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Abstract

Machine learning has increasingly been applied to classification of schizophrenia in

neuroimaging research. However, direct replication studies and studies seeking to

investigate generalizability are scarce. To address these issues, we assessed within-

site and between-site generalizability of a machine learning classification framework

which achieved excellent performance in a previous study using two independent

resting-state functional magnetic resonance imaging data sets collected from differ-

ent sites and scanners. We established within-site generalizability of the classification

framework in the main data set using cross-validation. Then, we trained a model in

the main data set and investigated between-site generalization in the validated data

set using external validation. Finally, recognizing the poor between-site generaliza-

tion performance, we updated the unsupervised algorithm to investigate if transfer

learning using additional unlabeled data were able to improve between-site classifica-

tion performance. Cross-validation showed that the published classification proce-

dure achieved an accuracy of 0.73 using majority voting across all selected

components. External validation found a classification accuracy of 0.55 (not signifi-

cant) and 0.70 (significant) using the direct and transfer learning procedures, respec-

tively. The failure of direct generalization from one site to another demonstrates the

limitation of within-site cross-validation and points toward the need to incorporate

efforts to facilitate application of machine learning across multiple data sets. The

improvement in performance with transfer learning highlights the importance of tak-

ing into account the properties of data when constructing predictive models across

samples and sites. Our findings suggest that machine learning classification result

based on a single study should be interpreted cautiously.
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1 | INTRODUCTION

Schizophrenia is a serious mental disorder that imposes a significant

burden on society around the world (Charlson, Baxter, Cheng,

Shidhaye, & Whiteford, 2016). The clinical symptoms of schizophrenia

are heterogeneous (Arango & Carpenter, 2011; Owen, 2014), and its

diagnosis is still dependent on the subjective report from patients and

assessment by clinicians (Frances, 1994).

With the aim to provide objective assessment to guide clinical prac-

tice, integrative psychobiological approaches including the Research

Domain Criteria initiative (Kozak & Cuthbert, 2016) and the Hierarchi-

cal Taxonomy of Psychopathology (Kotov et al., 2017) suggest breaking

the symptom-oriented approach down to different levels of neurosci-

entific analysis for mental disorders. In line with these new approaches,

patients with schizophrenia have been demonstrated to have functional

and structural brain alterations from magnetic resonance imaging (MRI)

research (Cheng, Newman, et al., 2015; Cheng, Palaniyappan, et al.,

2015; Ellison-Wright & Bullmore, 2009; Haijma et al., 2013). Among

the various MRI techniques, resting-state functional MRI (rsfMRI) has

been widely applied and aberrant brain activity has been reported in

schizophrenia patients (Cheng, Newman, et al., 2015; Cheng,

Palaniyappan, et al., 2015; Tang et al., 2013; Xu & Lipsky, 2014).

However, results from traditional MRI studies are group-level data

and have limited clinical applications. More recently, machine learning

has been increasingly utilized to optimize the use of brain imaging data

in clinical classification and build predictive models for individualized

diagnosis for different psychiatric disorders (Arbabshirani, Plis, Sui, &

Calhoun, 2017). Machine learning is defined as the process of enabling

computers to acquire the ability to learn patterns of data without being

explicitly programmed to do so (Samuel, 1959). Multivariate machine

learning approaches are algorithms specialized in recognizing patterns

from high-dimensional data like brain imaging data, which can capture

the complex relationships between brain regions compared with univari-

ate methods (Davatzikos, 2004). The general machine learning frame-

work with rsfMRI data for computational psychiatry includes:

(a) preprocessing the imaging data; (b) separating the training data and

the testing data completely; (c) extracting and selecting features from

the training data; (d) training the predictive model; and (e) generalizing

the predictive model to the testing data. In this framework, assessing

generalizability is one of the most important steps in evaluating predic-

tive models, which simulates the real-world context. Generalizability is

assessed in two distinct settings: within-site and between-site. Two

main strategies, internal validation (or cross-validation) and external vali-

dation, have been used to assess generalizability. Within-site generaliz-

ability is typically established using cross-validation. In this setting, a

data set collected from a single site is repeatedly split into independent

training and test data sets, and the performance of the model is

assessed in the training set for each split. However, to assess between-

site generalizability, the predictive model is trained on a data set from

one site and then applied to an independent data set collected in a sepa-

rate site using external validation. Using internal validation is practical

considering the difficulty in collecting data from different sites, but it

could lead to an overestimation of performance due to overfitting of the

predictive model to one specific data set, compared with external valida-

tion which considers generalizability across different data sets (Woo,

Chang, Lindquist, & Wager, 2017). It is therefore important to assess

generalizability using both internal and external validation methods.

