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Abstract: The risk of methicillin-resistant Staphylococcus aureus (MRSA) infection is increasing in
both the developed and developing countries. New approaches to overcome this problem are in
need. A ligand-based strategy to discover new inhibiting agents against MRSA infection was built
through exploration of machine learning techniques. This strategy is based in two quantitative
structure–activity relationship (QSAR) studies, one using molecular descriptors (approach A) and the
other using descriptors (approach B). In the approach A, regression models were developed using
a total of 6645 molecules that were extracted from the ChEMBL, PubChem and ZINC databases,
and recent literature. The performance of the regression models was successfully evaluated by
internal and external validation, the best model achieved R2 of 0.68 and RMSE of 0.59 for the test set.
In general natural product (NP) drug discovery is a time-consuming process and several strategies
for dereplication have been developed to overcome this inherent limitation. In the approach B,
we developed a new NP drug discovery methodology that consists in frontloading samples with 1D
NMR descriptors to predict compounds with antibacterial activity prior to bioactivity screening for
NPs discovery. The NMR QSAR classification models were built using 1D NMR data (1H and 13C) as
descriptors, from crude extracts, fractions and pure compounds obtained from actinobacteria isolated
from marine sediments collected off the Madeira Archipelago. The overall predictability accuracies
of the best model exceeded 77% for both training and test sets.

Keywords: antibacterial activity; methicillin-resistant Staphylococcus aureus (MRSA); quantitative
structure–activity relationship (QSAR); machine learning (ML) techniques; molecular descriptors;
NMR descriptors; drug discovery; marine natural products (MNPs); marine-derived actinobacteria

1. Introduction

The use as well as misuse of antibiotics in animal feeding and human medicine has resulted
in global antimicrobial resistance epidemics [1–3]. The Center for Disease Control and Prevention
classifies methicillin-resistant Staphylococcus aureus (MRSA) as a severe threat in health care, leading to
more than 80,000 invasive infections and resulting in over 11,000 deaths per year [4]. MRSA infection
is one of the leading causes of hospital-acquired infections and is commonly associated with significant
morbidity, mortality, length of stay, and cost burden in hospital, e.g., the mortality rates vary from
5–60% and depending on the patient population and site of infection [3,5]. Recently was reported
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an impressive percentage of patients (ca. 60%) acquire MRSA nosocomial infections within 48 h
despite having no healthcare issues. New approaches to overcome nosocomial infections and antibiotic
resistance are in demand, thus accelerating the discovery of new antibacterial drugs is highly desirable.

Drug research and development (R&D) is comprehensive, complex, expensive, time-consuming,
and risky process with clinical success rate of approximately 12% reported in 2014 [6]. In order to
shorten the research cycle and reduce the costs of drug R&D, several new methodologies have been
developed and applied, e.g., computer-aided drug design (CADD) methods. In the last three decades,
CADD methods have emerged as powerful tools in the development of therapeutically important
small molecules with higher hit rates than those obtained for more conventional approaches such
as high throughput screening (HTS) approaches. More than fourteen FDA-approved drugs were
mainly CADD-driven drugs [7], e.g., Norfloxacin (Noroxin®) an antibiotic belonging to the class of
fluoroquinolone approved in 1986, developed by using a ligand-based CADD approach through
quantitative structure–activity relationship (QSAR) methodology [8].

Although target-based approaches using inhibition targets such as ribosome, dihydrofolate
reductase (DHFR), β-lactamase, caseinolytic proteases (Clp proteases), fatty acid synthases (FAS I
and FAS II), phospholipids in bacterial cell membrane, peptidoglycan biosynthesis enzymes (MurB,
C, D, E, and F, MraY, and MurG), transglycosylase of penicillin binding protein, a menaquinone
biosynthesis enzyme (MenA), type II NADH oxidoreductase (NDH-2), bacterial DNA polymerase
IIIC (Pol IIIC), phosphoinositide-dependent protein kinase-1 (PDK1), phosphatidyl inositol-3-kinase
(PI3K), a histidine protein kinase (KinA) and a response regulator (Spo0F), have become major tools for
discovering anti-MRSA agents, the pipeline for novel-mode of action anti-MRSA drugs is still empty
and will remain that way for a considerable amount of time before a new target-driven drug gets into
the market for clinical use [9–11]. Therefore alternative approaches should be developed in order to
avoid the forthcoming urgent situation of not having appropriate antibiotics for medical needs [3].
Compared to target-based approaches, the traditional whole cell-based screening approach is favored
for finding lead compounds with activity against MRSA [9]. A whole-cell assay validates also if the
target active agent interaction has anti-MRSA functionality.

In the last years, some studies have been reported on CADD for antibacterial activity, which used
small data sets that are generally focused on a single family of compounds e.g., indolylidinepyrazolone
derivatives [12], N2-acyl isonicotinic acid hydrazide derivatives [13], (Z)-2-(nitroimidazolylmethylene)-
3(2H)-benzofuranone derivatives [14], peptides [15,16], anthraquinone derivative [17], indole
carboxamide 4-piperazine derivatives [18]. An in silico strategy based on QSAR molecular topology
using multi-linear regression (MLR) analysis was reported by Zanni et al. to identify synthetic
molecules from 141 heterogeneous active or inactive structural compounds (e.g., benzoimidazole,
dihydropirrolone, dihydro-purindione, dinitrobenzene, phenyl sulfonyl morpholine, and indole
derivatives) as antimicrobial agents not susceptible to one or several mechanisms of resistance
such as biofilm formation, ionophore activity, epimerase activity or SOS system [19]. A QSAR for
antimicrobial activity against MRSA based also in molecular topology descriptors was developed
by Lopez and co-workers [20] with 56 active and inactive 4-quinolone analogs using MLR and
linear discriminant analysis (LDA). This model was successfully applied in the virtual screening
of a combinatorial library of more than thousand 6-fluoroquinolone derivatives to the search for
new compounds exhibiting significant activity against MRSA. A QSAR approach, for classification,
was used by us for the prediction of active/inactive compounds relatively to overall biological
activity, antitumor and antibiotic activities using a data set of 1804 compounds from PubChem
database [21]. Using the best classification models for antibiotic activity a data set of marine and
microbial natural products from the AntiMarin database were screened and 57 new lead compounds
for antibiotic drug design were proposed. Using the first rule of the antibiotic tree model, TopoPSA
(topological polar surface area) ≥ 120.7 Å2 for antibiotic compounds and TopoPSA < 120.7 Å2 for
non-antibiotic compounds, it was possible to correctly classify 1397 out of 1804 compounds for the
training set (ca. 77%) [21]. In spite of the predictive power of the TopoPSA descriptor for modeling
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the antibiotic activity has never been reported, the high correlations of this descriptor with passive
drug transport through membranes [22] and drug transport by multidrug resistance associated protein
1 (MRP1/ABCC1) [23] were already reported. Recently, Ebejer et al. [24] reported the comparison
between the physicochemical properties of antibacterial compounds and other drugs and concluded
that the percentage of compounds with TopoPSA < 120 Å2 is 84.4% and 52.6% for marketed other drugs
and antibacterial drugs, respectively, which is in agreement with our previously stablished rule [21].
Wang et al. developed in silico classification models derived from 5451 cell-based anti-MRSA assay
data using four machine learning (ML) methods, including naïve Bayesian, support vector machine
(SVM), recursive partitioning, and k-nearest neighbors [25]. The best model was employed for the
virtual screening of anti-MRSA compounds, which were validated by cell-based assays with three
types of highly resistant MRSA strains and a total of 12 new anti-MRSA agents were experimentally
confirmed by the authors [25].

