugin for MIPAV (v7.0.1, McAuliffe et al. 2001) and JIST
(v2.0, Lucas et al. 2010), ANTs (v2.1.0, Avants et al. 2011), Nipype
(v0.11.0, Gorgolewski et al. 2011), Nilearn (v0.2.3, Abraham et al.
2014), Meshlab (v1.3.0, meshlab.sourceforge.net), Freesurfer
(v5.3.0, Dale et al. 1999; Fischl et al. 1999), and AFNI (v16.1.28,
Cox 1996). Custom scripts were written in Python 2.7 using
numerous libraries (Jones et al. 2001; McKinney 2010; Seabold
and Perktold 2010; Pedregosa et al. 2011; van der Walt et al.
2011; Droettboom et al. 2016; Waskom et al. 2016). More details
and all code can be found at https://github.com/juhuntenburg/
myelinconnect.

Preprocessing of Structural Data

Preprocessing of the high-resolution T1 maps was carried out
using CBS Tools (Fig. 1). Tissue segmentation and reconstruction
of white matter (WM), midcortical, and pial surfaces was per-
formed as described previously (Bazin et al. 2014). Cortical thick-
ness between the WM and pial surface was calculated. For each
subject, 9 intracortical surfaces were generated between the
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WM and pial surface. The radial position of each surface was
determined using a volume-preserving approach (Waehnert
et al. 2014), which accounts for the dependence of layer thick-
ness on cortical folding described by Bok (1929). For each node
of the subject’s midcortical surface, T1 values were sampled in
radial direction on the surfaces (WM, 9 intracortical, pial), yield-
ing a vector of 11 values that was assigned to each node. We
will refer to this vector as the “T1 profile” (cf. Waehnert et al.
2014, 2016; Dinse et al. 2015). We used the multimodal, multi-
contrast surface registration approach (MMSR), introduced by
Tardif et al. (2015), to derive a study-specific surface template
from the high-resolution T1 maps. The resulting group-average
surface mesh was simplified from approximately 700k to 70k
nodes using MeshLab’s Quadric Edge Collapse Decimation filter
(percent reduction = 0.11, quality threshold = 1.0, preserving
mesh boundaries, normals, and topology, optimal placement,
postsimplification clean). This template surface provides the
common reference space for subsequent analyses. For visual-
ization purposes, the group template surface was partly inflated
using Meshlab’s Taubin Smooth filter (lambda = 0.6, mu = −0.3,
steps = 150). For coregistration of the resting-state data, the low-
resolution T1w images were preprocessed using FreeSurfer’s
standard recon-all pipeline.

Preprocessing of Resting-State Data

Preprocessing of the resting-state time series was streamlined
in a reusable pipeline using Nipype. For each resting-state scan,

the first 5 volumes were removed to ensure steady-state mag-
netization. After simultaneous slice time and motion correc-
tion, as implemented in Nipy (Roche 2011), a temporal median
image was created and bias field corrected using N4 as imple-
mented in ANTs (Tustison et al. 2010). This median image was
coregistered to the high-resolution T1 map of the same individ-
ual in 2 steps: in a linear step, both the median image and the
high-resolution T1 map were registered to the low-resolution
T1w image using Freesurfer’s boundary-based registration with
6 degrees of freedom (Greve and Fischl 2009). The 2 resulting
transformations were concatenated and used to project the
median image into the space of the high-resolution T1 map.
After carefully masking both images, a second nonlinear regis-
tration step was performed using ANTs’ symmetric diffeo-
morphic transformation model (SyN) and fast cross-correlation
similarity metric (Avants et al. 2008). This last step is intended
to account for nonlinear distortions in the functional data. All
transformations were combined and used to project data from
the individual’s functional to the high-resolution structural
space in a single interpolation (Fig. 1). Voxel-wise temporal
denoising of the slice time and motion corrected time series
was performed using Nilearn. Confounds that were removed
from the time series included linear trends, the 6 motion regres-
sors and their first derivatives, intensity outliers (z > 3) and
motion outliers (mean composite norm > 0.5mm), as identified
by Nipype’s rapidart algorithm, as well as regressors reflecting
the signal in the WM and cerebrospinal fluid (CSF), following the
aCompCor approach (Behzadi et al. 2007). For the latter, WM and
CSF masks were derived using the MGDM segmentation
as implemented in CBS Tools (Bazin et al. 2014), and eroded by
4 (WM) or 2 (CSF) voxels, respectively, to avoid partial volume
effects with the gray matter. Nilearn’s high_variance_confounds
method with default settings was used to extract 5 high variance
temporal components from voxels within each of the 2 masks,
resulting in a total of 10 components that were included in the
regression. The denoised time series were temporally normal-
ized and bandpass filtered to a frequency range of 0.01–0.1 Hz.
One subject was excluded due to excessive motion (composite
norm max > 3mm, mean > 0.15mm across the 4 resting-state
scans) and insufficient coregistration quality as assessed by
visual inspection (Supplementary Fig. 1). Data of the remain-
ing 8 subjects passed these criteria and were used for subse-
quent analyses.

Masks

The medial wall was delineated by hand on both hemispheres
of the inflated group template surface mesh using AFNI’s
Surface Mapper. Additionally, masks were created to exclude
nodes with signal quality of at least 1.5 standard deviations
below the mean in at least one session of one subject and one
imaging modality. Signal quality in each subject’s structural
image was derived from the second inversion images of the
MP2RAGE sequence: the probability that a data point represents
foreground (data, modeled by a uniform distribution) rather
than background (noise, modeled by an exponential distribu-
tion) was calculated based on a distribution mixture model.
The derived measure represents a heuristic definition of avail-
able signal in the T1 maps. Signal quality in the resting-state
images was assessed separately for each subject and session
using the temporal signal-to-noise ratio (tSNR). After slice time
and motion correction, but before nuissance regression, each
voxel’s tSNR was calculated by dividing its temporal mean
BOLD signal by the temporal standard deviation of its BOLD

Figure 1. Data extraction workflow. Resting-state images were nonlinearly co-

registered to the structural space of the same subject. A group-specific surface

template was created using midcortical surfaces and intracortical T1 contrasts

of all subjects in a multimodal multisurface registration approach. The group-

average surface was downsampled and projected into the space of each subject

for sampling of BOLD time series and T1 profiles. Cortical depth profiles were

sampled according to an equi-volumetric principle; only the central values

were averaged to minimize partial volume effects.
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signal. All masks were combined and used to exclude low fidel-
ity regions from subsequent analyses.

