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Abstract

A general approach is presented for the extraction of a classifier of disease risk that is latent in large scale disease/control
databases. Novel features are the following: (1) a data reorganization into a regularized standard form that emphasizes
individual alleles instead of the single nucleotide polymorphism (Snp) allele pair to which they belong; (2) from this a
procedure that significantly enhances the discovery of high value genomic loci; (3) an investigative analysis based on the
hypothesis that disease represents a very small signal (small signal-to-noise) that is latent in the data. The resulting analyses
applied to the FUSION T2D database leads to the polling of thousands of genomic loci to classify disease. This large
genomic kernel of loci is shared by non-diabetics at nearly the same high level; but a small well defined separation exists
and it is speculated that this might be due to unconventional disease mechanisms. Another analysis demonstrates that the
FUSION database size limits its disease predictability, and only one third of the resulting classifier loci are estimated to relate
to T2D. The remainder is associated with hidden features that might contrast the disease and control populations and that
more data would eliminate.
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Introduction

In rough approximation about 99.5% of the 3 billion DNA base

pairs of the human genome are shared by all homosapiens.

Somatic cells contain two copies, paternal and maternal, and so

about 99.5% of the pairs are homozygous. The remaining pairs

appear as two alleles and are termed single nucleotide polymor-

phisms (Snps): based on the criterion that the rarer of the two

alleles is present in greater than 1% of the population [1]. This

heterozygous content of the Snps is generally regarded as the

determinant of human diversity including the potential for

acquiring diseases [2].

Genome wide association studies (GWAS) refer to extensive

investigations, past and present, that endeavor to find correlations

between clinically diagnosed diseases (phenotype) with their Snp

counterparts (genotype), and have as a goal the determination of

genomic classifiers of disease risk. Location of the two Snps

associated with age related macular degeneration [3] represents a

triumph of this approach. Although other disease associations have

been found [4] disappointment has been expressed on the paucity

of DNA linkages that have been found for human diseases,

particularly in the case of complex disorders [5]. The ‘‘predictive

power of DNA’’ has also been questioned [6] (also see [7]).

Additionally doubt has been raised in regard to the relationship of

identified Snps with actual disease mechanisms [8].

The methods presented here for associating Snp loci with

disease lie outside traditional statistical approaches [9–11].

Instead the present framework originates in methods that have

their origin in extracting extremely weak signals (small ‘‘signal-to-

noise’’ ratio) such as appear in optical imaging [12–14]. The view

of the present study is that GWAS data show a weak disease

signal. In a genomic setting similar methods have been applied to

taxonomic studies [15,16]. For complex diseases such as diabetes it

may be an error to focus on the role of individual genomic loci.

Instead the disease/control contrast appears to be better sought

in a large genomic framework of risk loci common to the disease

cohort.

A principal goal of this effort will be to isolate out of the vast

collection of genomic loci, potentially in the millions, a smaller set

of loci along with an appropriate nucleotide symbol at each locus

which is associated with the disease. If the number of loci (and

symbols) is N then the 2|N matrix of loci over genomic symbols

will be referred to as the indicator (vector), and the properly ordered

symbols which form a word in the general sense will be termed the

disease classifier, in the N loci subspace.

The next section presents a verbal description of the Methods

(technical summaries appear in the Appendix) and also provides a

graphical illustration of the superior informational content of the

present data reorganization; and a second illustration convincingly

shows the structural difference of case/control sets in the classifier

subspace. After a section describing the FUSION data, and more

preliminary results, a section entitled Validation and Prediction

follows. This deals with the self-consistency of the classifier that

was determined in the previous section, but also points out

limitations on the predictability of the classifier when applied to

other data. The final Discussion section presents additional results,

implications and speculations.
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Methods

The Standard Organization
A typical database is composed of disease and control genomic

records. Each such record is a sequence of symbols at Snp

locations common to the database. Information on the chromo-

some number, chromosome location, and Snp alleles is included in

a typical database, as encoded in the rs (ref Snp) number, which

can contain as many as eight digits (NCBI Resources, 2013). The

two alleles of a Snp are chosen from the nucleotide symbols

[A,C,G,T] or equivalently as aliased by [1,2,3,4]. Generally there

is no particular order in the acquisition of allele pairs. Without loss

of generality we adopt a convention that places the higher number

first in each Snp. Since the allele content of a Snp is known from

its rs number the two symbols therefore can be further aliased by 2

and 1, with the higher number going first, see Table 1 in

Appendix.