Although the vast majority of currently marketed antibiotics have been isolated from terrestrial
microbes, accounting for more than 75% of all antibiotics discovered [26,27], the antibacterial
compounds isolated from marine sources have not yet been developed into clinical trials [28–30].
However, several novel bioactive compounds with antibacterial activity against MRSA isolated
from marine bacteria and fungi were reported [10,30]—(1) isolated from marine-derived bacteria:
marinopyrrole A [31], an alkaloid endowed (Streptomyces sp.), and abyssomicin C [32], a spirotetronate
poliketide (Verrucosispora sp.); (2) isolated from marine-derived fungus: spiromastixones A–O [33],
depsidone analogs (Spiromastix sp.). The marine environment has been proposed as an untapped source
of new bioactive molecules, and marine bacteria and fungi seem to be the most important sources for
antibacterial compound discovery [29,30,34–36]. Computational methodologies such as those using in
dereplication and CADD are crucial in the systematic exploration of the biological activity of marine
natural products (MNPs) to improve the rate of drug discovery from marine sources [7].

In the current study, two QSAR approaches (A and B) were explored for the prediction of
antibacterial activity against human pathogens MRSA, using the value of the minimum inhibitory
concentration (MIC). In the approach A was used molecular descriptors for building regression models
that predicted the MIC value of antibacterial activity. These models were developed using in total
6645 molecules that were extracted from the ChEMBL, PubChem, and ZINC databases and recent
literature indexed in Web of Science. In order to reduce the time consumption and biological activity
screening-associated costs that are associated to NP discovery, a new NP drug discovery strategy
similarly to that we had recently developed for anticancer activity [37] was developed. In the approach
B was used NMR descriptors for building NMR QSAR models to predict compounds with antibacterial
activity prior to bioactivity screening for NP discovery. The NMR QSAR classification models were
built using 1D NMR data (1H and 13C) as descriptors, from 50 crude extracts, 55 fractions, and 50 pure
compounds obtain from actinobacteria isolated from marine sediments collected off the Madeira
Archipelago [38]. The performance of the models was successfully evaluated by internal and external
test set validations. Further external validations through data from the StreptomeDB 2.0 [39] database
and using MNPs isolated in our MNP research group were also accomplished.

2. Results and Discussion

2.1. Chemical Space of the Anti-MRSA Models

2.1.1. Approach A

The whole data set of 6645 small molecules was randomly divided into a training set of
5112 molecules (comprising 1688 active molecules with MIC < 5 µM and 3424 inactive molecules
with MIC ≥ 5 µM) and a test set of 1533 molecules (comprising 543 active molecules and 990 inactive
molecules), which were used for the development and external validation of the QSAR regression
models, respectively. The whole data set was clustered into five structural classes or scaffold types (A–E)
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using the ward tool in JChem. The five structural clusters are represented in Table 1 along with as their
average and maximum anti-MRSA pMIC values (i.e., − log10(MIC) in terms of molar concentration).

Table 1. Structural clusters and pMIC values for anti-MRSA within the five clusters.

Clusters 1 Training Set 2 Test Set 2 Average/Maximum
pMIC 3

A—Indole derivative
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1 Cluster number and chemical structure of the cluster centroid. 2 Number of molecules. 3 Within the cluster for the
training set.

Although the molecules of these five structural clusters were distributed over a wide range
of pMIC values, between 2.64 and 11.82, all clusters showed an average pMIC value greater than
or equal to 4.59 (corresponding to a MIC value less than or equal to 25.7 mM), and a maximum
pMIC value greater than 7.80 (corresponding to a MIC value less than 0.0158 mM) for the training
set. The well-known, Lipinski rule, informs mainly if a molecule is more likely to be an orally
administrated active drug and if it is easily absorbed by the body. Furthermore, one of the most
important molecular descriptors is the octanol-water partition coefficient (Log P), which is highly
correlated with lipophilicity, thus, more lipophilic molecules are often discontinued from drug
development and are frequently related to toxicity issues [40]. Besides molecular weight (MW)
and Log P, as described above in the introduction the electronic descriptor TopoPSA appears to have
a remarkable performance in discriminating between antibiotic and non-antibiotic compounds [21].
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In order to exploit the training set chemical and biological diversity, the active and inactive molecules
of the training set were analyzed, in accordance with the five structural clusters, using MW, XLogP
(an estimation of the octanol-water partition coefficient, Log P) and TopoPSA. The analysis of these data
indicates that the active and inactive molecules against MRSA in the training set are distributed over a
wide range of MW (i.e., 89–1490 Da), XLogP (i.e., −9.34–21.90) and TopoPSA (i.e., 0–644.98 Å2) values.
Interestingly, approximately 63% of the compounds present in the training set have a MW bellow
500 Da. This MW interval contains approximately 54% and 67% of all active and inactive molecules
against MRSA in the training set, respectively. In the same way, using this rule (MW < 500 Da) it is
possible to discriminate inactive molecules in relation to active molecules in four structural clusters,
namely in clusters: A, B, D, and E, which comprises 67%, 69%, 70%, and 56% of inactive molecules
as compared to 48%, 57%, 52%, and 44% of active molecules, respectively. The same behavior was
described by Ebejer et al. [24] in which only 75% of marketed antibacterial drugs have a MW bellow
500 Da, whereas for marketed other (non-antibacterial) drugs was 86.7%. In addition, more than
68% and 69% of the active and inactive molecules against MRSA in the training set have an XLogP
that is lower than 5, respectively. In spite of this using the XLogP < 5 it is possible to prioritize
active molecules in relation to inactive molecules in two clusters, namely in clusters: D and E, which
comprises 74% and 81% of active molecules as compared to 67% and 77% of inactive molecules,
respectively. Furthermore, using the rule TopoPSA ≥ 120.7 Å2 for antimicrobial compounds, it was
possible to discriminate approximately 50% and 41% of all active and inactive molecules against MRSA
in the training set, respectively. Therefore, using this rule it was possible to prioritize active molecules
in relation to inactive antibacterial molecules in all the five clusters, A-E, which comprises 58%, 38%,
40%, 55%, and 73% of active antibacterial molecules as compared to 43%, 36%, 37%, 36%, and 69% of
inactive molecules, respectively.

2.1.2. Approach B

The whole data set, covering 155 samples (50 crude extracts, 55 fractions, 50 pure compounds),
was divided into a training set of 116 samples (37 crude extracts, 41 fractions, and 38 pure
compounds) and a test set of 39 samples (13 crude extracts, 14 fractions, and 12 pure compounds),
which were used for the development and external validation of the QSAR classification models,
respectively. Two classes of antibacterial activity against MRSA were set, moderate-active-to-active
with MIC < 100 µg/mL (in total 49 samples) and inactive with MIC ≥ 100 µg/mL (in total
106 samples). The whole data set comprising five actinobacteria genera (i.e., Actinomadura,
Brevibacterium, Micromonospora, Salinispora, and Streptomyces) in accordance with our previously
reported work [38]. The five actinobacteria genera are represented in Table 2 along with their activity
classes and average anti-MRSA MIC values. It is interesting to highlight that the most abundant
genera in our data set are Streptomyces (in total 80 samples, 62 and 18 samples in the training and
test sets, respectively), Salinispora (in total 39 samples, 29 and 10 samples in the training and test
sets, respectively), and Micromonospora (in total 32, 23, and 9 samples in the training and test sets,
respectively). The genus with the most bioactive potential against MRSA is Streptomyces, comprising
28 (corresponding to 45%) and 9 (corresponding to 50%) active samples out of the 62 and 18 total
samples in the training and test sets, respectively.