Intracortical T1 and T1 Difference Matrix

For each subject, the 5 central values (45%) of the T1 profiles
were averaged to create a single intracortical average T1 value
at each surface node, which is minimally biased by partial vol-
ume effects with the WM and CSF (Figs 1 and 2). Throughout
the manuscript, we assume this intracortical average T1 value
to largely reflect intracortical myelin content. Limitations of
this assumption will be addressed in “Discussion” section.
Intracortical average T1 values were slightly smoothed on the
individual midcortical surface using a Gaussian kernel with
full-width-half-maximum (FWHM) of 1.5mm, to prepare them
for sampling on the lower resolution template surface. The
group template surface was projected into each individual’s
native space using the MMSR-derived transformations and the
intracortical average T1 was sampled from the closest point on
the subject’s original high-resolution surface. Thus, each node
on the group-level surface was associated with a single intra-
cortical T1 value for each subject. These values were subse-
quently averaged across subjects to derive the group-level
intracortical T1 map. A T1 difference matrix was generated from
this map by calculating the absolute difference in group-level
intracortical T1 for each pair of nodes on the surface template.
High values in this matrix therefore indicate node pairs that
differ substantially in their intracortical average T1 values while
values close to zero indicate pairs with very similar values. (See
Fig. 2 for a schematic of the processing steps.)

Functional Connectivity Matrix and Comparison to T1

Difference Matrix

The fully preprocessed resting-state time series were projected
into the individual high-resolution structural space. Subse-
quently, the time series data of each subject were sampled

onto the group template surface at midcortical depth and
smoothed along the cortex using a Gaussian kernel (FWHM =
3mm). Due to its lower spatial resolution, the resting-state
data were not sampled at different intracortical depth levels.
Whole brain functional connectivity matrices were derived for
each subject and session by calculating the Pearson’s product–
moment correlation between the time series of each pair of
nodes. All matrices were Fisher r-to-z-transformed and aver-
aged across subjects and sessions. The resulting average func-
tional connectivity matrix was back transformed to Pearson’s
r values. (See Fig. 2 for a schematic of the processing steps.)

Pearson’s product–moment correlation coefficient was
calculated between the upper triangles of the group-average
functional connectivity and T1 difference matrices. Moreover,
functional connectivity and T1 difference patterns were related
to each other in a node-wise fashion: Pearson’s product–
moment correlation coefficient was calculated between each
row of the functional connectivity matrix (representing func-
tional connectivity of one node to all other cortical nodes) with
the same row in the T1 difference matrix (representing the T1

difference of the same node to all other cortical nodes). This
results in one value per node, indicating how well its functional
connectivity to any other node can be predicted from its T1 dif-
ference to that node (and vice versa). The resulting map was
compared with the group average of signal quality measures in
both imaging modalities, assessed as described in “Masks” sec-
tion (see Supplementary Fig. 2). To control for the effect of spa-
tial distance, the above analyses were repeated after regressing
Euclidean distances between nodes in 3D space against both
functional connectivity and T1 difference. Thus, both the upper
triangle correlation and node-wise correlations were recalcu-
lated for the residuals of the functional connectivity and T1 dif-
ference after distance regression. Euclidean distance was also
correlated to T1 difference and functional connectivity separ-
ately (Supplementary Fig. 3). Importantly, Euclidean distance is
a biased estimate of the actual length of fiber tracts through
the WM, which systematically underestimates certain

Figure 2. Data analysis workflow. Schematic describing the processing steps from the single subject T1 profiles and resting-state time series to the comparison of

group-level intracortical average (avg) T1 and functional connectivity (FC). In the first analysis (light gray), the high-dimensional functional connectivity and T1 differ-

ence matrices are correlated. In the second analysis (dark gray), intracortical T1 maps and a linear combination of functional connectivity components are compared

in a single dimension.
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pathways. Inferences drawn using it as a measure of connec-
tion length must therefore be evaluated in the light of this ser-
ious limitation. To control for the relationship between cortical
thickness (CT) and intracortical T1, CT was smoothed (FWHM =
1.5mm), sampled in the subjects’ native space and averaged on
the group template surface. A matrix of absolute difference in
group-level CT between each pair of nodes was regressed
against the T1 difference matrix, and vice versa, before correl-
ation to functional connectivity.

Functional Connectivity Decomposition and Comparing
Components to T1

To disentangle which particular functional connectivity features
underlie the relationship to intracortical T1, we decomposed the
functional connectivity matrix into a set of one-dimensional
components, reflecting distinct aspects of cortical connectivity
(see Fig. 2). For this, the group average functional connectivity
matrix was transformed into a positive similarity matrix L
through increasing each element by 1 and then dividing it by 2.
Thus, nodes with highly correlated signals are considered simi-
lar, while nodes with highly anticorrelated signals are con-
sidered dissimilar. Nonlinear dimensionality reduction of L was
performed using diffusion maps (Coifman and Lafon 2006,
Implemented in https://github.com/satra/mapalign.) In short,
diffusion maps embed the high-dimensional connectivity data
in low-dimensional space by first transforming the similarity
matrix L in a Markov chain with transition probability matrix M:

∑= ( ) = ( )α
−α −αD D D i i i jL L with , L ,

j

∑= ( ) ( ) = ( )α
−

α α αD D i i i jM L with , L ,
j

1

If the diffusion operator α is set to 1, M is equal to the classical
normalized graph Laplacian. Here, we use α = 0.5 in which case
transition in the Markov chain approximates Fokker–Planck dif-
fusion and the method is less sensitive to nonuniform sam-
pling of the data on the underlying manifold. The eigenvectors
of M constitute the coordinate system of the embedded space.
Here, we embed the 70k × 70k similarity matrix L in 100 dimen-
sions, which we will refer to as functional connectivity compo-
nents FC1–100. These components are naturally ordered by
decreasing eigenvalues, that is, FC1 explains most of the vari-
ance, etc. To approximate the amount of variance explained by
individual components, we make the simplifying assumption
that FC1–100 together explain 100% of the variance (FC100
explains 0.29% of this variance). Note that these values refer
to variance in the transition matrix M, not in the original func-
tional connectivity matrix.