A number of promising studies have successfully classified patients

with schizophrenia from healthy controls based on rsfMRI data using

machine learning approaches. As shown in Table 1, accumulated studies

have utilized machine learning as a tool to analyze rsfMRI data, investi-

gate the underlying neural mechanisms, recognize specific brain pat-

terns, and classify patients with schizophrenia from healthy controls at

the individual level with accuracies ranging from 65 to 95%

(Arbabshirani, Kiehl, Pearlson, & Calhoun, 2013; Cao et al., 2018;

Cheng, Newman, et al., 2015; Cheng, Palaniyappan, et al., 2015; Du

et al., 2012; Venkataraman et al., 2012). However, most of these stud-

ies have only assessed generalizability using internal validation

methods. While two studies have used external validation to assess the

generalizability of their classification methods, they did so in indepen-

dent rsfMRI data sets (Cui, Liu, Song, et al., 2018; Cui, Liu, Wang, et al.,

2018; Skatun et al., 2017) and no study has independently replicated

the machine learning procedure from a previous study.

In this study, the overall aim was to assess the within-site and

between-site generalizability of a previous machine learning framework

of rsfMRI data that have shown promising performance using both

internal and external validation methods. Among the various previous

studies, Du et al. (2012) have reported an excellent classification accu-

racy of 0.93 using rsfMRI data and 0.98 using fMRI data in identifying

schizophrenia patients from healthy controls based on their own

machine learning procedure. Therefore, we examined the generalizabil-

ity of this machine learning procedure in the present study. We first

investigated the generalizability of the classification procedure in a main

data set from a single site (internal validation) following the exact steps

from Du et al.'s study. Then, we assessed the between-site generalizabil-

ity to a completely independent data set (validated data set) from a dif-

ferent site (external validation) to test whether factors from different

sites, such as scanning setting and procedure, would influence generaliz-

ability. To further explore the generalizability of the procedure rather

than the algorithm itself, we updated the unsupervised part of the algo-

rithm to investigate the degree to which the performance of between-

site generalizability could be improved in the new setting. Importantly,

the labels (schizophrenia or healthy control) of the testing data set were

not used when training the predictive model in the last step, which

served to determine the between-site generalizability of the procedure

from independent data sets. Given the excellent performance of the

procedure reported by Du et al. (2012), we hypothesized that this

machine learning procedure could discriminate patients with schizophre-

nia from healthy controls with promising classification performance with

good within-site generalizability. Due to the effect of site on rsfMRI data

(Dansereau et al., 2017), we further hypothesized that the cross-site

generalizability of the procedure would be compromised. Moreover,

because some site effects could be taken into account when updating

the unsupervised last step of the procedure, we further hypothesized

that the between-site generalizability would improve in the new setting.
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2 | METHODS

2.1 | Participants

Two data sets of patients with schizophrenia and healthy controls

were included in this study. In the main data set, 51 patients with

schizophrenia and 51 healthy controls were recruited (Table 2).

Schizophrenia patients were recruited from the Community Health

Service Centre of the Institute of Mental Health (the sixth Affiliated

Hospital of Peking University) in the Haidian District of Beijing, China.

In the validated data set, 34 patients with schizophrenia and

27 healthy controls were recruited (Table 2). The patients with

TABLE 1 Summary of machine learning studies in schizophrenia based on rsfMRI

Reference Participants Feature Feature extraction Classifier Accuracy (%)

Shen, Wang, Liu, and Hu (2010) SZ = 32, HC = 20 FC among

116 regions

Correlation

coefficient rank;

LLE

C-means clustering 86.5

Fan et al. (2011) SZ = 31, HC = 31 Functional brain

networks from ICA

ICA, Grassmann

manifold analysis

SVM 85.5

Du et al. (2012) SZ = 28, HC = 28 Spatial components

from ICA

t test; PCA; FLD Majority voting 93

Tang, Wang, Cao, and Tan (2012) SZ = 22, HC = 22 FC by 90 regions Correlation

coefficient rank;

PCA

Linear SVM 93.2

Bassett, Nelson, Mueller,

Camchong, and Lim (2012)

SZ = 15, HC = 14 FC by the graph No Linear kernel SVM 75

Venkataraman, Whitford, Westin,

Golland, and Kubicki (2012)

SZ = 18, HC = 18 FC by 77 ROIs Select by prior

knowledge and

random forest

Majority voting 75

Anderson and Cohen (2013) SZ = 72, HC = 74 FNC by the graph ICA SVM 65

Arbabshirani et al. (2013) SZ = 28, HC = 28 FNC ICA; visually inspect K-nearest neighbors 96

Fekete et al. (2013) SZ = 8, HC = 10 FNC by the graph No Multi kernel block

diagonal

optimization

100

Su, Wang, Shen, Feng, and Hu

(2013)

SZ = 32, HC = 32 FC Correlation

coefficient rank

Linear kernel SVM 81.2

Watanabe, Kessler, Scott,

Angstadt, and Sripada (2014)

SZ = 54, HC = 67 FC by 347 ROIs Elastic-net SVM 73.5

Cheng, Newman, et al. (2015) and

Cheng, Palaniyappan, et al.

(2015)

SZ = 415, HC = 405 FC by BWAS No SVM 75.8

Chyzhyk, Savio, and Grana (2015) SZ = 74, HC = 72 FC/ local activity Pearson's correlation

coefficient

SVM 91.2/100

Savio and Grana (2015) SZ = 72, HC = 74 ALFF, fALFF, VMHC,

ReHo

Voxel site saliency

measures

SVM; RF 80

Cheng, Newman, et al. (2015) and

Cheng, Palaniyappan, et al.