This result is not surprising since the genus Streptomyces over the last decades has stirred huge
interest as a source of bioactive compounds, more than 60% of all known antibiotics have been isolated
from streptomycetes [39], and moreover a similarly result was obtained by us for the anticancer
screening against HCT116 in a previously study from actinobacteria isolated from marine sediments
collected off the Madeira Archipelago [37].

2.2. Exploration of Empirical Molecular Descriptors and Fingerprints for QSAR Approach A

Two wide sets of descriptors were explored, one with 6 different types of fingerprints (FPs)
with different sizes (166 MACCS, MACCS keys; 307 Substructure, presence and count Sub and



Mar. Drugs 2019, 17, 16 6 of 22

SubC respectively; 881 PubChem fingerprints; 1024 CDK, circular fingerprints; and 1024 CDK Ext,
extended circular fingerprints with additional bits describing ring features) and other with a total of
218 1D and 2D descriptors (including 6 electronic, 195 topological, and 17 constitutional descriptors).
The FPs and the molecular descriptors were calculated by PaDEL-Descriptor [41] and CDK Descriptor
Calculator (http://www.rguha.net/code/java/cdkdesc.html), respectively. Random Forests (RF) [42]
ML technique was used for building pMIC against MRSA prediction regression models, and the
performance of the models was successfully evaluated by internal validation (out-of-bag, OOB,
estimation on the training set), Table 3.

Table 2. Actinobacteria genera and correspondent anti-MRSA MIC values.

Actinobacteria Genera Set (Number/Sample Types) Activity Class/Average MIC 1

Actinomadura
Tr set 2 (2, cr 4) cr: inactive/>250
Te set 3 (1, cr 4) cr: inactive/>250

Brevibacterium
- -
Te set 3 (1, cr 4) cr: inactive/>250

Micromonospora Tr set 2 (23, 3 cr 4, 13 fr 5, 7 pu 6)
cr: inactive/>250
fr: 5 active/31; 8 inactive/≥250
pu: inactive/>250

Te set 3 (9, 3 cr 4, 3 fr 5, 3 pu 6)
cr: 2 active/35; 1 inactive/>250
fr: 1 active/8; 2 inactive/>250
pu: inactive/>250

Salinispora Tr set 2 (29, 11 cr 4, 10 fr 5, 8 pu 6)
cr: 1 active/63; 10 inactive/>250
fr: 2 active/23; 8 inactive/≥250
pu: inactive/>250

Te set 3 (10, 4 cr 4, 4 fr 5, 2 pu 6)
cr: inactive/>250
fr: 1 active/8; 3 inactive/>250
pu: inactive/>250

Streptomyces Tr set 2 (62, 21 cr 4, 18 fr 5, 23 pu 6)
cr: 2 active/5; 19 inactive/243
fr: 12 active/11; 6 inactive/229
pu: 14 active/12; 9 inactive/222

Te set 3 (18, 4 cr 4, 7 fr 5, 7 pu 6)
cr: inactive/219
fr: 5 active /23; 2 inactive/188
pu: 4 active/11; 3 inactive/188

1 µg/mL. 2 Training set. 3 Test set. 4 Crude extracts. 5 Fractions. 6 Pure compounds.

Table 3. Exploration of two collections of empirical descriptors for the quantitative structure–activity
relationship (QSAR) Random Forests (RF) model of pMIC against MRSA for the training set with an
OOB estimation.

Descriptors (#) R2 RMSE 1 MAE 2 % Error ≥ 0.5/% Error < 0.5 3

MACCS (166) 4 0.555 0.649 0.477 37/63
Sub (307) 4 0.509 0.681 0.505 39/61
SubC (307) 4 0.563 0.642 0.468 36/64
PubChem (881) 4 0.561 0.643 0.467 36/64
CDK (1024) 4 0.551 0.652 0.471 36/64
CDK Ext (1024) 4 0.572 0.636 0.456 34/66
1D2D (218) 5 0.364 0.775 0.600 49/51

1 Root mean squared error. 2 Mean absolute error. 3 Percent of molecules predicted with absolute error above or
below 0.5. 4 Fingerprints. 5 Molecular descriptors.

The four fingerprints sets, MACCS, SubC, PubChem and CDK Ext achieved the best results,
taking into account the value of the RMSE (Table 3, the best models are highlighted in bold). For us

http://www.rguha.net/code/java/cdkdesc.html
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it was very surprising the poor performance of the 1D and 2D descriptors in the modeling of pMIC
against MRSA since several molecular descriptors, as detailed in Section 2.1.1, correlate relatively
well with the values of pMIC. In this way we analyzed the Pearson correlation (R) of each of these
descriptors with the pMIC values, and it was possible to verify that 36, 73, and 126 descriptors out
of the 179 descriptors (39 descriptors have constant values) have an absolute RpMIC higher than the
RpMIC obtained by the MW (RpMIC = 0.2388), TopoPSA (RpMIC = 0.1760), and XLogP (RpMIC = 0.0439),
respectively. From the seven sets of descriptors and fingerprints, only MACCS, SubC, PubChem, and
CDK Ext fingerprints were used in further investigations. The 3D descriptors have a well-established
relationship with biological activity and are expected to increase both the accuracy and robustness of
the predictive models. Several well-established 3D molecular descriptors were exploited, such as 3D
CDK descriptors (e.g., BCUT, WHIM, CPSA and geometrical) and Radial Distribution Function (RDF)
pair [43] derived 3D descriptors in which the property is the partial atomic charge, Table 4.

Table 4. Exploration of 3D descriptors for building anti-MRSA RF models with the best four set of
fingerprints (FPs) (MACCS, SubC, PubChem, and CDK Ext) for the training set in an OOB estimation.

Descriptors (#) R2 RMSE MAE % Error ≥ 0.5/% Error < 0.5 1

MACCS_3D_CDK (232) 2 0.441 0.731 0.569 47/53
MACCS_3D_RDF (550) 3 0.426 0.745 0.587 45/55

SubC_3D_CDK (373) 2 0.466 0.715 0.556 47/53
SubC_3D_RDF (691) 3 0.448 0.730 0.574 48/52

PubChem_3D_CDK (947) 2 0.479 0.705 0.546 45/55
PubChem_3D_RDF (1265) 3 0.465 0.719 0.564 48/52

CDK_Ext_3D_CDK (1090) 2 0.537 0.667 0.507 41/59
CDK_Ext_3D_RDF (1408) 3 0.507 0.690 0.533 44/56

1 Percent of molecules predicted with absolute error above or below 0.5. 2 Comprising in total 66 descriptors, 6
3D-BCUTS, 29 CPSA, 9 Gravitational index, 7 Moment of inertia, 2 Petitjean shape index, and 13 WHIM. 3 RDF Pair
calculated in sets of charge pairs covering a distance of 12.8 Å, obtaining in total 384 descriptors.

Contrary to what would be expected, the predictive power of the anti-MRSA QSAR models
does not improve and even worse by including 3D descriptors to the best four sets (MACCS, SubC,
PubChem and CDK Ext). Although the model using the CDK Ext FP with 3D CDK descriptors
achieved the best results for the training set with R2 of 0.54 and RMSE of 0.67 (Table 4), the model
using only the CDK Ext FP still has better performance (R2 = 0.57 and RMSE = 0.64, Table 3).

Procedure for feature selection based on RF variable importance were applied to the descriptors
of models SubC, PubChem, and CDK Ext—Table 5.