Diffusion maps have been used for the analysis of resting-
state fMRI data before and in-depth discussions can be found
in Langs et al. (2015a, 2015b) and Margulies et al. (2016). In con-
trast to linear decomposition approaches, such as principal
component analysis, nonlinear methods retain both local and
global relationships between data points in the embedded
space without requiring kernel manipulations. Diffusion maps,
specifically, are more robust to noise in the connectivity matrix
than other nonlinear dimensionality reduction techniques,
such as Isomap (Tenenbaum et al. 2000).

Pearson’s product–moment correlation coefficient was cal-
culated between the first component of the functional con-
nectivity embedding (FC1) and intracortical T1. To account
for heteroscedasticity, we assessed the significance of this

correlation using the robust sandwich variance estimator
(White 1980) as implemented in Statsmodels. Higher order
functions were fitted as well, to assess whether they would pro-
vide a better description of the relationship between FC1 and
T1. In a next step, intracortical T1 was modeled as a linear com-
bination of one or multiple FC components using Ordinary
Least Squares regression as implemented in Scikit-learn such
that:

∑= β + β + ϵT FC
j

j j1 0

We compared all possible combinations of the first 20 FC
components (FC1–20, each explaining >1%, together explaining
61.6% of the variance in M, 1 048 575 different models). Again,
significance of the coefficients was tested using the robust
sandwich variance estimator.

Model Comparison

To compare the performance of combinations of FC compo-
nents to model intracortical T1, we derived the Bayesian infor-
mation criterion (BIC) as:

∑σ= ( − ) π +
σ

ϵ +ϵ
ϵ =

p
n

p RBIC 1 log 2
1 1

log
i

n

i
2

2
1

2 2

where p is the number of parameters and n the number of data
points used for fitting, R is the data range, σϵ

2 is the residual
variance and ∑ ϵ=i

n
i1
2 the sum of squared residuals. The deriv-

ation of the BIC closely follows that in Bazin and Vezien (2005)
and can be found in the Supplementary Methods. We esti-
mated σϵ

2 from local variance in the group average T1 data using
all surface nodes that were not excluded by the mask:

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )σ =̂

˜
ϵ

−

T1
2 2 erf

2 1diff

1 1
2

2

where T̃1diff is an estimate of the median absolute difference
between neighboring T1 values. Assuming that these differ-
ences follow a half Gaussian distribution their median is given
by ( )σ −2 erfT

1 1
21diff and σ = σϵ T

1
2 1diff . The data range R is set to

the range of group average T1 values not excluded by the mask.

Permutation Tests

Random data sets were simulated through the following steps:
first, values for each node on the surface template were drawn
from a normal distribution, creating 1000 data sets per hemi-
sphere. Second, data were smoothed on the surface applying
differently sized Gaussian smoothing kernels (FWHM = 1.5, 3, 6,
12, and 24mm). Third, after masking, the values of each ran-
dom data set were adjusted to those of the original intracortical
T1 map using histogram matching. Each random data set was
fitted as described for the T1 data in Functional Connectivity
Decomposition and Comparing Components to T1, employing
the models consisting of either FC1 alone or a linear combin-
ation of FC1, 5, and 6 (the best performing model in the
previous analysis). The coefficient of determination R2 was cal-
culated for all models and used as null distribution to assess
significance of the fit achieved for the real intracortical T1 map.
Note that for this analysis, the left and right hemispheres were
treated separately for both the random and the real T1 data.
Using whole brain data would result in an unfair comparison
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because both the FC components and the original T1 map show
high interhemispheric symmetry while the random data do not.

Results
Functional Connectivity and Intracortical T1 Are
Systematically Related

We created 2 group average matrices: one containing the differ-
ence in intracortical T1 between each pair of nodes on the sur-
face (“Intracortical T1 and T1 difference matrix”) and a second
one with the functional connectivity between each pair of
nodes (“Functional connectivity matrix and comparison to T1

difference matrix,” see also Fig. 2). We found both matrices to
be anticorrelated (Pearson’s r = −0.34, P < 0.0001, =R 0.122 ).
Thus, the more similar 2 nodes are in their T1 values, the higher
their functional connectivity.

The Strength of this Link Varies Across the Cortex
To investigate whether this inverse relationship between func-
tional connectivity and T1 difference is homogeneous across
the cortex, we also calculated the correlation in a node-wise
fashion. For each surface node with sufficient signal quality in
both imaging modalities (cf. “Masks”), we compared its func-
tional connectivity with all other nodes with the respective T1

differences to those nodes. This results in one value per sur-
face node, indicating how well T1 difference predicts func-
tional connectivity for this particular node. Figure 3 shows
that the relationship between functional connectivity and T1

difference follows a distinct pattern across the cortex.
Unimodal areas display a particularly strong link between the
2 measures. Conversely, regions that show little correlation
between functional connectivity and T1 differences include
posteromedial cortex, superior portions of the inferior parietal
lobule, superior temporal sulcus and middle temporal gyrus,
medial prefrontal regions, anterior insular cortex and posterior
portions of the superior and middle frontal gyrus. The

correspondence between intracortical T1 and connectivity
strength is thus generally stronger in unimodal than in trans-
modal areas. This effect shows little dependence on the signal
quality in the structural (Pearson’s r = −0.18, P < 0.0001) and
resting-state (Pearson’s r = −0.09, P < 0.0001) data. In fact, par-
ticularly low correspondence of functional connectivity and T1

difference in posteromedial cortex and the inferior parietal
lobule coincides with high signal quality in both imaging
modalities (Supplementary Fig. 2).

We observed the same general pattern of correspondence
between functional connectivity and differences in a T1w/T2w-
based estimate of intracortical myelin content in a large, in-
dependent data set (n = 820), made available through the Human
Connectome Project (HCP, Glasser et al. 2013; van Essen et al. 2013,
see Supplementary Methods and Supplementary Fig. 7 for details).