(2015)

SZ = 27, HC = 36 BC of FC Rank BC SVM 79

Kaufmann et al. (2015) SZ = 71, HC = 196 FC from ICA No Regularized LDA 84.4

Kim et al. (2016) SZ = 50, HC = 50 FC among

116 regions

No Deep neural network 86

Skatun et al. (2017) SZ = 182, HC = 348 FC from ICA No Regularized LDA 78.3

Cui, Liu, Song, et al. (2018) and

Cui, Liu, Wang, et al. (2018)

SZ = 108, HC = 121 FC by 90 ROIs Two sample t tests,

LASSO

SVM 82.6

Cao et al. (2018) SZ = 43, HC = 29 MI and FC between

STC and other

cortical regions

Top 10 features SVM 78.6

Abbreviations: BC, betweenness centrality; BWAS, brain-wide association study; FLD, Fisher linear discriminant; FNC, functional network connectivity;

HC, healthy controls; LASSO, least absolute shrinkage and selection operator; LDA, linear discriminative analysis; LLE, locally linear embedding; MI, mutual

information; PCA, principle component analysis; RF, random forest; ROI, region of interest; STC, superior temporal cortex; SZ, patients with schizophrenia;

VMHC, voxel-mirrored homotopic connectivity.
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schizophrenia were recruited from the Changsha Psychiatric Hospital,

Changsha, Hunan province, China. The diagnosis of schizophrenia was

ascertained with the Structural Clinical Interview for the Diagnostic and

Statistical Manual of Mental Disorders (DSM-IV), Fourth Edition

(Frances, 1994). The Positive and Negative Syndrome Scale (PANSS)

(Kay, Fiszbein, & Opler, 1987) was used to assess the severity of schizo-

phrenia symptoms. Both the clinical assessment and the diagnostic inter-

views were conducted by experienced psychiatrists. All patients were

taking antipsychotic medications. Healthy controls were recruited from

the local community via advertisements. They had no personal and family

history of mental disorders. Participants with neurological disorders, sub-

stance abuse, and/or dependence or head injuries were excluded. The

short form of the Chinese version of the Wechsler Adult Intelligence

Scale (Gong, 1992) was used to estimate the IQ of all participants.

In addition, independent sample t tests were conducted to compare

age, length of education and estimated IQ between the two healthy

control groups (Table 3), and the same were conducted to compare onset

age, duration of illness and severity of psychotic symptoms between the

two patient groups. Chi-square tests were also used to compare the gen-

der proportion between the two healthy control groups and the two clin-

ical groups. Finally, a five-factor model of the PANSS (Anderson et al.,

2017; Lindenmayer, Grochowski, & Hyman, 1995) comprising negative,

positive, disorganized, excited, and anxiety symptom domains was com-

puted and compared between the two clinical groups (Table 3).

The study was approved by the Ethics Committee of the Institute

of Psychology, the Chinese Academy of Sciences. All participants gave

written informed consent.

2.2 | Image acquisition

For the main data set, all participants were scanned in a 3-T Siemens

Tim Trio scanner at the Chaoyang Hospital, Beijing, China. The rsfMRI

TABLE 2 Demographic and clinical
information of two data sets

HC SZ t/χ 2 p

The main data set

Demographics

Age (years) 42.04 (12.165) 43.22 (10.885) −.515 .608

Gender (male%) 35.29% 41.18% .374 .684

Education (years) 12.80 (3.731) 12.07 (2.946) 1.105 .272

Estimated IQ* 119.76 (11.735) 107.68 (14.215) 4.663 .000

Clinical characteristics

Onset age (years) 25.41 (9.185)

Course (years) 16.66 (8.067)

PANSS total 51.69 (14.771)

PANSS positive 11.63 (4.858)

PANSS negative 13.39 (5.783)

PANSS general 26.67 (7.618)

CPZ equivalent dose (mg) 236.56 (172.208)

The validated data set

Demographics

Age* (years) 27.37 (7.344) 36.5 (7.140) −4.898 .000

Gender* (male%) 44.44% 82.35% 9.580 .003

Education* (years) 13.93 (2.814) 12.18 (2.208) 2.722 .009

Estimated IQ 108.00 (20.196) 93.94 (24.799) 1.970 .055

Clinical characteristics

Onset age (years) 24.17 (6.644)

Course (years) 10.54 (7.868)

PANSS total 67.72 (12.378)

PANSS positive 10.00 (3.873)

PANSS negative 23.16 (3.118)

PANSS general 30.84 (7.238)

CPZ equivalent dose (mg) 287.05 (193.830)

Note. Table values: mean (SD).

Abbreviations: CPZ: chlorpromazine; HC, healthy controls; PANSS, the Positive and Negative Syndrome

Scale; SZ, patients with schizophrenia.