Table 5. RF Prediction of pMIC against MRSA with subsets of descriptors from models SubC, PubChem,
and CDK Ext.

Model/n.◦ Descriptors R2 RMSE MAE % Error ≥ 0.5/% Error < 0.5 1

Training set 2

SubC/75 3 0.556 0.647 0.471 36/64
SubC/100 3 0.563 0.642 0.467 36/64
SubC/150 3 0.562 0.643 0.467 36/64
Pubchem/75 3 0.528 0.667 0.496 39/61
PubChem/100 3 0.544 0.656 0.484 38/62
PubChem/150 3 0.558 0.645 0.471 37/63
CDK Ext/75 3 0.545 0.655 0.481 37/63
CDK Ext/100 3 0.566 0.641 0.467 36/64
CDK Ext/150 3 0.574 0.635 0.460 35/65
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Table 5. Cont.

Model/n.◦ Descriptors R2 RMSE MAE % Error ≥ 0.5/% Error < 0.5 1

Test set

SubC/75 3 0.637 0.626 0.464 36/64
SubC/100 3 0.645 0.620 0.459 36/64
SubC/150 3 0.644 0.621 0.460 36/64
Pubchem/75 3 0.603 0.654 0.494 39/61
Pubchem/100 3 0.620 0.639 0.475 37/63
Pubchem/150 3 0.632 0.629 0.471 37/63
CDK Ext/75 3 0.609 0.650 0.483 38/62
CDK Ext/100 3 0.632 0.631 0.467 37/63
CDK Ext/150 3 0.641 0.623 0.458 34/66

1 Percent of molecules predicted with absolute error above or below 0.5. 2 OOB estimation. 3 Using the mean
decrease in accuracy measure of importance for the descriptors in the RF algorithm.

The selection of the 150 most important descriptors from the CDK Ext FP set used to build the
model with the RF enabled the training of much smaller RF models with even slightly better prediction
accuracies (R2 = 0.574 and RMSE = 0.635) than the models trained with the whole set of descriptors
(1024 descriptors, R2 = 0.572 and RMSE = 0.636) for the training set.

2.2.1. Exploration of Other State-of-the-art Machine Learning (ML) Techniques

A comparison of three ML techniques, RF, support vector machines (SVM), and Gaussian
processes (GPs), for building QSAR pMIC models with the 150 most important descriptors using in
the model with CDK Ext FPs by the five structural clusters for training and test sets is shown in Table 6
and Figure 1, respectively.

Table 6. Performance of different machine learning (ML) algorithms by the five structural clusters for
the training set. The models comprising all the molecules of training set are highlighted in bold.

ML R2 RMSE MAE

RF 1

All 0.574 0.635 0.460
A 0.583 0.555 0.416
B 0.549 0.622 0.458
C 0.445 0.757 0.520
D 0.594 0.641 0.467
E 0.575 0.600 0.449

SVM 2

All 0.564 0.645 0.457
A 0.584 0.556 0.407
B 0.518 0.649 0.463
C 0.466 0.743 0.508
D 0.569 0.659 0.465
E 0.570 0.606 0.443

GPs 2

All 0.568 0.638 0.465
A 0.590 0.548 0.415
B 0.528 0.636 0.466
C 0.450 0.752 0.530
D 0.583 0.647 0.474
E 0.577 0.599 0.442

1 OOB estimation for the training set. 2 Ten-fold cross-validation for the training set.
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Variation of the ML algorithm could not achieve any consistent improvement of the results
obtained with RF for all molecules in the training and test sets taking into account the R2 and RMSE
values, Table 6 and Figure 1. For all ML models, the best predictions obtained for the structural clusters
are obtained from cluster A—indole derivative centroid—and are also better than those obtained for all
training and test set taking into account the RMSE value. Interestingly, the worse predictions obtained
taking into account the RMSE value for all the clusters in the training and test set were to the cluster
C—2-oxazolidone derivative centroid.

Averaged predictions (consensus) obtained by the RF, SVM and GPs models with the 150 most
important CDK Ext FPs (CM1), or by the four best set of descriptors, MACCS, SubC, PubChem and
CDK Ext (CM2) further improved the results, Table 7.

Table 7. Performance of the consensus models (CM1 and CM2) predicting pMIC against MRSA for the
training and test sets.

Model R2 RMSE MAE % Error ≥ 0.5/% Error < 0.5 1

Training set

CM1 2 0.587 0.624 0.450 33/67
CM2 3 0.601 0.617 0.453 34/66

Test set

CM1 0.644 0.617 0.453 33/67
CM2 0.683 0.593 0.444 35/65

1 Percent of molecules predicted with absolute error above or below 0.5. 2 Averaged predictions obtained by the RF,
SVM and GPs models with the 150 most important CDK Ext FPs with OOB estimation and ten-fold cross-validation
for the training set using RF and the other ML techniques, respectively. 3 Averaged predictions obtained by the four
best set of descriptors, MACCS, SubC, PubChem and CDK Ext for the training set in an OOB estimation.

The best results for the prediction of pMIC against MRSA are achieved with CM2 model with
35% of the structures predicted with a deviation less than 0.5 and 91% of the structures predicted with
a deviation less than 1 for the test set. Figure 2 represents the plot of predicted versus experimental
pIMIC against MRSA for the test set using the best consensus model, CM2.



Mar. Drugs 2019, 17, 16 10 of 22

Mar. Drugs 2018, 16, x FOR PEER REVIEW  10 of 23 

Mar. Drugs 2018, 16, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/marinedrugs 

predictions obtained taking into account the RMSE value for all the clusters in the training and test 
set were to the cluster C—2-oxazolidone derivative centroid. 

Averaged predictions (consensus) obtained by the RF, SVM and GPs models with the 150 most 
important CDK Ext FPs (CM1), or by the four best set of descriptors, MACCS, SubC, PubChem and 
CDK Ext (CM2) further improved the results, Table 7. 

Table 7. Performance of the consensus models (CM1 and CM2) predicting pMIC against MRSA for 
the training and test sets. 

Model R 2 RMSE MAE % Error ≥0.5/% Error <0.5 1 

Training set 

CM1 2 0.587 0.624 0.450 33/67 

CM2 3 0.601 0.617 0.453 34/66 

Test set 

CM1 0.644 0.617 0.453 33/67 

CM2 0.683 0.593 0.444 35/65 
1 Percent of molecules predicted with absolute error above or below 0.5. 2 Averaged predictions 
obtained by the RF, SVM and GPs models with the 150 most important CDK Ext FPs with OOB 
estimation and ten-fold cross-validation for the training set using RF and the other ML techniques, 
respectively. 3 Averaged predictions obtained by the four best set of descriptors, MACCS, SubC, 
PubChem and CDK Ext for the training set in an OOB estimation. 

The best results for the prediction of pMIC against MRSA are achieved with CM2 model with 
35% of the structures predicted with a deviation less than 0.5 and 91% of the structures predicted 
with a deviation less than 1 for the test set. Figure 2 represents the plot of predicted versus 
experimental pIMIC against MRSA for the test set using the best consensus model, CM2. 

 
Figure 2. Predicted versus experimental pMIC against MRSA for the 1533 molecular structures of the 
test set. 

2.2.2. Applicability Domain of the pMIC against MRSA Model 

The similarity between a molecule of an external data set and all the 5112 molecules in the 
training set for the regression MRSA model was used to define its applicability domain. The 

R² = 0.6829

2.

3.75

5.5

7.25

9.

2. 3.75 5.5 7.25 9.