The Correspondence is Independent of Euclidean Distance
It is well known that connectivity decreases with spatial dis-
tance (e.g., Young 1992; Scannell et al. 1995) and reasonable to
assume a similar relationship for microstructural similarity.
We therefore investigated whether the observed relationship
between functional connectivity and T1 difference is driven by
a common dependence on spatial distance. To this end we cre-
ated a third matrix, describing the Euclidean distance of each
pair of nodes on the surface template. Of note, Euclidean dis-
tance is a biased estimate of connection length and the ensuing
results must be interpreted in due consideration of this limita-
tion. As expected, functional connectivity and Euclidean dis-
tance were highly correlated (Pearson’s r = −0.41, P < 0.0001,

=R 0.162 , Supplementary Fig. 3a). However, T1 difference was
independent of Euclidean distance when calculated across the
whole cortex (Pearson’s r = 0.01, P < 0.0001, =R 0.00,2

Supplementary Fig. 3b). After regressing Euclidean distance
against both T1 difference and functional connectivity, the
anticorrelation between residual T1 difference and residual
functional connectivity remained essentially unchanged
(Pearson’s r = −0.37, P < 0.0001, =R 0.142 ).

( , 1)Δ

Figure 3. Node-wise correlation of functional connectivity and T1 difference. For each surface node, the correlation between its functional connectivity to all other

nodes and its T1 difference to all other nodes is shown. Values closer to zero (white) indicate a weaker linear relationship between connectivity strengths and T1 dif-

ferences. Correlation values are shown on the left (L) and right (R) hemisphere of the group average surface. Nodes with low signal quality in either imaging modality

(predominantly in orbitofrontal and ventral temporal areas) were excluded from the analysis.
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We also repeated the node-wise analysis after regressing T1

difference and functional connectivity against Euclidean dis-
tance for each node separately. The overall pattern of the rela-
tionship between functional connectivity and T1 is not affected
by distance regression (Supplementary Fig. 4). Only some areas,
such as supplementary motor area, midcingulate cortex, and
medial temporal gyrus, show increased anticorrelation. Thus,
the relationship between functional connectivity and T1 is
largely independent of a shared dependence on spatial
distance.

The Relationship Persists When Controlling for Cortical Thickness
Beul et al. (2015) found cortical thickness (CT) to be related to
microstructural differentiation and cortical connectivity.
However, in their study, the association between CT and con-
nectivity disappeared when controlling for microstructural
similarity, while microstructure was still related to connectiv-
ity when controlling for thickness. We found a similar pattern
in our data. Difference in CT between nodes showed a strong
correlation to T1 difference (Pearson’s r = 0.70, P < 0.0001) and
a moderate correlation to functional connectivity (Pearson’s r
= −0.28, P < 0.0001). Regressing CT difference against T1 differ-
ence reduced, but did not remove, the correlation between T1

difference and functional connectivity (Pearson’s r = −0.20, P <
0.0001 vs. r = −0.34, P < 0.0001 before CT regression). However,
CT difference was no longer related to functional connectivity
after T1 difference had been regressed from it (Pearson’s r =
−0.06 , P < 0.0001). Intracortical T1 thus seems to capture vari-
ance in functional connectivity patterns beyond what is
accounted for by CT alone.

Specific Connectivity Components Account for the
Relationship to T1

After establishing an association between functional connect-
ivity and T1 difference in high-dimensional space, we sought
to identify the low-dimensional features of functional connect-
ivity that specifically underlie this link. To this end, we decom-
posed the group-level functional connectivity matrix using
nonlinear dimensionality reduction. The result are 100 compo-
nents (FC1–100), each representing a distinct aspect of func-
tional connectivity in a single dimension. The value assigned
to a given node in each of these dimensions indicates its pos-
ition along a spectrum of connectivity patterns: nodes with
similar values on a given component resemble each other in
their connectivity pattern, or more precisely, in the aspect of
connectivity that is captured by this particular component.
Nodes with very different values on the same component have
more distinct connectivity profiles. Unlike independent com-
ponent analysis, the method applied here does not enforce
spatial independence of different components, but results in a
set of gradients spanning the entire cortex (see “Functional
Connectivity Decomposition and Comparing Components to
T1” section for more details). This approach enables us to
describe the relationship between the distribution of intracor-
tical T1 and the main modes of variation of connectivity pat-
terns across the cortex.

The Principal Gradient of Functional Connectivity
We initially focused on the principal gradient (FC1) that cap-
tures the main variation of functional connectivity patterns
across the cortex (12% of the variance). As visible in Figure 4a,
FC1 spans a gradient between unimodal visual, motor,

somatosensory, and auditory areas at one end of the spectrum,
and higher order association areas in frontal, parietal, and tem-
poral cortex at the other (see also Supplementary Fig. 5).

The one-dimensional representation of functional connect-
ivity in FC1 can directly be compared with the group-average
intracortical T1 map (see Fig. 2). This map is used as an esti-
mate of intracortical myelin content, with higher T1 values
indicating less myelin (Waehnert et al. 2016). Limitations of
this assumption will be discussed below. It reveals the highest
estimated intracortical myelin content in primary visual, som-
atosensory, auditory, and motor regions. Intermediate values
are found in posteromedial cortex, especially ventral portions
adjacent to the corpus callosum, as well as superior parietal
cortex, and relatively low myelin content prevails in prefrontal
cortex, middle and inferior temporal gyrus as well as the infer-
ior parietal lobule (Fig. 4a and Supplementary Fig. 5).

Node-wise comparison of the T1 and FC1 map reveals a sub-
stantial spatial correlation (Fig. 4b, Pearson’s r = 0.53, P <
0.0001, =R 0.282 ), exceeding the overall correlation in high-
dimensional space. This implies that FC1 specifically captures
an aspect of functional connectivity, which is related to intra-
cortical T1. However, clear differences between the spatial lay-
out of FC1 and T1 remain, most prominently in the superior
part of the inferior parietal lobule and posteromedial cortex.
Moreover, the bivariate distribution indicates a nonlinear rela-
tionship between FC1 and T1 (Fig. 4b). We therefore fitted higher
order models to the data and compared them using an adapted
version of the BIC (see “Model Comparison” section). Although
more complex functions, such as polynomials or a sigmoid,
explained the data better, their overall performance was worse,
due to the higher number of parameters in these models
(Supplementary Fig. 6).

