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Abstract

Background: Searching for similar compounds in a database is the most important process for in-silico drug
screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid
of the query being monitored by the database server, usually downloads all the records in the database and uses
them in a closed network. However, a serious dilemma arises when the database holder also wants to output no
information except for the search results, and such a dilemma prevents the use of many important data resources.

Results: In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database
searching while keeping both the query holder’s privacy and database holder’s privacy. Generally, the application
of cryptographic techniques to practical problems is difficult because versatile techniques are computationally
expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study,
our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition
performed on encrypted values but is computationally efficient compared with versatile techniques such as
general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than
1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in
communication size compared with general purpose multi-party computation.

Conclusion: We proposed a novel privacy-preserving protocol for searching chemical compound databases. The
proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by
making full use of unused but valuable data that includes sensitive information.

Introduction
In recent years, the increasing cost of drug development
and decreasing number of new chemical entities have
become growing concerns [1]. One of the most popular
approaches for overcoming these problems is searching
for similar compounds in databases [2]. In order to
improve the efficiency of this task, it is important to utilize
as many data resources as possible. However, the following
dilemma prevents the use of many existing data resources.

Unpublished experimental results have been accumulated
at many research sites, and such data has scientific value
[3]. Since data holders are usually afraid of sensitive infor-
mation leaking from the data resources, they do not want
to release the full data, but they might allow authorized
users to search the data as long as the users obtain only
search results from which they cannot infer sensitive infor-
mation. Likewise, private databases of industrial research
might be made available if the sensitive information were
sufficiently protected. On the other hand, query com-
pounds are also sensitive information for the users, and
thus the users usually avoid sending queries and want to
download all of the data in order to conduct search tasks
on their local computers. In short, we cannot utilize
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important data resources because both the data holder and
the data user insist on their privacy. Therefore, an emer-
ging issue is to develop novel technology that enables priv-
acy-preserving similarity searches.We show several use
cases in the next section.
Let us start by clarifying privacy problems in database

searches. In a database search, two types of privacy are
of concern: “user privacy” (also known as input privacy)
and “database privacy” (also known as output privacy).
The first is equal to protecting the user’s query from
being leaked to others including the database holder.
The second is equal to protecting the database contents
from being leaked to others including the database user,
except for the search results held by the user. Here we
firstly consider the case of using no privacy-preserving
techniques; namely, the user sends a plain query to the
server and the server sends the search result. In this
case, the user’s query is fully obtained by the server. On
the database side, the server’s data is not directly leaked
to the user. However, there is a potential risk that the
user may infer the database contents from the search
results. To protect user privacy, a scheme called single-
database private information retrieval (PIR) has been
proposed [4]. The simplest method for achieving PIR is
that the user downloads all the contents of the database
and searches on his/her local computer. Since this naive
approach needs a huge communication size, several
cryptographic techniques have been developed, in which
the query is safely encrypted/randomized in the user’s
computer and the database conducts the search without
seeing the query. Although PIR is useful for searching
public databases, it does not suit the purpose of search-
ing private databases because of the lack of database
privacy. Likewise, similarity evaluation protocols keep
user privacy [5-7] but they do not sufficiently protect
database privacy because the server directly outputs
similarity scores that become important hints for infer-
ring database contents.
Generally speaking, it is very difficult to keep both

user privacy and database privacy, because the database
side must prevent various attacks without seeing the
user’s query. Among them, the following two attacks are
major concerns.

• Regression attack

Given one data point, the similarity between a target
and the data point becomes a strong hint for detecting
the target. The accuracy of the detection increases as
the number of given data points becomes larger. In fact,
a protocol that is not suitably designed may lead to even
a small number of queries enabling the database user to
detect the target. For example, when the server returns
the exact distance between a query and a database

entry, the range of the entry is rapidly narrowed as the
number of queries increases, and the entry is finally
detected uniquely by only almost the same number of
queries as the dimension of the entry (see Figure 1 for a
detailed explanation). For example, in the case of using
theMACCS keys, which are 166 bit structural key
descriptors and often used for representing chemical
compounds, a database entry is detected by sending
only 166 queries. Therefore, it is necessary for the server
to return the minimum information that is sufficient for
the purpose of the search. In the Thresholding largely
improves database privacy section, we will compare suc-
cess probability of the regression attack for the case
when the server returns minimum information (which
our protocol aims for) and the other case when the ser-
ver returns more information (which the previous
method aims for).