On this basis any representative sequence of a population

appears as a sequence of Snps each of which contains an odd

numbered and then an even numbered locus. Each allele pair then

appears as: 22, 21, or 11 which gives the essential content of the

Snp of a sequence. Henceforth this description, which is general

and free of bias, will be referred to as the standard organization.

The standard organization divides a SNP into the two allele

compartments that will be referred to as odd, o, and even, e. The

informational content of the two compartments always exceeds the

Snps form, see Appendix.

High Value Loci
Computing challenges and rational considerations dictate an �aa

priori search for those loci that are likely to be associated with a

specific disease. These will be referred to as high value loci.

Customary treatment of GWAS data dwells on the Snp disease/

control odds ratio, V, and relatively large values suggest a locus of

interest. Adoption of the standard organization now permits

calculation of the odds ratio for each allele, v. Figure 1 displays

Snp and allele odds-ratios, as defined in the Appendix, for the

Fusion database described in the next section. Histograms are

based on 2,000 bins and viewed as densities rs and rB of Snps and

alleles, respectively. Allele locations are far more effective locators

of risk, as suggested above by their higher informational content.

The Indicator Vector
In contrasting the disease and control populations, one must be

mindful that many other variabilities are at work. For example for

type 2 diabetes, T2D, specifically studied here, see next Section,

the control and disease populations can be extremely diverse, since

there are manifold ways of having and not having T2D, for

example by possessing any number of additional diseases as well as

to ethnic and other (irrelevant for us) phenotype factors. As a

second step in the procedure we restrict attention to the subspace

of high value loci determined from the full database. Within this

sub-space a classifier is sought which is optimally correlated with

the disease population, and minimally correlated with the control

population, see Appendix for specific details.

It follows from Figure 1 that there are about 8,000 loci in the

subspace defined by odds ratios, v, greater than 2. Figure 2 shows

the histograms of all intra-population distances in this space.

Distance between sequences of a population is defined as the

number of letter substitutions to obtain agreement, the Hamming

distance, dH . The central limit theorem suggests that both

histograms are well fit by gaussians with the indicated parameters.

The more widely distributed quality of the control population

underlines the above remark that ‘‘there are manifold ways of not

having T2D’’. It is the present contention that the much more

closely grouped form of the disease set, as well as the other

structural differences of the two populations seen in Figure 2

provides convincing evidence that this collection of loci provides a

framework that separates disease and control.

We will see that for T2D, the resulting number of loci, i.e., the

dimension of the indicator is reduced but remains in the

thousands. Thus the classifier is a word of an equal number of

characters, viewed (projected) in this sub-space of allele loci.

Application to Data: Type 2 Diabetes

Figures 1 and 2 are based on ‘‘The Finland-United States

Investigation of NIDDM Genetics (FUSION) Study’’, which was

obtained from NIH-dbGap. This study which focuses on type 2

diabetes (T2D) has been well described in the literature [17–21].

This database contains 919 T2D cases and 787 normal glucose

tolerant (NGT) controls. Each genomic record contained 315,693

common Snps, or 631,386 allele pairs. Although the mean level of

Table 1. Nominal Snps and their transformations as described in the text.