Again, we found a similar relationship between FC1 and
T1w/T2w-based intracortical myelin content in the HCP data set
(n = 820, Pearson’s r = 0.52 , P < 0.0001, see Supplementary
Methods and Supplementary Fig. 8 for details).

Including Multiple Components Improves the Fit
The first component of the functional connectivity decompos-
ition captures the main variance in the data. Still, a considerable
amount of variance is explained by subsequent components
(Fig. 5a), which might be essential to establish the link to intra-
cortical T1. We therefore investigated whether a linear combin-
ation of multiple FC components can improve the fit to
intracortical T1. We focused on components that each explains
more than 1% of the variance (FC1–20). Every possible linear
combination of these 20 components was fitted to the intracor-
tical average T1 data. We then compared all models using the
same implementation of BIC as in the previous section. A lower
BIC value indicates a better balance of model fit and complexity.

Figure 5b shows the best performing model for each group
of models employing the same number of FC components.
Importantly, the model selection procedure is stable in that the
best model in each group is equal to the best model in the pre-
vious group, except for the addition of one further. Moreover,
the results are resistant against modest variation in the empir-
ically determined noise prior (Supplementary Table 2). The
most parsimonious model to fit intracortical T1 is a linear com-
bination of component FC1, 5, and 6:

= + + + + ϵT 1984.25 70.83FC 35.13FC 41.92FC1 1 5 6

FC5 (explaining ca. 4% variance) contrasts posteromedial
cortex and the superior parietal lobule at one end of the
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spectrum with inferior frontal gyrus, anterior insula, superior
temporal cortex, ventral parts of precentral and postcentral
gyrus, inferior parietal lobule, and visual cortex at the other
(Fig. 5c, top). The most remarkable feature of FC6, which
explains approximately 3% of variance, is that it separates pri-
mary sensorimotor regions from secondary regions and uni-
modal association areas within a given modality (Fig. 5c,
bottom).

Combining FC1, 5, and 6 most notably improves the fit to
intracortical T1 in posteromedial cortex (Fig. 6a). Moreover, vis-
ual regions become more similar in value to somatomotor and
auditory regions than for FC1 alone. As shown in Figure 6b,
including FC5 and FC6 also increases node-wise correlation
between T1 and modeled T1 (Pearson’s r = 0.67, P < 0.0001,

=R 0.452 , a quadratic model was fitted as well but without sub-
stantial gain, Supplementary Fig. 6). Differences to intracortical

T1, however, remain. In particular, compared with the original
T1 map, regions around the angular gyrus still display relatively
high values in the combined FC1, 5, 6 map. The fitted T1 values
also do not extend as far into the low range as original T1

values, resulting in residual differences especially in primary
sensorimotor regions.

The Correspondence Is Independent of Data Smoothness
In order to ensure that the spatial correlation values obtained
in the previous section do not result from spatial autocorrel-
ation alone, we performed permutation testing. We simulated
1000 random data sets per hemisphere and smoothed them
with different kernel sizes, ranging from the kernel applied to
the original T1 maps (FWHM = 1.5mm) to very large kernels
(FWHM = 24mm). We next fitted general linear models based

(a)

(b)

Figure 4. Relationship between intracortical T1 and the principal component of functional connectivity. (a) Intracortical T1 (top row and left column of bottom row)

and the principal component of functional connectivity decomposition (FC1, middle row and right column of bottom row) are shown on the surface of the left hemi-

sphere. Nodes with low signal quality in either imaging modality were excluded from the analysis. The surface plots for the right hemisphere are highly comparable

and are shown in Supplementary Figure 5. (b) Bivariate distribution of FC1 and T1 values across both hemispheres.
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on FC1 alone or FC1, 5, 6 to the random maps, as was done for
the real data. Figure 7 shows that the model fit obtained for the
real data far exceeds what is expected from data smoothness
alone, even for large smoothing kernels (P < 0.005 in all cases).
This is true for both hemispheres and both models, although
the more complex model naturally fits the random data better
than the simple model.

Discussion
We demonstrated a systematic relationship between func-
tional connectivity and a T1-based estimate of intracortical
myelin in the human cortex. Regions with similar intracortical
T1 show higher functional connectivity than regions that differ
in intracortical T1. We initially illustrated the link to T1 in the

high-dimensional space of the full functional connectivity
matrix. By embedding functional connectivity into a set of
one-dimensional components, we then identified particular
functional connectivity features that relate to intracortical T1.
Across both approaches, posteromedial cortex and superior
portions of the inferior parietal lobule stood out as regions of
low correspondence between functional connectivity and
intracortical T1. In the following, we detail how the neurobio-
logical signature of these regions, as well as characteristics of
the MRI-based measures, can help to understand this effect.

Assessing Cortical Myelin and Connectivity in vivo

In this study, we used intracortical T1 to estimate myelin con-
tent. Validation against histological data has confirmed that T1

(a)

(c)

(b)

Figure 5. Using multiple connectivity components to fit intracortical T1. (a) Variance in the connectivity transition matrix M explained by the different embedding

components. (b) BIC values of the best performing model by number of components employed. The best model (FC1, 5, 6) is highlighted in red. (c) Connectivity compo-

nents FC5 (top row) and FC6 (bottom row), together with FC1 constituting the best performing model, are shown on the left (L) and right (R) hemisphere of the group

average surface. Values indicate the relative position of a given surface node along the respective component and have no unit. Nodes with low signal quality in

either imaging modality were excluded from the analysis.
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contrast reflects myelin in cortical gray matter (Bock et al. 2009;
Geyer et al. 2011; Stüber et al. 2014), displaying a gradient of
decreasing myelin density from primary toward transmodal
regions (cf. Vogt and Vogt 1919; Hopf 1955, 1956; Hopf and
Vitzthum 1957; Sanides 1962). Iron concentration has also been
shown to contribute to intracortical T1 contrast (Stüber et al.
2014) and an alternative interpretation of the current results is
a systematic relationship between functional connectivity and
iron levels. However, intracortical iron is strongly colocalized to
myelin (Fukunaga et al. 2010), with ferritin particles embedded
in the myelin sheath functioning as a storage for oligodendro-
cytes, that requires iron for the production and repair of myelin

(Connor and Menzies 1996; Todorich et al. 2009). Therefore,
independent of the exact contributions of iron and myelin to
the T1 contrast, it appears justified to interpret T1 as to largely
reflect the distribution of intracortical myelin.