Pr
ed

ic
te

d 
pM

IC

Experimental pMIC

Figure 2. Predicted versus experimental pMIC against MRSA for the 1533 molecular structures of the test set.

2.2.2. Applicability Domain of the pMIC against MRSA Model

The similarity between a molecule of an external data set and all the 5112 molecules in the training
set for the regression MRSA model was used to define its applicability domain. The molecules of
the training set were mapped on a Kohonen self-organizing map (SOM), using in-house developed
software based on JATOON Java applets [44], on the basis of the 512 FPs calculating by GenerFP
program in JChem according to the five structural clusters, Table 1. No information about anti-MRSA
activity was used. In Figure 3, a trend for clustering according to structural clusters features of the
compounds was shown.
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After training, the metric of similarity used was the SOM response patterns after normalization,
where d(x,ni) is the Euclidian distance between the molecular descriptor vector x and ni (represents
the centroid vector of the ith SOM neuron). The threshold definition based on the average of SOM
distance (ASD) between each molecule of the test set and all the molecules of the training set was
accomplished in order to reduce the MAE of the molecules belonging to the applicability domain
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of the anti-MRSA model and was set in accordance with the mapping of the five structural clusters
(A–E) on SOM and MAE obtained in the best RF model (CM2). The applicability domain of the model
is defined as containing all molecules of the training set that were mapped as belonging to one of
the five clusters on SOM with an ASD lower than 0.4. Therefore, using this threshold for the test set,
1230 molecules belonging to the applicability domain of the anti-MRSA model were obtained, with
R2 = 0.693, RMSE = 0.586 and MAE = 0.436. However for the molecules of the test set outside the
defined applicability domain (i.e., 303 molecules) worse predictions were obtained, with R2 = 0.639,
RMSE = 0.620 and MAE = 0.479.

2.2.3. Application of the in silico Anti-MRSA Model in Virtual Screening

In the present study, a virtual screening campaign was carried out to search for new lead-like
inhibitors against MRSA. The best model, the consensus model—CM2 that is averaged predictions
obtained by the four best set of descriptors, MACCS, SubC, PubChem, and CDK Ext, was selected for
the virtual screening procedure. The virtual library comprises 3990 molecules from the StreptomeDB
2.0 database [39], an extended compilation of NPs produced by Streptomyces. In addition, StreptomeDB
2.0 includes comprehensive background information e.g., host organisms, predicted physicochemical
properties, synthesis routes, and biological activities. Although the virtual library includes 1994
molecules with at least one biological activity record, the complete activity spectrum for this data set is
not clarified yet.

The best model, CM2, selected 212 virtual hits from the StreptomeDB 2.0 library with a pMIC against
MRSA higher than 5.3 (corresponding to a MIC value lower than 5 mM, the cutoff defined by us for
antibacterial active molecules against MRSA). From the 212 virtual hits, there are 138 NPs with at least
one biological activity record and 112 NPs with antibacterial activity, in which only 4 NPs are reported as
being active against MRSA. The 3990 NPs from the StreptomeDB 2.0 library were mapped on SOM in
accordance with five structural clusters of the active and inactive molecules against MRSA, Figure 4.

Mar. Drugs 2018, 16, x FOR PEER REVIEW  12 of 23 

Mar. Drugs 2018, 16, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/marinedrugs 

us for antibacterial active molecules against MRSA). From the 212 virtual hits, there are 138 NPs with 
at least one biological activity record and 112 NPs with antibacterial activity, in which only 4 NPs are 
reported as being active against MRSA. The 3990 NPs from the StreptomeDB 2.0 library were mapped 
on SOM in accordance with five structural clusters of the active and inactive molecules against 
MRSA, Figure 4. 

 
Figure 4. Mapping of the predicted structural clusters of the active and inactive molecules against 
MRSA on SOM for the StreptomeDB 2.0 library. Red—cluster A, dark blue—cluster B, green—cluster 
C, light yellow—cluster D, light blue—cluster E. 

Furthermore, using the threshold defined for the applicability domain of the anti-MRSA model 
(i.e., ASD < 0.4), it was possible to prioritize the most probable lead-like antimicrobial against MRSA 
NPs from the StreptomeDB 2.0 library. Therefore, the virtual hits were reduced to 150 compounds, 
which were ranked by their predicted pMIC, predicted structural clusters and ASD on SOM and are 
shown in Table S1, Supporting Information. The predicted structural clusters with the best predictive 
power in accordance with RMSE for the external test set were A, D and E, Figure 1. None of the NPs 
that were predicted as belonging to the structural cluster D passed the thresholds defined, i.e., pMIC > 
5.3 and ASD < 0.4. The list of twelve NPs that were prioritized based upon their ranking is shown in 
Table 8 and Figure 5. 

Table 8. The Twelve resulting virtual screening hits from the StreptomeDB 2.0 library. 

ID 1 Name Type pMIC 2 Cluster 3 ASD 

10301 AGN-PC-07NF8H   Bis-pyrrole 6.06 A 0.23 

10232 Marinopyrrole A  Bis-pyrrole 5.92 A 0.23 

5508 Azalomycin Spiro-tricyclic 5.51 A 0.39 

3643 Methylsulfomycin I  Pyridine-containing 4  7.08 E 0.33 

5495 a10255 Pyridine-containing 4  6.51 E 0.31 

10186 GE37468 Pyridine-containing 4  6.41 E 0.35 

3971 Berninamycin C Pyridine-containing 4  6.23 E 0.38 

8767 Cyclothiazomycin Polythiazole-containing 5 6.02 E 0.34 

4999 Tallysomycin Glycopeptide 5.42 E 0.39 

3183 Cleomycin B2 Glycopeptide 5.36 E 0.37 

Figure 4. Mapping of the predicted structural clusters of the active and inactive molecules against
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Furthermore, using the threshold defined for the applicability domain of the anti-MRSA model
(i.e., ASD < 0.4), it was possible to prioritize the most probable lead-like antimicrobial against MRSA
NPs from the StreptomeDB 2.0 library. Therefore, the virtual hits were reduced to 150 compounds,
which were ranked by their predicted pMIC, predicted structural clusters and ASD on SOM and are
shown in Table S1, Supporting Information. The predicted structural clusters with the best predictive
power in accordance with RMSE for the external test set were A, D and E, Figure 1. None of the
NPs that were predicted as belonging to the structural cluster D passed the thresholds defined, i.e.,
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pMIC > 5.3 and ASD < 0.4. The list of twelve NPs that were prioritized based upon their ranking is
shown in Table 8 and Figure 5.

Table 8. The Twelve resulting virtual screening hits from the StreptomeDB 2.0 library.

ID 1 Name Type pMIC 2 Cluster 3 ASD

10301 AGN-PC-07NF8H Bis-pyrrole 6.06 A 0.23
10232 Marinopyrrole A Bis-pyrrole 5.92 A 0.23
5508 Azalomycin Spiro-tricyclic 5.51 A 0.39
3643 Methylsulfomycin I Pyridine-containing 4 7.08 E 0.33
5495 a10255 Pyridine-containing 4 6.51 E 0.31

10186 GE37468 Pyridine-containing 4 6.41 E 0.35
3971 Berninamycin C Pyridine-containing 4 6.23 E 0.38
8767 Cyclothiazomycin Polythiazole-containing 5 6.02 E 0.34
4999 Tallysomycin Glycopeptide 5.42 E 0.39
3183 Cleomycin B2 Glycopeptide 5.36 E 0.37
9530 Bleomycin z Glycopeptide 5.32 E 0.39
3322 Bottromycin A2 Macrocyclic peptide 5.30 E 0.31
1 StreptomeDB ID number. 2 Predicted pMIC. 3 Estimate structural cluster on SOM. 4 Thiopeptide. 5 Peptide.
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From the twelve resulting virtual screening hits only the bis-pyrrole derivative, ID 10301,
was already presented in our training or test sets (training set Mol3405, Table S2, Supporting Information).