1 Locus … N N+1 N+2 N+3 N+4 …

2 Snps … (A,T) (C,G) (C,T) (A,T) (A,G) …

3 Acquired Sequence ... AT CC TT TA AG …

4 Standard Form … TA CC TT TA GA …

5 Alias … 2 1 1 1 2 2 2 1 2 1 …

doi:10.1371/journal.pone.0085684.t001

Figure 1. Histograms of odds-ratios for the Fusion database. At
the left the customary Snps odds-ratio, V, is shown, while at
the right individual base pair odds-ratios, v, are shown. Note
the ordinate range at the right is twice that at the left.
doi:10.1371/journal.pone.0085684.g001
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missing data was low, .014%, individual loci had as many as 10%

missing symbols. Rational procedures exist for dealing with

missing data but this was not deemed to be a priority. Instead

all loci which in totality had more than 2 missing symbols over all

sequences were dropped. This left 272,423 Snps or 544,846 pairs.

The few remaining missing symbols were then replaced by the

appropriate modal symbol at the allele locus.

Analysis Criteria
For Figure 2 the criterion for choosing high value loci was taken

to be that the odds ratio, v, be larger than 2. This produced a set

of &8,000 loci. Clearly Figure 2 shows a structural case/control

difference. To further specify this we denote by l(v) the loci set

such that v
0
wv and by N(v) the number of these loci, shown in

the inset of Figure 1. Further define C(v) to be mode word (or

mode classifier) gotten by choosing the mode symbol at each locus

of l(v). The 2|N matrix

vm(v)~
l(v) ?

C(v) ?

� �
; ð1Þ

will be referred to as the modal indicator (vector).

Any sequence, S, case or control, when projected on to the set

l(v), denoted by S(v), has agreement with the disease classifier

given by

Sc(v)~N(v){dH (C(v),S(v)): ð2Þ

This will be referred to as the score, and clearly ScƒN(v).

Figure 3(A) shows the scores for all 1706 sequences of T2D for

v~2; N(v~2)~7962, the highest possible score and as indicated

the disease and control scores have mean and standard deviation

(md ,sd ) and (mc,sc) as given in the Figure legend. Since scores are

sums of random variables, the central limit theorem might be

regarded as applicable and the gaussian fit is also plotted on the

ordinate scale. Two other cases, v~3 and v~4, are shown in

Figures 3(B) and 3(C). Across this range 2ƒvƒ4 there is an

accurate scaling of parameters given by

(md{mc)=N&:006,md=mc&1:006,sd=N&:0011: ð3Þ

but not for sc.

An ROC analysis, given in the Appendix, shows that total error,

false positives plus false negatives, for v~2,3,4 is given by 2, 18,

and 66, respectively each being a relatively small fraction of the

scores. The error is based on the gaussian fits; the actual data show

a slightly larger error, which is due to the usual poorer fit at the tail

of a distribution.

This results in nested ranges of loci which are based on the

odds ratio and lead to different degrees of success in distinguishing

case/control. Calculation shows that when v~1:9
N(1:9)&9000, while N(2)&8000, N(2:1)&7000 and thus there

is high sensitivity in the neighborhood of v~2, see inset of

Figure 1. A detailed investigation of Figure 1 shows that

N(2:38){N(2:48)~25 so that the interval (2.38, 2.48) is a

relatively insensitive range, a sweet spot. We therefore focus on the

results obtained when the odds ratio has the threshold v~2:43,

and this will be our reference case. As shown in the inset of

Figure 1, N(v), is virtually flat in this interval.

A simple argument shows that 1906 loci can precisely fit the

Fusion disease/control outcomes, which raises the issue of

overfitting. Figure 3(C) refutes this and larger values of v further

reduce the estimate of needed loci. A later discussion will imply

that two thirds of the above loci are irrelevant for T2D prediction.

Indicator Vector
The modal symbol which appears in the mode indicator, (1)

does not reflect the degree of probability of the symbol, only that it

is greater than 1/2. This is improved on by the indicator vector.

To obtain this we embed allele space into a Euclidean space,

which has the advantage of having a distance which is an inner

product, see Indicator Vectors in the Appendix. This choice of

distance transforms the disease and control matrices, Md and Mc,

to a numerical form. Next an optimal disease classifier, v, is

obtained, from a reasonable criterion, see (A.13). In plain terms v
is a word that is highly correlated with the disease set and minimally

correlated with the control set. The procedure outlined in the

Appendix leads to the refinement that only loci having the most

highly probable symbols are selected (see Appendix).