• Illegal query attack

Searching with an illegal query often causes unex-
pected server behaviour. In such a case, the server
might return unexpected results that include important
server information. To prevent this, the server should
ensure the correctness of the user’s query.
A schematic view of the privacy-preserving database

search problems discussed here is shown in Figure 2.
In the field of cryptography, there have been studies of

versatile techniques such as general purpose multi-party
computation (GP-MPC) [8] and fully homomorphic
encryption (FHE) [9], which enable the design of systems
that maintain both user privacy and database privacy.
However, these techniques require huge computational
costs as well as intensive communications between the
parties (see the recent performance evaluation of FHE
[10]), so they are scarcely used in practical applications. In
order to avoid using such techniques, a similarity search
protocol using a trusted third party [11] and a privacy pre-
serving SQL database using a trusted proxy server [12]
have been proposed, but those methods assure privacy
only when the third party does not collude with the user
or the server, which is not convenient for many real pro-
blems. As far as we know, no practical method has been
proposed despite the great importance of privacy-preser-
ving similarity searching. To overcome this lack, we pro-
pose a novel privacy-preserving similarity search method
that can strongly protect database privacy as well as user
privacy while keeping a significantly low computational
cost and small communication size.
The rest of this paper is organized as follows. In the

next section, we summarize our achievements in this
study. This is followed by the Cryptographic background
section and the Method section, where we define the
problem and introduce details of the proposed protocol.
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In the Security analyses section, both the user privacy
and database privacy of the proposed protocol are dis-
cussed in detail. In the Performance evaluation section,
the central processing unit (CPU) time and communica-
tion size of the proposed protocol are evaluated for two
datasets extracted from ChEMBL. Finally, we present
our conclusions for this study in the Conclusion section.

Our Achievements
Here we focus on similarity search with the Tversky index
of fingerprints, which is the most popular approach for
chemical compound searches [13] and is used for various
search problems in bioinformatics. To provide a concrete
application, we address the problem of counting the num-
ber of similar compounds in a database, which solves var-
ious problems appearing in chemical compound searches.
The following model describes the proposed method.
Model 1 The user is a private chemical compound

holder, and the server is a private database holder. The
user learns nothing but the number of similar com-
pounds in the server’s database, and the server learns
nothing about the user’s query compound.

Here we introduce only a small fraction of the many
scientific or industrial problems solved by Model 1.
1 Secure pre-purchase inspection service for chemical

compound.
When a client considers the purchase of a commercial

database such as a focused library [14], he/she wants to
check whether the database includes a sufficient number of
similar compounds, without sending his/her private query,
but the server does not allow downloading of the database.
2 Secure patent compound filtering.
When a client finds a new compound, he/she usually

wants to know whether it infringes on competitors’
patents by searching the database of patent-protected
compounds maintained by third parties. The same pro-
blem occurs when the client wants to check whether or
not the compound is undesirable.
3 Secure negative results check.
It is a common perception that current scientific publi-

cation is strongly biased against negative results [3],
although a recent study showed statistically that negative
results brought meaningful benefit [15]. Since researchers
are reluctant to provide negative results, which often

Figure 1 Schematic view showing a large difference in tolerance against the regression attack between two cases: (a) The server’s
reply is the distance between the attacker’s query and the server’s data, (b) The server’s reply is the binary sign that shows whether
or not the distance between the attacker’s query and the server’s data is larger than the given threshold. The red point represents the
server’s data and × represents the attacker’s query. Prior to the query, the search spaces (white areas) in (a-1) and (b-1) are equal. After the first
query has been sent, the search space in (a-2) is limited to the circle whose radius is the distance between the attacker’s query and the server’s
data. On the other hand in (b-2), only the small area of the dashed circle whose radius is the given threshold (gray area) is excluded from the
search space. By sending the second query, the attacker knows that one of the two intersections of the two circles in (a-3) is equal to the
server’s data, while the search space is large in (b-3). Finally, the server’s data is detected by sending the third query in (a-4), however in (b-4),
the search space is still large, even though the third query is within the given threshold.
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include sensitive information, a privacy-preserving system
for sharing those results would greatly contribute to redu-
cing redundant efforts for similar research topics. For
example, it would be useful to have a system that allows a
user to check whether the query is similar to failed com-
pounds that have previously been examined in other
laboratories.
In this study, we propose a novel protocol called the

secure similar compounds counter (SSCC) which

achieves Model 1. The first main achievement of this
study is that SSCC is remarkably tolerant against regres-
sion attacks compared with existing protocols which
directly output the similarity score. Moreover, we pro-
pose an efficient method for protecting the database
from illegal query attacks. These points are discussed in
the Security analyses section.
The second main achievement is that SSCC is signi-