*p < 0.05.
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data were collected by an echo-planar imaging (EPI) sequence utilizing

gradient echo. Slices were acquired in interleaved order and the data

consisted of 200 whole-brain volumes (repetition time

(TR) = 2,500 ms, echo time (TE) = 21 ms, flip angle = 90�, slice num-

ber = 42, slice thickness = 3.5 mm, matrix size = 64 × 64, field of view

(FOV) = 200 mm, and voxel size = 3.1 × 3.1 × 3.5 mm3). T1-weighted

structural image data were collected for anatomical reference using a

3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence

(TR = 2,530 ms, TE = 2.34 ms, flip angle = 7�, FOV = 256 mm, slice

thickness = 1 mm, slice number = 176, in-plane matrix resolu-

tion = 256 × 256, and voxel size = 1 × 1 × 1 mm3).

For the validated data set, all participants were scanned in a 3-T Sie-

mens TIM Trio scanner in the Hunan Provincial People's Hospital, Chang-

sha, Hunan province, China. The rsfMRI data were collected by an EPI

sequence utilizing gradient echo. Slices were acquired in interleaved order

and the data consisted of 180 whole-brain volumes (TR = 2,000 ms,

TE = 25 ms, flip angle = 80�, slice number = 32, slice thickness = 4.5 mm,

matrix size = 64 × 64, FOV = 240 mm, and voxel size = 3.75 ×

3.75 × 4.5 mm3). T1-weighted structural image data were collected using

a 3D MPRAGE sequence (TR = 2,000 ms, TE = 2.26 ms, flip angle = 8�,

FOV = 256 mm, slice thickness = 1 mm, slice number = 176, in-plane

matrix resolution = 256 × 256, and voxel size = 1 × 1 × 1 mm3).

While participants were in the scanner, they were asked to remain

as stationary as possible and their heads were stabilized with

foam pads.

2.3 | Data preprocessing

Image preprocessing was conducted with the Statistical Parameter

Mapping (SPM) software (SPM12; http://www.fil.ion.ucl.ac.uk/spm/

software/spm12), Data Processing Assistant for Resting-State fMRI

(DPARSF) Software (DPARSF4.3; http://rfmri.org/DPARSF), and a

plugin-in for SPM named Temporal Filter (http://www.brain-fmri.

com/tempfilter) (Madsen, Krohne, Cai, Wang, & Chan, 2018). The two

data sets were preprocessed separately with the same steps. To avoid

T1 relaxation effects prior to equilibrium, the first five volumes of

each resting state scan were excluded. Then, the remaining volumes

for each of the functional imaging sessions were processed using

DPARSF, including slice timing, realignment, and coregistration to the

structural images. Mean frame-wise displacement (FD) was calculated

(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) for each partici-

pant. The percentage of time points with mean FD power >0.5 was

lower than 10% for all participants. In order to remove nonstationary

signals and other artifacts, the temporal filter toolbox (Madsen et al.,

2018) was used. Processing steps included: despiking (Patel et al.,

2014), high-pass filtering and removal of low-frequency drifts and

motion by a 24-parameter autoregressive model using realignment

regressors and scrubbing (using a 1 mm relative movement threshold

and a 1% DVARS threshold (Power et al., 2012)) (Friston, Williams,

Howard, Frackowiak, & Turner, 1996). Subsequently, spatial normali-

zation with DARTEL was adopted to normalize the functional images

TABLE 3 Comparison of demographic and clinical information between two sites

SZ HC

Main Validated t/χ2 p Main Validated t/χ2 p

Demographics

Age (years) 43.22 (10.885) 36.50 (7.14) 3.168 .002 42.04 (12.165) 43.22 (10.885) −.515 .608

Gender (male%) 41.18% 82.35% 14.167 .000 35.29% 44.44% .625 .470

Education (years) 12.07 (2.946) 12.18 (2.208) −.182 .856 12.80 (3.731) 12.07 (2.946) 1.105 .272

Estimated IQ 107.68 (14.215) 93.94 (24.799) 3.206 .002 119.76 (11.735) 107.68 (14.215) 4.663 .000

Clinical characteristics

Onset age (years) 25.41 (9.185) 24.17 (6.644) .594 .554

Course (years) 16.66 (8.067) 10.54 (7.868) 3.070 .003

PANSS total 51.69 (14.771) 67.72 (12.378) −4.678 .000

PANSS positive 11.63 (4.858) 10.00 (3.873) 1.461 .148

PANSS negative 13.39 (5.783) 23.16 (3.118) −7.884 .000

PANSS general 26.67 (7.618) 30.84 (7.238) −2.28 .025

CPZ equivalent dose (mg) 236.56 (172.208) 287.05 (193.830) −1.024 .310

PANSS5 negative 15.20 (6.636) 28.17 (4.428) −8.544 .000

PANSS5 positive 10.47 (4.888) 8.17 (2.973) 2.127 .037

PANSS5 disorganized 15.22 (4.500) 17.09 (4.067) −1.704 .093

PANSS5 excited 5.61 (2.155) 5.92 (2.701) −.533 .596

PANSS5 anxiety 8.75 (3.918) 8.76 (3.358) −.016 .987

Note. Table values: mean (SD).

Abbreviations: CPZ, chlorpromazine; HC, healthy controls; main, main data set; PANSS, the Positive and Negative Syndrome Scale; PANSS5, the symptom

domains calculated by the five-factor model; SZ, patients with schizophrenia; validated: validated data set.
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into Montreal Neurological Institute (MNI) space (Ashburner, 2009) in

SPM12. Finally, an 8-mm full-width-at-half-maximum isotropic Gauss-

ian kernel was used to smooth the functional images (Table 5).