For the reference case with threshold v~2:43, N(v)~4315
along with an estimated 6 errors. The plots for this case resemble

those depicted in Figure 3. Use of he indicator vector reduces the

number of loci to 4300 and an error estimate of 4. This modest

reduction is largely due to the insensitivity of the odds ratio

threshold in the neighborhood of v~2:43. For the odds ratios

shown in Figure 3, indicator reductions in the number of loci is

roughly 25%.

Validation and Prediction

Consistency of the T2D classifier is next explored by comparing

it with results from data generated by randomizing the phenotyp-

ical Fusion sequences in a manner consistent with the data. The

resulting classifiers computed at the same v~2:43 criterion level

are then compared with the T2D classifier. This randomization

produces three possible alterations of the 4300 distinguished loci:

(1) symbol change 1 /? 2; (2) high ? low value at a major locus; (3)

low ? high value at a minor locus. Non-parametric statistics thus

implies a 1/8 overlap of the randomized classifier with the T2D

classifier, i.e., an intersection I~538, which is confirmed by the

results obtained for 50 randomized trials:

Figure 2. Histograms of intra-populational sequences in a sub-
space of roughly 8,000 base pair loci, as obtained for odds-
ratios vw2 from Figure 1.
doi:10.1371/journal.pone.0085684.g002
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I~552+46 & M~4,361+134, ð4Þ

where M is the set size at the v~2:43 threshold. It is an

underlying hypothesis of the Fusion data acquisition that the

(roughly 540,000) non T2D loci should be statistically the same for

disease and control. The above 3 alterations show that there are

only T2D loci shifts. Under the randomization the overall

distribution of odds ratios, v, only shows changes in nearby

T2D allele loci.

The results of (4) should be compared with the estimate of I if

M is chosen at random without replacement; in this case classifier

overlaps would be given by

I~M2=N, ð5Þ

where N~544,846.

If M~4300, this gives I~34, and if the symbols are also

random this gives I~17. To emphasize this point 4300 loci were

chosen at random and for 50 trials if the symbol is chosen as the

mode we obtain I~31:06+4:82; and if the symbol is chosen at

random I~14:62+4:82, is obtained, confirming (5).

These deliberations show that the T2D classifier is certainly not

only not an artifact, but also clearly emphasizes the special role of

the T2D loci for type 2 diabetes.

The best evidence for the T2D indicator would be an objective

test of prediction. Internal consistency was shown by splitting the

Fusion data into a training set, 760 cases and 650 controls; and a

test set of 159 cases and 137 controls. The indicator vector for the

training set was then determined, and applied to the test set for

disease/control designation. The error rate was about 1%, about

the same as for the training set. Since all sequences figured in the

determination of high value loci, this is irrelevant for purposes of

prediction.

A successful prediction was achieved in one limiting case. At

random, one disease and one control sequence was removed from

the data and reserved as the ‘test set’. The classifier for the

remaining data was then determined. At each locus of the

classifier, the difference of the ‘correct’ classifier frequency for the

disease and control populations was calculated. For no apparent

reason if the bottom 3,000 so ranked loci replaced the original

Figure 3. Agreement scores and gaussian fits at 3 odds ratios: (A) vw2, md~7929, sd~8:58, mc~7878, sc~14:12 (B) vw3, md~2:590,
sd~2:58, mc~2574, sc~6:26 (C) vw4, md~1279, sd~1:68, mc~1270, sc~4:21. Light blue dots represent the 919 case sequences, light pink dots
the 787 control sequences.
doi:10.1371/journal.pone.0085684.g003
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classifier a statistical advantage resulted. Over the course of 1,000

such trials a 52% correct prediction rate was obtained, yielding a

p-value of.03. No specific risk loci were obtained, only the

certainty that such loci exist within the reduced classifier.