2.3. Exploration of NMR Descriptors for QSAR Approach B

Three ranges for 13C NMR and four ranges for 1H NMR were used to generate the NMR
descriptors and were the following, respectively: (1) 1.5 (133 descriptors), 1.0 (200 descriptors),
and 0.5 ppm (400 descriptors); and (2) 0.5 (23 descriptors), 0.2 (61 descriptors), 0.1 (120 descriptors)
and 0.05 ppm (240 descriptors). Exploratory QSAR experiments using three NMR descriptors sets
(with 1H NMR descriptors, 13C NMR descriptors and combining 1H and 13C NMR descriptors)
were built with RF algorithm to predict two classes of antimicrobial activity against MRSA (i.e.,
moderate-active-to-active with MIC < 100 µg/mL and inactive with MIC ≥ 100 µg/mL) within a OOB
estimation procedure for the training set (Table 9). In Table 9, only the best model of the twelve models,
which were trained combining 1H and 13C NMR descriptors, is represented.

Table 9. Exploration of three collections of NMR descriptors for the QSAR RF model of antibacterial
activity against MRSA classes for the training and test sets.

Model # 1 TP 2 TN 3 FP 4 FN 5 SE 6 SP 7 Q 8 MCC 9

Training set 10

13C
0.5 400 12 72 8 24 0.33 0.90 0.72 0.29
1 200 9 71 9 27 0.25 0.89 0.69 0.18

1.5 133 12 72 8 24 0.33 0.90 0.72 0.29

1H

0.05 240 10 73 7 26 0.28 0.91 0.72 0.25
0.1 120 12 72 8 24 0.33 0.90 0.72 0.29
0.2 61 14 71 9 22 0.39 0.89 0.73 0.32
0.5 23 8 69 11 28 0.22 0.86 0.66 0.11

13C
1H

0.5
0.2 461 13 75 5 23 0.36 0.94 0.76 0.38

Test set

13C
0.5 400 4 24 2 9 0.31 0.92 0.72 0.30
1 200 2 25 1 11 0.15 0.96 0.69 0.20

1.5 133 1 22 4 12 0.08 0.85 0.59 0.11

1H

0.05 240 7 22 4 6 0.54 0.85 0.74 0.40
0.1 120 7 21 5 6 0.54 0.81 0.72 0.36
0.2 61 8 21 5 5 0.62 0.81 0.74 0.42
0.5 23 7 22 4 6 0.54 0.85 0.74 0.40

13C
1H

0.5
0.2 461 7 24 2 6 0.54 0.92 0.79 0.52

1 Number of descriptors. 2 True positives. 3 True negatives. 4 False positives. 5 False negatives. 6 Sensitivity,
the ratio of true positives to the sum of true positives and false negatives. 7 Specificity, the ratio of true negatives to
the sum of true negatives and false positives. 8 Overall predictive accuracy, the ratio of the sum of true positives and
true negatives to the sum of true positives, true negatives, false positives and false negatives. 9 Matthews correlation
coefficient. 10 OOB estimation.

The best model was achieved using 0.5 and 0.2 ppm ranges for 13C and 1H NMR, respectively, in
total 461 NMR descriptors. As we did for approach A, a procedure for feature selection based on RF
variable importance were applied to the descriptors of the best 13C and 1H NMR model, using three
packages the 25, 50 and 100 most important descriptors from the 461 13C and 1H NMR descriptors.
The selection of the 100 most important descriptors used to build the model with the RF enabled the
training of much smaller RF models with even better prediction accuracies (Q = 0.80 and MCC = 0.51)
than the models trained with the whole set of descriptors (461 descriptors, Q = 0.76 and MCC = 0.38)
for the training set. The 100 most important descriptors comprise 23 1H and 77 13C NMR descriptors.
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A comparison of three ML techniques, RF, SVM, and Convolutional Neural Network (CNN),
for building QSAR classification models with the 100 most important descriptors using in the model
with 461 NMR descriptors for training and test sets is shown in Table 10.

Table 10. Exploration of different ML algorithms in the prediction of two classes of antibacterial activity
against MRSA using the 100 most important descriptors for the training and test sets.

ML SE 1 SP 2 Q 3 MCC 4

Training set

RF 5 0.56 0.91 0.80 0.51
SVM 6 0.72 0.81 0.78 0.52
CNN 6 0.61 0.89 0.80 0.52

Test set

RF 0.46 0.92 0.77 0.45
SVM 0.69 0.73 0.72 0.41
CNN 0.62 0.81 0.74 0.42

1 Sensitivity. 2 Specificity. 3 Overall predictive accuracy. 4 Matthews correlation coefficient. 5 OOB estimation.
6 Ten-fold cross-validation.

Averaged predictions (consensus) obtained by the RF, SVM, and CNN models with the 100 most
important 13C and 1H NMR descriptors (CM_NMR) further improved the results. The two classes of
antimicrobial activity against MRSA were predicted for the training and test sets with Q of 0.81 and 0.77,
respectively. The MCC were also improved to 0.55 and 0.49 for the training and test sets, respectively.

Moreover, the CM_NMR model was validated with a final prediction set consisting of four pure
compounds not used for any task before, which were isolated in our MNP group. The four MNP
are two diketopiperazine derivatives, one napyradiomycin derivative and one unknown compound
that appears to be a new macrocyclic derivative. The chemical structure of these 4 MNP has not
yet been fully elucidated and consequently they are excellent candidates for this QSAR approach B
model. In Table 11 is showed the predictions obtained using the CM_NMR model for the four pure
compounds and anti-MRSA experimental assay results.

Table 11. Prediction of activity classes against MRSA of the four pure compounds with the
CM_NMR model.

Code Actinobacteria
Genera

Structural
Family Activity Class 1 MIC (µg/mL) 2 Activity Class 2

PTM-290 F7,F26 Salinispora Diketopiperazine InAct 3 >250 InAct 3

PTM-290 F7,F27 Salinispora Diketopiperazine InAct 3 >250 InAct 3

PTM-420 F4,F15 Streptomyces Unknown InAct 3 >250 InAct 3

PTM-420 F5,F45 Streptomyces Napyradiomycin InAct 3 62.5 MAct 4

1 Predicted. 2 Experimental. 3 Inactive. 4 Moderate-active-to-active.

Only a misclassification between moderate-active-to-active and inactive class was obtained for
the pure compound, PTM-420 F5,F45, however its MIC value is close to the threshold for the inactive
class, MIC ≥ 100 µg/mL.

Analysis of NMR Descriptors Identified as Relevant for Modeling Anti-MRSA Activity in the RF Model

The 100 most important descriptors, found by the RF algorithm using the MeanDecreaseAccuracy
parameter (Mean Decrease in Accuracy) [45] and using for building the CM_NMR were analyzed and
the fifteen most relevant descriptors were represented in Table 12.
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Table 12. Analysis of NMR descriptors for modeling anti-MRSA activity.