2.4 | Machine learning analysis

After preprocessing, further machine learning analysis was conducted

(see Figure 1 for the analysis flowchart). To assess generalizability by

internal validation, we followed the procedures from Du et al. (2012) in

the main data set. To assess between-site generalizability by external vali-

dation, the predictive model built in the main data set was directly applied

to the validated data set. To establish transfer learning and to explore fac-

tors influencing between-site generalizability, the unsupervised group

independent component analysis (ICA) step was updated based on the

two data sets and the between-site generalizability was estimated again.

In general, the machine learning framework consisted of the following

steps: (a) extracting and selecting the spatial components (features) for all

participants; (b) identification of features with significant differences using

a two-sample t test with thresholding; (c) kernel principal component

analysis (PCA); (d) Fisher linear discriminant (FLD) analysis on individual

components; and (e) majority voting across components.

2.4.1 | Assessing within-site generalizability

In feature extraction and selection, spatial group ICA was first run based

on the entire main data set. Data for all participants were concatenated

across time. Then, PCA was used to reduce the data into 40 principal

components at the participant level. Afterward, ICA was performed to

extract 30 independent spatial components based on the resulting data

from the PCA at the group level. The analysis of spatial group ICA

employed Infomax ICA (Bell & Sejnowski, 1995) in the GIFT software

package for MATLAB (GIFT, 2011). Second, the 16 spatial components

were selected manually according to the exclusion criteria below:

1. Components originating from artifacts, motion, and

respiratory/cardiac cycles, which were identified by considering

how much regions known to be associated with these signals were

represented in the components. This included edges (motion, respi-

ration), major arteries or veins, the circle of Willis, and the sagittal

sinus (cardiac cycle) as well as regions in the vicinity of field inho-

mogeneity (movement by field inhomogeneity interaction effects).

2. Components consisting of ventricles.

3. Components that showed low and widespread activation.

This step provided a template of spatial components to establish

correspondence of components in the subsequent LOO ICA analysis.

Then, LOO cross-validation was used to separate the data into a test

set (one participant) and a training set (the remaining sample) and

group ICA was performed for the training data. In order to identify

individual subject components, spatial–temporal reconstruction

(Nickerson, Smith, Öngür, & Beckmann, 2017) based on the ICA

model was used to obtain the spatial components for each participant

in both the test and training data. A matching procedure based on cor-

relation with the template of spatial components was used to establish

component correspondence between the LOO splits. Then, a voxel-

wise two-sample t test between the two groups for the training

F IGURE 1 The flowchart shows machine learning procedures through internal and external validation. FLD, Fisher linear discrimination;
GICA, group independent component analysis; PCA, principle component analysis; STR, spatial–temporal reconstruction
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data was conducted to order the voxel in terms of their t-test

value/significance to obtain maximally discriminative features. Only

voxels with t values larger than a threshold t0 proceeded to the next

step. The threshold t0 was determined such that the class separation

in the final FLD step was maximal within the training data set. When

the final threshold value (t0) was determined, the threshold was

applied to the test data. Subsequently, the spatial components for

the test and training data were decomposed by kernel PCA. Finally,

the test and training data were projected to one dimension by Fish-

er's linear discriminant analysis (LDA) to make a final prediction of

the test label.

After feature extraction and selection, classification was done for

each of the 16 components independently and then combined by

majority voting to make a final decision on the classification of each

test sample. The classification procedure in Du et al.'s (2012) study

also reported the classification rates for combinations of components

that achieved a high accuracy. However, as this selection procedure

might lead to biased classification rates, we only considered classifica-

tion results based on majority voting across all selected components

in the present study.

2.4.2 | Assessing between-site generalizability

To assess between-site generalizability by external validation, the

template of spatial components which was used to select features in

assessing within-site generalizability was applied to the validated set

of rsfMRI data. The spatial components for each participant in the val-

idated data set were obtained through spatial–temporal reconstruc-

tion based on the template which was built from the main data set. In

this setting, determination of the threshold t0, kernel PCA and training

of the LDA classifier considered only the main data set (training set),

and hence the identified classification model was directly applied to

the validated data set without any adaptation. Apart from changing

the LOO cross-validation to cross-sample validation, all classification

parameters and procedures remained identical.

To further explore factors influencing between-site generalizabil-

ity, we updated the ICA step to consider data from both sites. To

achieve this, we identified 30 spatially independent components

across both data sets using group ICA and established correspon-

dence to the template components from the within-site generaliza-

tion procedure using spatial correlation. The matching procedure

involved calculating the pairwise spatial correlation between all

30 estimated components and the 16 template components. Then,

pairs of components that exhibited the highest absolute correlation

were sequentially matched to identify all 16 components in the joint

data set. After this matching procedure, the components were visu-

ally inspected to confirm that they represented the same brain

regions as the template. Importantly, in this setting, the validated

data set was only considered in the training of the group ICA model

and hence no label information from the validated data set was used

in feature extraction or fitting of the classification model. Apart from

the different templates of spatial components, the classification pro-

cedure was identical to the within-site generalization setting. The

significance of the classification performance was assessed using a

random permutation test in all settings where an empirical null distri-

bution was obtained by applying an identical classification procedure

to the data with permutated class labels.