We acquired quantitative T1 maps using the MP2RAGE
sequence (Marques et al. 2010), like many recent works (Dick
et al. 2012; Sereno et al. 2013; Tardif et al. 2015; Waehnert et al.
2016). This approach has the advantage of minimizing sensitivity
to B1 inhomogeneities, allowing for quantitative intersubject
and intersite comparison, and disentangling T1 from contribu-
tion other factors such as proton density and T2*, present in
standard T1-weighted images (Turner 2015; Weiskopf et al. 2015).
Alternative quantitative MRI techniques, such as magnetization
transfer imaging (Dousset et al. 1992) and myelin water imaging
(Mackay et al. 1994), are more specific to myelin than T1, but pro-
vide lower spatial resolution. Moreover, quantitative T1 has
recently been characterized by the highest intrasubject and
intersubject reliability in a comparison of several approaches to
map intracortical myelin (Haast et al. 2016). Some studies have
used a ratio of T1w over T2w images to assess intracortical mye-
lin (Glasser and Van Essen 2011; Glasser et al. 2014, 2016). The
relationship of T1w/T2w contrast to myelin content has not yet
been validated and does not allow for quantitative comparison
across studies. However, the spatial distribution of the T1w/T2w
ratio generally appears similar to quantitative T1 maps and we
were able to confirm the main results of the current study using
T1w/T2w-based estimates of intracortical myelin. As myelin
imaging becomes more abundantly used, it will be crucial to
carefully compare different in vivo approaches with each other
as well as with histological data.

(b)

(a)

Figure 6. Combination of connectivity components providing the best fit to intracortical T1. (a) Result of modeling T1 as a linear combination of connectivity compo-

nents FC 1, 5, and 6, shown on the left hemisphere. Nodes with low signal quality in either imaging modality were excluded from the analysis. The surface plots for

the right hemisphere are highly comparable and are shown in Supplementary Figure 5. (b) Bivariate distribution of modeled and original T1 values across both

hemispheres.

Figure 7. Validation of model fit. Random, smoothed data sets were fitted using

linear models containing only FC1 (left) or FC1, 5, and 6 (right). The distributions

of resulting R2 values for the left (grey) and right (black) hemisphere are shown

as split violin plots. Horizontal lines indicate the values obtained when fitting

respective models to the actual map of myelin content (FWHM = 1.5mm).
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For the in vivo assessment of cortical connectivity, we used
resting-state functional connectivity, which has become a
widely used tool in human neuroimaging. Large-scale func-
tional connectivity patterns robustly reproduce across subjects
(Damoiseaux et al. 2006), test–retest sessions (Shehzad et al.
2009; Zuo and Xing 2014), sites, and protocols (Biswal et al.
2010). Most importantly, resting-state functional connectivity is
largely constrained by anatomical connections, as demon-
strated in multiple studies in the human brain (Skudlarski et al.
2008; Honey et al. 2009; Hermundstad et al. 2013) and in com-
parison with tract-tracing data in monkeys (Vincent et al. 2007;
Miranda-Dominguez et al. 2014). Since functional connectivity
is based on temporal correlations, however, it does not neces-
sarily reflect monosynaptic connections (Honey et al. 2009;
Adachi et al. 2012). It is thus important to keep in mind that
resting-state functional connectivity measures aspects of cor-
tical organization that are closely related to, but not directly
measuring, structural connections.

Microstructural Similarity as a Wiring Principle
of Cerebral Cortex

Microstructural similarity has been suggested as a candidate
principle underlying the organization of cortical connections
(Barbas 2015; Pandya et al. 2015). Respective links between
microstructure and connectivity were established in the cortex
of different mammalian species, by combining invasive tract-
tracing and postmortem histology (Beul et al. 2014, 2015;
Scholtens et al. 2014; Pandya et al. 2015; Goulas et al. 2016a).
Due to the invasive nature of this approach, it cannot directly
be translated to the human brain. Two recent studies have
addressed this challenge by comparing diffusion-weighted MRI
data to cytoarchitectonic atlas information (von Economo and
Koskinas 1925), demonstrating a relationship between connect-
ivity and layer III neuron complexity (van den Heuvel et al.
2015, 2016), as well as supragranular cell density (Goulas et al.
2016b). Spatial accuracy, however, is inevitably limited when
mapping atlas information in stereotactic space and the dis-
crete parcellation scheme prohibits the analysis of gradual
changes or variable boundaries. We pursued an alternative
approach, directly comparing in vivo measures related to cor-
tical connectivity and microstructure in the same group of indi-
viduals at high spatial resolution. While these data facilitate
the extraction of intracortical T1 values with high spatial preci-
sion, it is important to note that the current resolution does not
allow the investigation of cortical features at the microscale.
Differences in intracortical average T1 are likely to reflect differ-
ences in the underlying microstructure, namely the density of
myelinated fibers. However, multiple microscale configurations
can result in the same average T1 value when measured at a
relatively coarse resolution of 0.5mm and averaged across dif-
ferent cortical depth. Despite these limitations, we found that
intracortical average T1 is related to functional connectivity,
indicating that functional connectivity is higher between areas
with similar intracortical myelin levels. Our results thus extend
the aforementioned line of research to the living human brain
and support the recognition of microstructural similarity as a
general wiring rule of cerebral cortex.

Clearly, we do not mean to imply that microstructure is the
sole determinant of connectivity. A well-established wiring rule
states that 2 areas are more likely to be connected if they are
close to each other in space (Young 1992; Scannell et al. 1995).
This distance rule, however, cannot account for the existence
of long-range connections and it must be assumed that

additional factors are at play. In the current study, we confirm
that a relationship exists between Euclidean distance and func-
tional connectivity (Supplementary Fig. 3a), but ensure that
the correlation between functional connectivity and T1 is not
driven by spatial proximity (Supplementary Fig. 4). While
Euclidean distance is a biased estimate of connection length,
entailing significant limitations of inferences drawn on its
basis, our findings can be interpreted as a provisional indication
that cortical microstructure and spatial distance are independ-
ent factors shaping functional connectivity (cf. Goulas et al.
2016a).