H or C (# 1) NMR Range (ppm) Ranking 2 Importance for Classes
Pattern Identification

InAct 3 MAct 4

H (19) 11.2393–11.5676 1st 9.23 6.59 Hydrogen bond CO and –NH and
–OH; heteroaromatic NH; COOH

H (8) 13.8656–14.1939 2nd 6.22 4.86 Hydrogen bond CO and –NH and
–OH; heteroaromatic NH

H (22) 10.5828–10.9111 3rd 3.92 4.86
Hydrogen bond CO and –NH and
–OH; heteroaromatic NH; COOH;

C=N–OH

H (28) 9.5979–9.9262 8th 2.30 2.46 Aldehyde CHO

C (318) 127.4927–127.9927 9th 3.08 −0.02 Aromatic; olefinic; nitrile

H (58) 1.3909–1.7191 10th 2.91 1.77 Saturated alkane

H (48) 7.3000–7.6282 11th 2.17 1.05 Aromatic; conjugated olefinic

C (410) 175.9927–176.4927 14th 1.85 0.08 COX; X: O, N, Cl
a,b unsat. COX; X: O, N, Cl

C (321) 33.9927–34.4927 15th 2.61 0.58 –CH2COX; –NHCH3;
CH3CH2CH2–

C (350) 168.9927–169.4927 16th 1.97 0.43 COX; X: O, N, Cl,b unsat.
COX; X: O, N, Cl

H (36) 5.6585–5.9868 18th 2.66 0.48 Vinylic

C (141) 52.4927–52.9927 19th 2.24 1.00 –CHCl; –CH2Cl

C (329) 123.9927–124.4927 20th 1.86 0.93 Vinylic

C (415) 171.9927–172.4927 21th 2.14 3.40 COX; X: O, N, Cl,b unsat.
COX; X: O, N, Cl

C (401) 178.4927–178.9927 23th 2.57 0.18 COX; X: O, N, Cl,b unsat.
COX; X: O, N, Cl

1 Number of descriptor. 2 Descriptor importance. 3 Inactive. 4 Moderate-active-to-active.

Interestingly, there are nine descriptors that codify 1H NMR data out of the ten most important
NMR descriptors. From those nine 1H NMR descriptors, five descriptors codify polar functional groups
such as –NH (3, 8, 19 and 22), –OH (3, 8, 19 and 22), –COOH (19 and 22), C=N–OH (22), or –CHO (28).
On the other hand, one out nine 1H NMR descriptors codifies saturated alkyl groups (58). The only
13C NMR descriptor in the ten most important NMR descriptors discriminated aromatic, olefinic
or nitrile functional groups (318). Moreover, it is also verified that importance by activity classes
(moderate-active-to-active and inactive classes) for each of the ten most important descriptors is more
or less similar except to descriptors C318, which gives the inactive class a higher weight.

3. Materials and Methods

3.1. Data Sets

3.1.1. Approach A

A data set of 7744 organic molecules was extracted from the ChEMBL (https://www.ebi.ac.uk/
chembl/) [46], PubChem (http://pubchem.ncbi.nlm.nih.gov) [47], ZINC (https://zinc15.docking.
org/) [48] databases, searching by antibacterial activity against MRSA with MIC values and their
chemical structures saved in the SMILES or MDL SDF data format. In addition, more 653 chemical
structures with anti-MRSA activity records were also added by searching in the literature indexed
in Web of Science™ Core Collection between May 2013 and March 2015. After assembling these
databases, the duplicates were removed based on InChI codes, although the chirality was taken into
account, racemic molecules (or cases where the stereochemistry was not shown) were considered as
one of the possible stereoisomers. For the duplicates with different MIC values, the most recent were

https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://pubchem.ncbi.nlm.nih.gov
https://zinc15.docking.org/
https://zinc15.docking.org/
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considered. After this, the final data set comprises 6645 molecules and the MIC values were converted
to pMIC. The SMILES strings of the data set, the corresponding experimental and predicted activities
are available as Supplementary Material, Tables S2 and S3.

3.1.2. Approach B

A total of 155 samples was used for approach B, comprising 50 crude extracts, 55 fractions, and 50
pure compounds obtained from microbial actinobacteria isolated from ocean sediments collected off the
Madeira Archipelago [38], corresponding to 49 moderate-active-to-active (MIC < 100 µg/mL) and 106
inactive (MIC ≥ 100 µg/mL) samples antibacterial against MRSA. Actinobacteria strains were isolated
from the marine sediments, taxonomically characterized through 16S rRNA gene sequencing, and the
crude extracts were obtained through liquid–liquid extraction with ethyl acetate (EtOAc) in accordance
with our previously reported work [38]. The EtOAc crude extracts were fractionated by silica flash
chromatography, eluted with step gradients of isooctane/EtOAc followed by EtOAc/MeOH and were
obtained nine fractions. Pure compounds were isolated by reversed phase HPLC (Phenomenex Luna,
250 × 100 mm, 5 µm, 100 Å, 1,5 mL/ min, UV 210, 250 and 360 nm) using a gradient solvent system of
acetonitrile and water. The code, type, and the actinobacteria genus of the samples comprising the
data set, the corresponding experimental and predicted activity classes are available as Supplementary
Information, Tables S4, S5 and S6.

3.2. Descriptors

3.2.1. Approach A

The molecular structures were standardized by normalizing tautomeric and mesomeric groups
and by removing small disconnected fragments using JChem Standardizer tool version 5.7.13.0
(ChemAxon Ltd., Budapest, Hungary). Three-dimensional models of the molecular structures
were generated with CORINA version 2.4 (Molecular Networks GmbH, Erlangen, Germany.
Empirical Molecular fingerprints were calculated by PaDEL-Descriptor version 2.21 (Yap Chun
Wei, Pharmaceutical Data Exploration Laboratory)) [41]. Different types of fingerprints with
different sizes were calculated and explored: 166 MACCS (MACCS keys), 307 Substructure
(presence and count of SMARTS patterns for Laggner functional group classification—Sub and
SubC respectively), 881 PubChem fingerprints (ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/
pubchem_fingerprints.txt), 1024 CDK (circular fingerprints), and 1024 CDK extended (Ext circular
fingerprints with additional bits describing ring features). 1D, 2D, and 3D Molecular descriptors
were calculated by CDK Descriptor Calculator version 1.4.6 (Rajarshi Guha), which comprise 218
1D/2D descriptors (including 6 electronic, 195 topological, and 17 constitutional descriptors) and
66 3D descriptors (including 6 BCUT, 13 WHIM, 29 CPSA and 18 geometrical descriptors). Radial
Distribution Function (RDF) pair descriptors [43], 3D RDF descriptors, were calculated by sampling
the function of Equation (1) at 128 equally distributed values of r between 0 and 12.8 Å:

RDF(r) =
N−1

∑
i=1

N

∑
j=i+1

pi pje
−B(r−rij)

2
(1)

where N is the number of atoms in the molecule, pi is the charge of atom i, B is a fuzziness parameter
(it was 100 in this study), and rij is the 3D distance between atoms i and j. Three sets of 128 RDF
descriptors were separately calculated, derived from atom pairs with (a) a positive and a negative
charge, (b) two positive charges, and (c) two negative charges. The partial atomic charges—natural
bond orbital (NBO) partial atomic charges were estimated using a ML tool developed by Aires-de-Sousa
and co-workers [49] (http://joao.airesdesousa.com/charges).

ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
http://joao.airesdesousa.com/charges
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3.2.2. Approach B

All samples were evaluated for antibacterial activity against MRSA and the 1D NMR spectra
were also acquired. NMR spectra were obtained using a Bruker Advance spectrometer, model ARX
400, (400 MHz for 1H and 100 MHz for 13C) with tetramethylsilane (TMS) as internal reference
and deuterated chloroform as solvent. NMR spectra were handled with the ACD/NMR Processor
(version 12.01) and the range of chemical shifts used was 0–200 ppm and 0–12 ppm for the 13C
and 1H, respectively. The NMR descriptors were generated using the following ranges: (1) 1.5
(133 descriptors), 1.0 (200 descriptors), and 0.5 ppm (400 descriptors) for 13C NMR; and (2) 0.5
(32 descriptors), 0.2 (61 descriptors), 0.1 (120 descriptors) and 0.05 (240 descriptors) ppm for 1H NMR.