3 | RESULTS

3.1 | Group ICA on the main rsfMRI data set

Based on the aforementioned criteria, 16 components were selected

to classify patients with schizophrenia from healthy controls in the

analysis. The selected components are shown in Figure 2. The name,

spatial location, peak MNI region, and peak MNI coordinates for each

component are shown in Table 5.

3.2 | Within-site classification performance

For classification based on individual features, the performances

including accuracy, sensitivity, and specificity of each component are

shown in Table 5. We found that the basal ganglia (the fifth feature)

achieved the highest accuracy (0.706). The occipital lateral cortex

(the first feature), the fusiform gyrus (the fourth feature), the tempo-

ral lobe (the eighth feature), the middle cingulate gyrus (the 10th fea-

ture), and the precuneus (the 16th feature) achieved a similar

accuracy. However, the accuracy of the posterior DMN (the ninth

feature) and the DMN (the 15th feature) was lower than random

chance. The sensitivity across all features was close to or lower than

0.5, while the specificity across all features was close to or higher

than 0.5. When combining all 16 features, majority voting achieved a

classification accuracy of 0.725, a sensitivity of 0.569, and a specific-

ity of 0.882.

3.3 | Between-site classification performance

Between-site generalizability was assessed using the template of spa-

tial components from the main data set. We found that accuracy in

general decreased to the random level for classification from each

selected component (see Table 4 and Figure 3). When all 16 features

were combined by majority voting, the performance was worse com-

pared to the within-site performance evaluated by internal validation,

with an accuracy of 0.550, a sensitivity of 0.394 and a specificity of

0.741. Random permutation test showed that the accuracy failed to

reach statistical significance, with a p value of .183.

For the between-site generalizability by external validation using

ICA across both data sets, we found that the performance was similar

to the within-site classification performance for each selected compo-

nent (see Table 5 and Figure 3). When all 16 features were combined

by majority voting, the performance remained similar to the first clas-

sification, with an accuracy of 0.700, a sensitivity of 0.636 and a spec-

ificity of 0.778. Random permutation test revealed that the accuracy

was statistically significant, with a p value of .0005.
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F IGURE 2 Three orthogonal slices from selected components are shown in the figure. The mean components were calculated across all
participants and converted into Z-scores. Orthogonal projects are reproduced according to neurological convention

TABLE 4 Selected spatial components used for classification

Index Component name Spatial location Peak MNI region Peak MNI coordinates (mm)

(1) Occipital lateral cortex Left calcarine sulcus + left middle occipital

gyrus + lingual gyrus

Left calcarine sulcus −12, −93, −3

(2) Occipital medial cortex Calcarine Left calcarine sulcus 0, −75, 9

(3) Cerebellum Left lobule VIII, left crus I, and lobule VI of

cerebellar hemisphere

Lobule IX of vermis 3, −60, −39

(4) Fusiform Fusiform gyrus + lingual gyrus Right lingual gyrus 24, −60, −9

(5) Basal ganglia Putamen + thalamus + caudate nucleus Left putamen −21, 9, −3

(6) Precentral gyrus Precentral gyrus + left postcentral gyrus Left postcentral gyrus −51, −9, 33

(7) Anterior DMN Anterior cingulate gyrus + left medial frontal

gyrus

Left medial orbitofrontal cortex 0, 51, −3

(8) Temporal lobe Middle temporal gyrus + right superior

temporal gyrus

Right superior temporal gyrus 60, −42, 12

(9) Posterior DMN Precentral gyrus + left cuneus Left precuneus 0, −69, 36

(10) Middle cingulate Midcingulate area Left midcingulate area 0, −33, 45

(11) Occipital medial cortex Middle occipital gyrus + cuneus + superior

occipital gyrus

Right middle occipital gyrus 30, −81, 24

(12) Frontal superior cortex Superior frontal gyrus + right supplementary

motor area + middle frontal gyrus

Left supplementary motor area 0, 6, 60

(13) DMN Medial frontal gyrus Left medial frontal gyrus 0, 51, 33

(14) Central gyrus Postcentral gyrus + precentral gyrus Undefined 0, −27, 66

(15) DMN Middle frontal gyrus + superior frontal gyrus Right midcingulate area 3, 24, 36

(16) Precuneus Precentral gyrus + superior parietal lobule Left precuneus 0, −57, 54
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F IGURE 3 Accuracy, sensitivity, and
specificity based on individual features.
Internal validation was conducted within
the main data set, external validation1 was
conducted by directly applying the
classification procedure from the main data
set to the validated data set, and external
validation2 was conducted using an
updated group ICA across both data sets
but with all other steps being identical

TABLE 5 Classification performance for each component

Ind Area Validation type Acc Sens Spec Ind Area Validation type Acc Sens Spec

(1) Occipital lateral cortex Internal 0.686 0.588 0.784 (9) Posterior DMN Internal 0.441 0.392 0.490