ficantly efficient both in computational cost and

Figure 2 Schematic view of protection of (a) user privacy and (b) database privacy while keeping user privacy. For user privacy, the
user’s query and the search result which includes the query information must be invisible to the database side during the search task. For
database privacy, the server minimizes output information for preventing regression attacks (b-1), and also detects and rejects illegal queries that
might cause unexpected information leakage (b-2). These server’s tasks must be carried out with the encrypted queries in order to keep user
privacy.
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communication size. We carefully designed the protocol
such that it uses only an additive-homomorphic cryptosys-
tem, which is computationally efficient, and does not rely
on any time-consuming cryptographic methods such as
GP-MPC or FHE. Hence the performance of the protocol
is sufficiently high for a large-scale database such as
ChEMBL [16], as is shown in the Performance evaluation
section.

Cryptographic background
Additively homomorphic encryption scheme
In this paper, we use an additive-homomorphic cryptosys-
tem to design our protocol. The key feature of the addi-
tive-homomorphic cryptosystem is that it enables to
perform additive operations on encrypted values. There-
fore, intuitively, any standard computation algorithm can
be converted into the privacy-preserving computation
algorithm, if operations used in the standard algorithm
can be replaced by additions.
More formally, we use a public-key encryption scheme

(KeyGen; Enc;Dec), which is semantically secure; that is,
an encryption result (ciphertext) leaks no information
about the original message (plaintext) [17]. Here, KeyGen
is a key generation algorithm for selecting a pair (pk, sk)
of a public key pk and a secret key sk; Enc(m) denotes a
ciphertext obtained by encrypting message m under the
given pk; and Dec(c) denotes the decryption result
of ciphertext c under the given sk. We also require the
following additive-homomorphic properties:

• Given two ciphertexts Enc(m1) and Enc(m2) of mes-
sages m1 and m2, Enc(m1 + m2) can be computed
without knowing m1, m2 and the secret key (denoted
by Enc(m1) ⊕ Enc(m2)).
• Given a ciphertext Enc(m) of a message m and an
integer e, Enc(e⊕m) can be computed without know-
ing m and the secret key (denoted by e ⊗ Enc(m)).

For example, we can use either the Paillier cryptosystem
[18] or the “lifted” version of the ElGamal cryptosystem
[19] as such an encryption scheme; now the second opera-
tion ⊗ can be achieved by repeating the first operation ⊕.
We notice that the range of plaintexts for those cryptosys-
tems can be naturally set as an integer interval [−N1, N2]
for some sufficiently large N1, N2 >0; therefore, the plain-
texts are divided into positive ones, negative ones, and
zero.

Non-interactive zero-knowledge proof
Below, we discuss the following situation: A user (a pro-
ver) wants to make a server (a verifier) convinced that a
ciphertext c generated by the user corresponds to a mes-
sage m in {0, 1}, but does not want to reveal any informa-
tion about which of 0 and 1 is m. This can be achieved by

using a cryptographic tool called non-interactive zero-
knowledge (NIZK) proof. In the present case, it enables the
user to generate a “proof” associated with c, so that:

• If m is indeed in {0, 1}, then the server can verify this
fact by testing the proof (without knowing m itself).
• If m ∉ {0, 1}, then the user cannot generate a proof
that passes the server’s test.
• The server cannot obtain any information about m
from the proof, except for the fact that m ∈ {0, 1}.

(See [20] for a general formulation.) Besides the existing
general-purpose NIZK proofs, Sakai et al. [21] proposed
an efficient scheme specific to the “lifted” ElGamal crypto-
system, which we use below. (See Section 1 of Additional
File 1 in which we give the brief description of the NIZK
proofs [21].)

Method
The goal of this study is to design a protocol between a
user and a server that enables the user to obtain the num-
ber of compounds in the server’s database that are similar
to the user’s target compound. Here, a fingerprint of com-
pound is modeled as �p ∈ {0, 1}� (i.e., a bit string of

length ℓ). An equivalent way to refer to �p is the set of all
indices i where pi = 1. We denote such a set by p. The
similarity of two compounds p, q is then measured by
Tversky index which is parameterized by a, b > 0 and is
defined as:

TIα,β(p, q) =
|p ∩ q|

|p ∩ q| + α|p\q| + β|q\p| .

Tversky index is useful since it includes several impor-
tant similarity measurements such as Jaccard Index (JI,
which is exactly TI1,1 and also known as Tanimoto Index)
and Dice index (which is exactly TI1/2,1/2) [22]. First, we
introduce the basic idea and two efficient techniques for
improving database privacy. Then, we describe our full
proposed protocol.