It is the present contention that statistical fluctuations in the

data possibly allow for hidden contrasts between the case/control

sets besides T2D, and that this confounds prediction. To

investigate this we randomly chose sets of 60%, 70%, 80%, 90%

of the Fusion populations of disease and controls. Many repeats of

this showed a high level of consistency in the size of the

corresponding indicator spaces. (Note this procedure always leads

to a nested set of loci that at 100% is the T2D indicator that has

been obtained here).

If we denote the average indicator loci size at the five values

(60%, 70%,…, 100%) by Li and the corresponding population

sizes by Pi then a simple regression shows that

L~Loz
a

P
ð6Þ

with

a~5:1367|106, Lo~1,310, ð7Þ

fits the data to within a fraction of one percent. Thus in the limit of

unbounded data the estimated number of T2D loci for the

classification is Lo~1,310. Since the degree of diversity in the

Fusion data is small this is likely an over estimate, which also

implies that over two thirds of the allele loci are irrelevant for

prediction.

Further Results and Discussion

For the representative case, v~2:43, about 4300 loci were

found for the classifier, however the above analysis suggests that

with sufficient data this number might be reduced to about 1300.

About two thirds of the 4300 are due to possible hidden contrasts,

which in turn are due to data fluctuations and the limited amount

of data. Unfortunately, the present analysis cannot suggest which

1300 loci are correct, and our further remarks can only be stated in

general terms.

The literature contains suggestions that many loci figure in the

genomics of complex diseases, however that thousands of genomic

markers are involved might not have been anticipated. It is

tempting when confronted with such large collections of loci to

suggest that a network is involved, but the analysis does not have

the capacity to reveal potential interactions as implied by this

terminology.

To further the issue of possible patterns recall that Figure 2 was

constructed from the histograms of SD and SC the matrices of

Hamming distances of intra-disease and intra-control sequences,

sometimes referred to as structure matrices. Next we adopt a re-

ordering of sequences based on increasing average Hamming

distance of a sequence to all others of the set; which in spirit is

similar to the ordering generated by dendrograms in taxonomy.

The result is shown in Figure 4 where the image of the reordered

structure matrix SD is shown above, and below that for SC . The

difference in appearance of the two sets is striking; note the

different color bars ranges. The upper panel of Figure 4 depicting

disease shows a strong granularity and in analogy with taxonomy

might indicate possible sub-types of T2D and also a lack of

structure for SC .

Next we consider the score calculations of Figure 3 for the case

of vw2:43, but make use of the reordering of Figure 4. This is

shown in Figure 5. A small number of false negatives and false positives

have been removed for display purposes. The result appears as a

structured generally decreasing trace. The granularity found in

Figure 4 has a counterpart in Figure 5. The steps and their vertical

columns suggests nearby sets of sequences; an issue for future

investigation.

The present results suggest that if the presence of Snps is due to

mutations, then single mutations are irrelevant since they are

shared by both the disease and control sets, an indication that

attention to individual loci may be futile. The situation is

consistent with the view that a threshold number of such mutations

Figure 4. Reordering the reference case structure matrices for
T2D on top, and for controls bottom. Reordering is based on
ascending values of the mean Hamming distance of a sequence from all
others.
doi:10.1371/journal.pone.0085684.g004
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is required for disease to manifest itself; an implication of Figures 3,

and 5.

As a metaphor for this situation consider the case of a neuron

which gathers small incremental membrane potentials, and only

when all inputs sum to a threshold does the neuron perform its

function of firing an action potential. Perhaps a more relevant

attempt at modeling, is to note that the distinguished collection of

4300 loci is of unknown organization, but that for a score above

4286 the collection manifests itself as diabetes, and below that as

the absence of disease. In such terms the score can be compared to

a morphogen, which above some threshold produces a form of

tissue different than below the threshold [22,23], with ‘function’ or

‘organization’ replacing ‘tissue’.

Recent studies of T2D data [24,25] produced a compilation of

variants that might be associated with T2D. In total that list

contains 121 risk loci, but only 32 are shared with the full Fusion

dataset and none of these belong to the reference set of 4300 loci.