Moreover, similarity in cortical thickness (CT) has previously
been shown to be related to connectivity in the macaque mon-
key (Beul et al. 2015) and we find it to be associated with func-
tional connectivity in our sample. Similarly to Beul et al. (2015),
we could show that this relationship disappears when control-
ling for the shared variance of CT and intracortical T1. In con-
trast, intracortical T1 captures variance in functional
connectivity beyond what is explained by CT. Our results sug-
gest that CT can be viewed as a pragmatic surrogate marker for
cortical microstructure, capturing some of the same aspects of
cortical organization as intracortical T1 (cf. Wagstyl et al. 2015).

Deviations in Transmodal Cortex

While a general link between cortical microstructure and func-
tional connectivity is supported by our data, we also find
important deviations. Regions in which functional connectivity
and intracortical T1 are least correlated consistently lie in trans-
modal cortex, especially in posteromedial cortex and the infer-
ior parietal lobule. This pattern persists through different
analytic approaches (Figs 3 and 4) and cannot be attributed to
the proximity of areas or the distribution of noise in the data
(Supplementary Figs 2 and 4).

One possible explanation for the observed deviations are
methodological challenges of our MRI-based approach. When
visually comparing our T1-based measures of intracortical mye-
lin with histologically derived maps of overall myelin density
from Adolf Hopf (recently reviewed in Nieuwenhuys and Broere
2016), the general spatial pattern appears similar. Noteworthy
differences, however, exist in posteromedial cortex and the
inferior parietal lobule. In Hopf’s map, these regions have lower
myelin densities than most frontal regions, while the opposite
relationship holds for our data (Fig. 4a) as well as for previously
published myelin maps (e.g., Glasser and Van Essen 2011;
Tardif et al. 2015). Strikingly, the same regions show the weak-
est link between functional connectivity and intracortical T1 in
our study. It is therefore, possible, that the lower correspond-
ence in posteromedial and inferior parietal regions is an arte-
fact of in vivo derived T1-based myelin measures. Moreover,
our group-average functional connectivity estimates could be
impaired by interindividual differences in functional connectiv-
ity patterns, which are relatively high in inferior parietal
regions (Mueller et al. 2013), although this does not apply to
posteromedial cortex.

In addition to methodological differences, it is important to
keep in mind that previous studies were performed in non-
human primates or lower mammals. Compared with those spe-
cies, transmodal areas in particular are thought to have
undergone massive expansion in the human lineage (Hill et al.
2010). It has been suggested that this rapid expansion, by way
of increasing the distance to molecular patterning centers,
relaxed developmental constraints and allowed for new proper-
ties to emerge in transmodal areas (Buckner and Krienen 2013).
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Indeed, transmodal, as compared with unimodal, areas show
denser and more variable connectivity patterns (Pandya et al.
1988; Mueller et al. 2013). Cortical folds in these areas emerge
later during development (Hill et al. 2010), are more variable
across individuals (Zilles et al. 1997), and show a less straight-
forward relationship to architectonically defined boundaries
(Fischl et al. 2008). Myelination in transmodal areas also occurs
late during development (Flechsig 1920) and remains relatively
light in the adult brain. According to Braitenberg (1962), a major
function of myelination in cortical gray matter is to inhibit the
formation of new connections. Low myelin content in transmo-
dal regions might therefore entail increased synaptic plasticity
and make these areas more suitable to support adaptive behav-
ior and learning. Finally, gene expression profiles distinguish
resting-state networks (Krienen et al. 2016) and hubs (Vértes
et al. 2016) related to sensorimotor functions from those in
transmodal association and paralimbic regions.

Taken together, transmodal cortex appears to differ from
unimodal areas in displaying more complex and variable con-
nectivity and morphological patterns, as well as molecular
and cellular characteristics that point toward increased plasti-
city. It could therefore be hypothesized that wiring in these
regions is governed by flexible mechanisms as well. More rigid
wiring rules, such as spatial proximity or microstructural simi-
larity, might consequently have less impact. However, not
all of transmodal cortex shows equally low correspondence
between T1 and functional connectivity in our analyses. The
most pronounced deviations occur in posteromedial cortex
and the inferior parietal lobule, in particular the angular gyrus.
Interestingly, these regions share a very distinctive connectiv-
ity profile. They have been identified as central hubs of struc-
tural connectivity in the human cortex (Hagmann et al. 2008)
and, unlike most other regions, exhibit both high distant and
high local functional connectivity (Sepulcre et al. 2010). Below
we discuss how these connectional features might influence
the correspondence of functional connectivity to intracortical
T1 in posteromedial and inferior parietal cortex.

Investigating Connectivity Patterns Through Spatial
Gradients

As described in the previous section, one characteristic of those
areas in which functional connectivity and intracortical T1 are
least associated is that they have particularly dense and
diverse connectivity patterns. For instance, posteromedial cor-
tex has heterogeneous functional and structural connectivity to
unimodal, transmodal, and paralimbic areas (Margulies et al.
2009). It is conceivable that only a portion of these connections
are explained by microstructural similarity. Only certain fea-
tures of the functional connectivity patterns would then relate
to intracortical T1, but the link is obscured when considering all
functional connections of an area at once. We addressed this
possibility by decomposing the functional connectivity space
into different components, each representing specific aspects
of functional connectivity as one dimension. We could thus
describe the relationship between the distribution of intracorti-
cal T1 and the main modes of variation of connectivity patterns
across the cortex.