External1 0.417 0.485 0.333 External1 0.450 0.424 0.481

External2 0.450 0.333 0.593 External2 0.583 0.485 0.704

(2) Occipital medial cortex Internal 0.578 0.510 0.647 (10) Middle cingulate Internal 0.686 0.510 0.863

External1 0.533 0.455 0.630 External1 0.433 0.152 0.778

External2 0.583 0.515 0.667 External2 0.617 0.636 0.593

(3) Cerebellum Internal 0.598 0.392 0.804 (11) Occipital medial cortex Internal 0.588 0.353 0.824

External1 0.417 0.333 0.519 External1 0.550 0.333 0.815

External2 0.517 0.333 0.741 External2 0.550 0.697 0.370

(4) Fusiform Internal 0.657 0.490 0.824 (12) Frontal superior cortex Internal 0.529 0.627 0.431

External1 0.567 0.364 0.815 External1 0.550 0.727 0.333

External2 0.467 0.242 0.741 External2 0.533 0.576 0.481

(5) Basal ganglia Internal 0.706 0.627 0.784 (13) DMN Internal 0.647 0.490 0.804

External1 0.500 0.242 0.815 External1 0.483 0.303 0.704

External2 0.667 0.606 0.741 External2 0.617 0.576 0.667

(6) Precentral gyrus Internal 0.578 0.686 0.471 (14) Central gyrus Internal 0.627 0.431 0.824

External1 0.500 0.576 0.407 External1 0.617 0.485 0.778

External2 0.633 0.576 0.704 External2 0.483 0.242 0.778

(7) Anterior DMN Internal 0.618 0.510 0.725 (15) DMN Internal 0.431 0.353 0.510

External1 0.600 0.545 0.667 External1 0.583 0.606 0.556

External2 0.550 0.788 0.259 External2 0.650 0.606 0.704

(8) Temporal lobe Internal 0.657 0.667 0.647 (16) Precuneus Internal 0.676 0.647 0.706

External1 0.550 0.333 0.815 External1 0.550 0.455 0.667

External2 0.667 0.788 0.519 External2 0.583 0.333 0.889

Note. Ind, index; Acc, accuracy; Sens, sensitivity; Spec, specificity; Internal, internal validation within the main data set; External1, external validation

generalizing to the validated data set from the main data set by the template based on the main data set; External2, external validation generalizing to the

validated data set from the main data set by the template based on both data set.
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4 | DISCUSSION

4.1 | Classification performance compared with the
previous study through LOO

In this study, we first followed a machine learning procedure devel-

oped by Du et al. (2012) using rsfMRI data from a sample of schizo-

phrenia patients and healthy controls to assess the within-site

generalizability and the reproducibility of the machine learning proce-

dure. The classification followed the same feature extraction, feature

selection, and LOO validation steps as Du et al. (2012). We found that

based on individual features, the highest classification accuracy was

0.706, while the classification accuracy was 0.725 when all selected

components were combined. To establish correspondence with Du

et al.'s (2012) study, the performance of individual components can be

found in Table 5. Since testing individual components or combinations

of those would result in multiple comparisons and the classification

results using individual components were less stable than the result

from majority voting, we focused on the results obtained from majority

voting across all 16 components to avoid overinterpretation. Although

the accuracy in the present study is not as high as the results from Du

et al. (2012), compared with the overall reported accuracy of 65–95% in

the field (Anderson & Cohen, 2013; Bassett et al., 2012; Fan et al.,

2011; Su et al., 2013; Venkataraman et al., 2012), our results support

the reproducibility of the machine learning procedure which can suc-

cessfully discriminate patients with schizophrenia from healthy controls.

Several factors may explain the reduced within-site generalizability

we found. First, 51 pairs of participants were recruited for LOO valida-

tion in our study, but Du et al.'s study only had 28 pairs. The smaller

sample size in Du et al.'s study in the context of analyzing high-

dimensional imaging data could easily lead to overfitting of the predic-

tive model to their data set (Mwangi, Tian, & Soares, 2014). Second,

the longer illness duration and lower symptom severity of our patients

might have introduced more heterogeneity into the profile of partici-

pants (an der Heiden & Hafner, 2000; Irani, Kalkstein, Moberg, & Mob-

erg, 2011), making it more difficult to identify patterns that are directly

related to the disorder in question. Finally, although comprehensive

preprocessing was performed to reduce noise and limit the effect of

artifacts on the analysis (Churchill et al., 2011), these confounding fac-

tors could still persist and could affect the classification performance.

4.2 | Implication of between-site generalizability

When assessing between-site generalizability in two completely inde-

pendent data sets from two sites, we obtained a nonsignificant accu-

racy of 0.550 and a significant accuracy of 0.700 based on all selected

features when applying a template of spatial components built based

on only the main data set and both data sets, respectively. It is impor-

tant to note that although the validated data set was utilized with the

main data set for generating a new template of spatial components

through spatial group ICA, the labels of the validated data set were

still kept unseen when training the model to ensure that the training

and testing data sets were independent.