Both cited investigations made use of the observation that Snps

might be acquired as segments of DNA and therefore of associated

genomic material, referred to as haplotypes. This concept played

no role in the present development, which regards all loci as

independent. Such locational correlations might be present in the

present results, and a Hapmap of the 4300 loci might prove to be

revealing. Along similar lines since roughly 98% of DNA is non-

coding [26] it may be of interest to determine how much of this

kernel of 4300 genomic loci is coding.

The observation that a disease mechanism might not be

revealed by analysis of data from genome wide associative studies

[8] is not refuted by what is presented here. As already observed

there have been many allusions in the literature to the modest role

that individual Snps play in a disease as complex as T2D, but the

notion that large numbers of loci might play a role, is probably a

surprise. On the other hand since this number of loci appears to

successfully distinguish disease from control it would be remark-

able if the mechanism of the disease is not to be found in the set. It

is also an implication of the present analysis that more case/

control records would significantly shrink the classification set.

Since the distinguished kernel of genomic loci is heavily present

in the healthy control set, a more subtle question is: ‘What is its

role?’ in the control set.

Appendix: Analytic Summary

Standard Order
The nth Snp of a sequence is recorded as two allele loci, say

(2n{1,2n) referred to as the odd and even members of the nth

Snp pair. According to the standard order the higher number in the

symbol alias is recorded first and is then re-aliased as 2 and the

lower number is recorded second and re-aliased as 1. No

information is lost since the accompanying rs number, part of

the database, of a Snp furnishes chromosome location and alleles

themselves. The essential Snp information is thus determined by

whether 22, 21, or 11 is recorded. This is illustrated in the

following table.

Probabilities
For a population of sequences, at any Snp, one can calculate the

probability po(2) as the frequency of symbol 2 at the odd locus and

similarly pe(1) at the even locus.

It is clear from this formulation that the probability of the 22

pair, P(22) is

P(22)~1{pe(1) ðA:1Þ

and similarly for

P(11)~1{po(2), ðA:2Þ

and finally

P(21)~po(2)zpe(1){1: ðA:3Þ

If P(2) denotes the probability of symbol 2 for a Snp then

P(1)~
po(1)zpe(1)

2
ðA:4Þ

and

P(2)~
po(2)zpe(2)

2
ðA:5Þ

Information
For the Snps case the information (entropy), from (A.5) is

SSnps~{
po(1)zpe(1)

2
ln (

po(1)zpc(1)

2
) ðA:6Þ

{
po(2)zpe(2)

2
ln (

po(2)zpe(2)

2
)

and the allele version has two compartments

Figure 5. Scores reordered according to Figure 4.
doi:10.1371/journal.pone.0085684.g005
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SAl~So
AlzSe

Al~{½(po(1) ln po(1)zpo(2) ln po(2)� ðA:7Þ

{½pe(1) ln pe(1)zpe(2) ln pe(2)�:

Odds Ratios
For a disease and counterpart control population the allele odds

ratios are given by

vs~
ps

d

1{ps
d

=
ps

c

1{ps
c

; s~o,e: ðA:8Þ

where the subscripts d and c indicate the disease and control set,

respectively.

The Snp odds ratio is

Va~
Pd (a)

1{Pd (a)
,
1{Pc(a)

Pc(a)
ðA:9Þ

where a is the major allele, and in which (A.4) and (A.5) can be

substituted.

Table 2 shows a string of three Snps of risk loci. The po(2) and

pe((1) probabilities, for disease and control sets are shown on the

first two lines. The last two lines show odds ratios based on allele

loci and Snp loci, respectively. See Figure 1.

If the probabilities of risk loci lie close to unity for both disease

and controls so we can write p
d
~1{Ed and pc~1{Ec then (A.8)

shows OR&Ec=Ed , which accounts for the bold face values of line 3

of the table. On the other hand from (A.4) and (A.5) Pd&Pc and

leads to V values near unity.