The first component of this decomposition (FC1), spanning
a gradient between primary sensorimotor and transmodal
association regions (Fig. 4a, cf. Margulies et al. 2016), showed a
stronger relationship to intracortical T1 than the full functional
connectivity matrix. Deviations in transmodal regions, espe-
cially in posteromedial cortex, were still present in this

comparison but substantially alleviated when including 2 add-
itional components of the functional connectivity decompos-
ition (FC 5 and 6) in a simple linear model of intracortical T1

(Figs 5 and 6). Importantly, the added components were not
the ones that explained most of the remaining variance, indic-
ating that significant aspects of functional connectivity show
no strong relationship to the distribution of intracortical T1.
When scrutinizing those particular features which improve
the fit to intracortical T1, it appears that FC6 captures fine dif-
ferences between primary and higher order unimodal sensori-
motor areas that are not present in FC1. The most important
property of FC5 in the current context could be that it sepa-
rates postcentral transmodal areas, which showed the stron-
gest deviation from intracortical T1 when using FC1 alone,
from transmodal areas in medial and ventrolateral (but not
dorsolateral) frontal cortex. It should be noted that the fore-
going interpretation of FC components remains tentative, as it
is based on only a subset of salient features in the complex
spatial patterns of these maps.

We consider decomposing functional connectivity patterns
into overlapping gradients, rather than spatially discrete par-
cels, a promising new approach to investigate cortical organ-
ization. Recent work indicates that functional connectivity
gradients closely relate to the functional specialization of the
cortex (Haak et al. 2016; Margulies et al. 2016). The arrange-
ment of cortical areas in spatial gradients has already been
noted by Vogt and Vogt (1919) and Brockhaus (1940) and is fun-
damental to the evolutionary accounts of cortical organization
by Sanides (1962) and Pandya et al. (2015). This concept does
not conflict with the existence of areal boundaries, but rather
attempts to situate individual areas within an overarching lay-
out. Gradient-based approaches to describe cortical organiza-
tion might therefore become a fruitful complement to discrete
parcellations (e.g Glasser et al. 2016).

Limitations and Future Directions

In this study, we used publicly available high quality MRI data
(Gorgolewski et al. 2015; Tardif et al. 2016) and dedicated tools
to harness the high spatial resolution (Bazin et al. 2014;
Waehnert et al. 2014; Tardif et al. 2015). Nevertheless, our ana-
lyses and conclusions are subject to several limitations, which
might partly be overcome in future studies.

One caveat is that the high field strength exacerbates the
problem of MRI susceptibility artefacts. In our data, both struc-
tural and functional images suffer from low signal-to-noise
ratio in orbitofrontal and ventral temporal areas. The func-
tional data additionally display strong distortions in these
areas, which cannot be corrected completely by nonlinear core-
gistration to the anatomy. To prevent unreliable signal in
respective areas from driving our results, we decided to exclude
them from our analyses (ca. 1.5% of surface nodes, see “Masks”
section) and all results and statements only pertain to the
included regions.

Further, given the distribution of our data (Figs 4 and 6), it
might be asked whether linear regression is the appropriate
analytic approach. We modeled the data using higher order
functions, which, however, did not entail substantial improve-
ments when accounting for model complexity (Supplementary
Fig. 6). To address the presence of heteroscedasticity, we used
a robust sandwich variance estimator for significance testing
(see “Functional Connectivity Decomposition and Comparing
Components to T1” section). A more difficult question is,
whether the multimodal distribution of the data reflects a
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principled division of the cortex in different classes which
should be treated as discrete clusters. In our opinion, the con-
siderable amount of data points falling between the denser
data clouds indicate the existence of gradual changes in cor-
tical features, which would be neglected by clustering
approaches (see also “Investigating Connectivity Patterns
Through Spatial Gradients” section). We thus favored a regres-
sion approach here, but a more in-depth treatment of this
question may be subject to future studies.

We pursue a group-average approach using a study-specific
template derived with a state-of-the art multimodal surface-
based registration algorithm (Tardif et al. 2015). While such
approaches have been shown to outperform volumetric and
single modality registration techniques (Robinson et al. 2014;
Tardif et al. 2015), intersubject averaging inevitably introduces
inaccuracies in areas with high interindividual differences.
Prospective work might circumvent this issue by investigating
the relationship of functional connectivity and intracortical
myelin within individual subjects (cf. Glasser et al. 2016).

Our estimate of intracortical myelin content takes into
account the dependence of layer thickness on cortical morph-
ology and minimizes partial volume effects. However, we use
an intracortical average value, while classic myeloarchitectonic
techniques are largely based on the differential distribution of
myelinated fibers across the different cortical laminae (e.g.,
Vogt and Vogt 1919). Radial differences in myelin content can
be comparable in size to differences between cortical areas
(Lutti et al. 2014) and quantitative analyses of myelin or cell
density profiles, running perpendicular to the cortical surface,
have been used for observer-independent definition of areal
boundaries in postmortem data (Schleicher et al. 1999; Annese
et al. 2004; Eickhoff et al. 2005). Initial approaches to leverage
the radial distribution of intracortical T1 in MR images in a
similar way show promise that this information can be used to
distinguish cortical areas (Dinse et al. 2015, Marques et al. 2016;
Waehnert et al. 2016). Methods to extract and analyze such T1

profiles are still in their infancy, but more elaborate and robust
approaches are likely to emerge from this line of research soon.
Similarly, first studies demonstrating layer-resolved fMRI con-
trast (Goense et al. 2012; Hubert et al. 2015; Guidi et al. 2016)
raise the possibility of differentiating functional connectivity
between input and output layers. While the current study
uncovers a general link between functional connectivity and
intracortical T1, we expect that increasing spatial resolution in
MRI data (Gallichan et al. 2015; Stucht et al. 2015) and improved
image processing techniques will make it possible to refine this
observation to the scale of individual laminar compartments in
the near future.

Conclusion
The current resurgence of interest in human cortical anatomy
is closely intertwined with methodological advances, providing
the tools to investigate it in vivo. Some well-studied phenom-
ena, emerging from decades of research in experimental ani-
mals, can now be explored noninvasively in the human brain.
In the current study, we focus on a link between cortical micro-
structure and connectivity, which has consistently been
described in animal studies, but until now had not been inves-
tigated in the living human brain. We demonstrate a system-
atic relationship between T1-based intracortical myelin content
and resting-state functional connectivity. Our results support
the view that microstructural similarity represents a general
wiring rule of mammalian cortex. Although methodological

difficulties persist and questions about underlying mechanisms
remain unresolved, our findings line up with a growing body of
work targeted at demystifying the complex connectivity pat-
terns of human cerebral cortex.
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