More importantly, the findings that the predictive model did not

successfully generalize to the novel data set when applying the tem-

plate only based on the training data set but successfully generalized to

the independent testing data set when applying the template based on

both data sets substantially extends our understanding of the generaliz-

ability of machine learning using rsfMRI data. Failure to generalize does

not necessarily mean that a model is invalid, since multiple factors are

different between independent data sets (Scheinost et al., 2019). As

indicated in Table 3, the schizophrenia patients in the main data set

were significantly older, had significantly higher estimated IQ, longer ill-

ness duration and higher PANSS positive subscale score, but signifi-

cantly lower PANSS total, negative and general subscale scores

compared with patients in the validated data set. In addition, the

healthy controls in the main data set had significantly higher estimated

IQ than the healthy controls in the validated data set. Such heterogene-

ity between the two data sets may be one potential factor contributing

to the failure in direct generalization. In addition, the two data sets were

acquired independently from different scanners with different acquisi-

tion parameters, which could further compromise generalizability. The

differences in classification performance highlights the importance of

considering differences in the new data when constructing classification

models and demonstrates the usefulness of unsupervised transfer learn-

ing in this setting. Moreover, meta-analytic studies of machine learning

in schizophrenia have demonstrated that age, medication exposure, ill-

ness stage, and gender are all significant moderators of classification

performance (Kambeitz et al., 2015; Neuhaus & Popescu, 2018).

Cui, Liu, Song, et al. (2018) and Cui, Liu, Wang, et al. (2018) evalu-

ated the classification performance of their machine learning algorithm

within the same data set and across different data sets and also found

that the classification accuracy across different data sets was lower than

within the same data set. However, the extent of difference in accuracy

was not large in their study compared with ours. This could be due to

differences in participant characteristics. In their study, patients with

untreated first-episode schizophrenia were recruited and the demo-

graphics were very similar between the two samples; whereas in our

study, we recruited patients with chronic schizophrenia and the demo-

graphics were different between the two samples. Taken together,

these findings suggest that future research to construct machine learn-

ing models should take into account illness heterogeneity.

4.3 | Implication for schizophrenia research

The classification performance based on individual features in this

study revealed that the striatum yielded the highest accuracy. Spatial

components including the lateral occipital cortex, the fusiform gyrus,

the temporal lobe, the middle cingulate gyrus, the DMN, and the

precuneus could also distinguish patients with schizophrenia from

healthy controls with acceptable accuracy. These findings are

supported by previous studies using machine learning methods in

schizophrenia (Du et al., 2012; Fan et al., 2011; Savio & Grana, 2015;

Tang et al., 2012; Yu et al., 2013). Our findings suggest that the stria-

tum may play a key role in schizophrenia. This is consistent with

results from previous studies which demonstrated alteration in striatal
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volume (Chakravarty et al., 2015) and white matter connectivity

(James et al., 2016). For the DMN, studies by Fan et al. (2011) and Du

et al. (2012) also suggest that it is one of the most informative brain

regions for the diagnosis of schizophrenia. Moreover, a recent study

found that the DMN interacted with the central executive network

and the salience network in smoking schizophrenia patients, indicating

the potential role of the DMN in the symptomatology of the disorder

(Liao et al., 2018). At the same time, the structural and functional

alterations in the DMN in schizophrenia patients have been shown to

be related to impairment in working memory and attention (Garrity

et al., 2007; Hu et al., 2017; Pomarol-Clotet et al., 2008; Salgado-

Pineda et al., 2011; Whitfield-Gabrieli & Ford, 2012). Previous studies

have also suggested that the fusiform gyrus and the temporal lobe

may be discriminative features for classification (Savio & Grana, 2015;

Tang et al., 2012). In anatomical studies, reduced gray matter volume

at the superior temporal gyrus has been reported in schizophrenia

patients (Ohi et al., 2016; Sun, Maller, Guo, & Fitzgerald, 2009), which

may also be related to hallucinations (Cui, Liu, Song, et al., 2018; Cui,

Liu, Wang, et al., 2018).

4.4 | Limitation

This study has several limitations. First, the sample size in the present

study was small. Bigger data sets are needed to avoid overfitting and to

build a classifier with better generalizability. Second, only one modality

of data (rsfMRI) was utilized, even though both functional and struc-

tural brain information may be important for high-accuracy classifica-

tion using machine learning (Mikolas et al., 2017; Orban et al., 2018;

Ota et al., 2012). Third, we did not collect the smoking status of our

participants in this study. Considering the high rate of smoking in

schizophrenia patients (Liao et al., 2018), which may influence brain

activity (Potvin et al., 2016; Tanabe, Tregellas, Martin, & Freedman,

2006), smoking status may be a confounding factor that affects classifi-

cation performance. Fourth, since our findings suggest the importance

to take scanning setting and characteristics of participants into account

when collecting data from different sites, future studies should examine

how these two sets of factors affect between-site generalizability.

5 | CONCLUSION

In this study, we found that the machine learning procedure developed

by Du et al. (2012) could successfully classify patients with schizophre-

nia from healthy controls based on rsfMRI data in internal validation

but not external validation. Moreover, we found that a transfer learning

procedure based on unsupervised learning was able to improve

between-site generalizability and may eventually contribute to the

incorporation of machine learning approaches into clinical practice.
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