Indicator Vectors
To pass from a symbolic sequence to a numerical vector we set

1?½1,0�
2?½0,1�

ðA:10Þ

which is a reduced form of the more general case [15,16]. Thus

S~(A,G,A)?

S~½1,0,0,1,1,0�: ðA:11Þ

The transformation (A.10) of a sequence of N alleles becomes a

vector in a Euclidean space of dimension 2N. The Euclidean

distances, dE , between sequences of the same length is related their

Hamming distances dH by the relation

dH~d2
E=2: ðA:12Þ

The vectorized matrix of disease and control sequences will be

denoted by Md and Me respectively, i.e., the rows of each are the

vectorized genomic sequences of the corresponding data. To

generate the indicator vector, v, of the disease class we seek the

maximum of the criterion functional

SEMdvE2T{SEMevE2T ðA:13Þ

under the condition that

EvE2~1 ðA:14Þ

and where S T indicates the average over rows. This leads to

1

Nd

M
{
dMdv{

1

Nc

M{
cMcv~lv, ðA:15Þ

and simple arguments show there must be at least one positive l.

The dimensionality of the problem can be substantially reduced

by recognizing that v must be an admixture of the rows of Md and

Mc, thus

v~M
{
dazM{

cb, ðA:16Þ

known as the method of snapshots [27]. From (A.16) it then

follows that

MdM
{
d=Nd MdM{

c=Nd

{McM
{
d=Nc {McM{

c=Nc

" #
a

b

� �
~l

a

b

� �
ðA:17Þ

Solution of (A.17) leads to a set of loci and the distinguished

genomic symbol. As mentioned in the main text, the combination

is the indicator vector and the ordered symbols, or word, is the

classifier in the corresponding locus space.

ROC Analysis
The proper odds ratio threshold might sensibly be formulated in

terms of true and false positives and negatives as customarily

treated by receiver operation characteristic, ROC, curves. For simplicity

it will be assumed that the distribution of scores Gd (s) and Gc(s),
being sums of large numbers of loci, can by the central limit

theorem be fit by normal distributions,

Gd (s)~N(md ,sd ,s) ðA:18Þ

and

Gc(s)~N(mc,sc,s) ðA:19Þ

of mean m and standard deviation s.

For Nd and Nc the number of disease and control sequences,

and a discrimination value T

Table 2. Odds-ratios, v and V, at three Snp locations.

Snp (1) Snp (2) Snp (3)

Odd Even Odd Even Odd Even

Disease .2302 .9934 .2329 .9947 .9987 .1105

Control .2415 .9754 .2354 .9785 .9923 .1000

OR v .94 3.80 .9862 4.13 5.96 1.118

OR V 1.12 1.090 .9608

doi:10.1371/journal.pone.0085684.t002
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rd (T)~
Nd

NdzNc

ð ?

T

Gd (s)ds ðA:20Þ

is the fraction of true positives. The plot of this versus false

positives, for the range of T furnishes a ROC curve. The error

fraction is

Er(T)~
Nd

NdzNc

ðT

{?
Gd (s)dsz

Nc

NdzNc

ð?
T

Gc(s)ds: ðA:21Þ

the minimum T , is easily calculated and occurs at the point of the

ROC curve of slope 21. For any odds-ratio threshold this is

considered the ideal value.

Pseudo-probabilities
An issue is the fact that choosing the modal symbol at a locus

only requires a probability w1=2. All probabilities as defined

above must satisfy

p(1)zp(2)~1 ðA:22Þ

whether defined for alleles or Snps. Under the vectorization (A.10)

and the optimization (A.10) it can be shown that (A.22) is

preserved. However, in the space of all probabilities, probabilities

may leave the first orthant. In simple terms under (A.13) individual

probabilities can be greater than unity and so also can be negative.

This circumstance has a history in theoretical physics [28–30] and

has been given a sound mathematical basis [31], and these are

sometimes termed pseudo-probabilities. A part of the optimization

is to only retain those loci which are overprobable, by choice the

level is pw1, which is not critical.
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