3.3. Selection of Training and Test Sets

3.3.1. Approach A

The whole data set of 6645 small molecules was randomly divided into a training set of 5112
molecules (comprising 1688 active molecules with MIC < 5 µM and 3424 inactive molecules with
MIC ≥ 5 µM) and a test set of 1533 molecules (comprising 543 active molecules and 990 inactive
molecules) in order to the biological diversity of the data set was captured by both sets. The built
QSAR models were developed and externally validated using the training and test sets, respectively.

3.3.2. Approach B

The whole data set, comprising 155 samples (50 crude extracts, 55 fractions, 50 pure compounds),
was split into a training set of 116 samples (37 crude extracts, 41 fractions, and 38 pure compounds)
and a test set of 39 samples (13 crude extracts, 14 fractions, and 12 pure compounds), which were used
for the development and external test validation of the QSAR models, respectively. The approximate
3:1 partition for training and test sets, respectively, was carried out randomly according to the two
classes of antibacterial activity against MRSA (i.e., moderate-active-to-active with MIC < 100 µg/mL,
in total 49 samples, and inactive with MIC ≥ 100 µg/mL, in total 106 samples), the type of sample (i.e.,
crude extracts, fractions, or pure compounds), and the five actinobacteria genera (i.e., Actinomadura,
Brevibacterium, Micromonospora, Salinispora, and Streptomyces) in order to the biological diversity of the
data set was captured by both sets.

3.4. Machine Learning (ML) Techniques

3.4.1. Random Forests (RF)

A RF [42,50] is an ensemble of unpruned trees, which are created using bootstrap samples of the
training set and for each individual tree the best split at each node is defined using a randomly selected
subset of descriptors. A different training and validation set was used to create each individual tree.
Prediction is made by a majority vote of the classification trees (classification) or by average of the
individual regression trees (regression) in the forest. The prediction error for the compounds left
out in the bootstrap procedure (internal cross-validation or OOB estimation) was used to assess the
internal performance. The RF method quantifies also the importance of a descriptor by the increase
in misclassification occurring when the values of the descriptor are randomly permuted, correlated
with the mean decrease in accuracy parameter, or by the decrease in a node’s impurity every time the
descriptor is used for splitting, correlated with the mean decrease in the Gini coefficient parameter.
In the experiments presented here, RF were used for the development of regression or classification
models to estimate antibacterial activity against MRSA. The R program [51], version 3.2.3 was used to
grow RF using the RandomForest library [52]. The number of trees in the forest was set to 500 and
the other parameters, except mtry, were used with default values. The mtry parameter values were
selected using factor levels of the default value (i.e., 1/3 of the number of descriptors or square root of
the number of descriptors in the data for regression or classification, respectively).
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3.4.2. Support Vector Machines (SVM)

SVM [53] map the data into a hyperspace through a nonlinear mapping (a boundary or
hyperplane), for classification models the two class of compounds are separated in this space and
for regression models a linear regression is performed in this space. Support vectors, which are
examples in the training set, were used to position the boundary. Kernel functions can be used to
transform nonlinear data into a hyperspace where the classes become linearly separable. In the current
study, SVM models were explored with the Weka (version 3.8.2) [54] implementation of the LIBSVM
software [55]. The C-SVM-classification or ε-SVM-regression types were chosen, the kernel function
selected was the radial basis function and used the default value for the gamma parameter, and the
parameter C was optimized in the range of 1–200 through 10-fold cross-validation with the training set.

3.4.3. Gaussian Processes (GPs)

GPs use lazy learning and a measure of the similarity between compounds (the kernel function) to
predict the value for an unseen compound from training set. The prediction is not just an estimate for that
compound, but also has uncertainty information, it is a one-dimensional Gaussian distribution. It was
used in this work as specifically implemented by the Gaussian Processes class in Weka version 3.8.2 [54],
with the options set as default, except the kernel function and the noise that were optimized in
cross-validation experiments with the training set. GPs were implemented for regression without
hyperparameter-tuning using a RBF kernel, Equation (2).

K(x, y) = e−γ(x−y)2
(2)

The noise level was chosen applying normalization/standardization to the target attribute as well
as the other attributes based on normalize training set.

3.4.4. Convolutional Neural Network (CNN)

CNN is a feed-forward neural network (NN) with more than one hidden layers or convolutional
layers. CNN implementation with dropout regularization and Rectified Linear Units. The Weka [54]
NeuralNetwork package (version 3.8.2) was used to implement feed-forward neural networks.
The NeuralNetwork options were set as default, except the number of hidden units, number of
layers, hiddenLayersDropoutRate and inputLayerDropoutRate parameters that were optimized in
cross-validation experiments with the training set.

3.5. Antibacterial Screening against MRSA Strain

The antibacterial activity was evaluated for the crude extracts, fractions and pure compounds by
performing screening against methicillin-resistant Staphylococcus aureus (MRSA) COL [56], using Brain
Heart Infusion (BHI) medium (DIFCO Laboratories, Detroit, USA, 1l DI water). The screening was
performed in 96 well plates; each crude extract, fractions or pure compound, previously concentrated
at 10mg/mL in DMSO, was added to a log-phase grown culture (OD600 nm = 0.04−0.06) to a 2.5%
(v/v) final concentration. All samples were two-fold serially diluted five times, resulting in final
concentrations of the tested compounds ranging from 250 to 7.81 µg/mL. Further dilutions were tested,
values down to 0.03 µg/mL, if the 7.81 µg/mL concentration showed inhibitory activity. After 18 h
of incubation at 37 ◦C, minimal inhibitory concentrations were determined by visual inspection and
spectrophotometric analysis.

4. Conclusions

Following our previous work that modeling the anticancer activity against HCT116 [37],
the current results suggest as well that the chemoinformatics QSAR approach relying on a ligand-based
methodology either based on the molecular structures or the NMR spectra, corroborated with an
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experimental approach, could be used to predict new inhibitory compounds against MRSA. To our
knowledge, the QSAR regression model developed here, approach A, is the largest study ever
performed with regard both to the number of compounds involved and to the number of structural
families involved in the modeling of the antibacterial activity against MRSA [19,20,25]. The NMR QSAR
classification model, approach B, was extended to a high number of samples containing additional
45 pure compounds and therefore the overall predictability accuracies (Q) were improved as compared
with those obtained in our previously work [37]. The Q of the best model exceeded 77% and 63% for
test set in MRSA and HCT116 modeling, respectively. Moreover, the development of QSAR model
using predicted NMR spectra of molecules and mixture of molecules (simulating fractions and extracts)
would be an important strategy to be developed in future work.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/17/1/16/s1.
The following files are available free of charge. The SMILES strings of the list of the virtual screening hits from the
StreptomeDB 2.0 library, training and test sets, and the corresponding experimental and predicted activities against
MRSA for approach A are available as Supporting Information, Tables S1, S2, and S3, respectively. Furthermore,
the code and type and the actinobacteria genus of the samples comprising the training, test, and test 2 sets and the
corresponding experimental and predicted activity classes against MRSA for approach B are also available as
Supporting Information, Tables S4, S5, and S6, respectively (XLSX).
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