Basic idea
We firstly consider the simplest case that the user has (the
fingerprint of) a target compound q as a query and the
server’s database consists of only a single fingerprint p.
The case of a larger database is discussed later. The goal
here is to detect whether or not the Tversky index of p
and q is larger than a given threshold 1 ≥ θ > 0. The main
idea of our approach is to calculate the score

θ−1(|p ∩ q|) − (|p ∩ q| + α|p\q| + β|q\p|) (1)

from encrypted fingerprints p and q by an additive-
homomorphic cryptosystem. The score is non-negative if
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and only if the Tversky index of p and q is at least θ. Now
since |p \ q| = |p| − |p ∩ q| and a similar relation holds
for |q \ p|, the score (1) is positively proportional to

λ1|p ∩ q| − λ2|p| − λ3|q|,

where l1 = c(θ-1 − 1 + a + b), l2 = ca, l3 = cb and any
positive value c. We assume that the parameters and the
threshold for the Tversky index are rational numbers
denoted by a = μa/g, b = μb/g and θ = θn/θd, where μa, μb,
g, θn and θd are non-negative integers. By using c = gθng−1

under this assumption, l1, l2 and l3 become non-negative
integers where g is the greatest common divisor of g(θd −
θn) + θn(μa + μb), θnμa and θnμb.
Motivated by this observation, we define the following

modified score, called the threshold Tversky index:
Definition 1 Given parameters a and b and a threshold

θ for the Tversky index which are rational numbers
denoted by a = μa/g, b = μb/g and θ = θn/θd where μa, μb,
g, θn and θd are non-negative integers, then the threshold
Tversky index TIα,β,θ = TIα,β,θ (p ∩ q) for fingerprints p
and q is defined by

TIα,β,θ := λ1|p ∩ q| − λ2|p| − λ3|q|,
and non-negative integer parameters l1, l2 and l3 are

defined by

λ1 = γ θng−1(θ−1 − 1 + α + β),

λ2 = γ θng−1α,

λ3 = γ θng−1β ,

where g is the greatest common divisor of g(θd − θn)+θn
(μa+μb), θnμa and θnμb.
By the above argument, we have TIa,b(p, q) ≥ θ if and

only if TIα,β,θ (p, q) ≥ 0 . Therefore, the user can know
whether or not his/her target compound q is similar (i.e.,
TIa,b(p, q) ≥ θ) to the fingerprint p in the database, by
obtaining only the value TIα,β,θ (p, q) .
In the protocol, the bits of the user’s target fingerprint q

and the value |p| held by the server are both encrypted
using the user’s public key. Since TIα,β,θ (p, q) can be
computed by the addition of these values and multiplica-
tion by integers, the protocol can calculate (without the
secret key) a ciphertext of TIα,β,θ (p, q) , which is then
decrypted by the user. For simplicity, we will abuse the
notation and write TI(p, q), TI(p, q) without subscripts a,
b, θ when the context is clear.
We emphasize that our protocol does not use time-

consuming cryptographic methods such as GP-MPC and
FHE, and data transfer occurs only twice during an execu-
tion of the protocol. Hence, our protocol is efficient
enough to scale to large databases.

Database security enhancement techniques against
regression attack
As discussed in Introduction section, the server needs to
minimize returned information in order to minimize the
success ratio of the regression attack. That is, the ideal
situation for the server is that the user learns only the
similarity/non-similarity property of fingerprints p and
q, without knowing any other information about the
secret fingerprint p. This means that only the sign of
TI(p, q) should be known by the user. However, in our

basic protocol, the value of TI(p, q) is fully obtained by
the user; Database privacy is not protected from regres-
sion attacks. (See the Security analyses section for
details.) In order to send only the sign of TI(p, q) , we
firstly considered using a bit-wise decomposition proto-
col [23] for extracting and sending only the sign bit of
TI(p, q) . Although this approach is ideal in terms of
security, the protocol requires more than 30 rounds of
communications, which is much more efficient than
using GP-MPC or FHE, but rather time-consuming for
large-scale databases. Therefore, here we propose the
novel technique of using dummy replies, which requires
only one round of communication while sufficiently
minimizing information leakage of p. In the proposed
technique, besides its original reply t = Enc (TI(p, q)) ,
the server also chooses random integers �1, ..., �n from
a suitable interval and encrypts those values under the
user’s public key pk. Then the server sends the user a
collection of ciphertexts t, Enc(�1), ..., Enc(�n) that are
shuffled to conceal the true ciphertext t, as well as the
number sd of dummy values �k with �k ≥ 0. The user
decrypts the received n + 1 ciphertexts, counts the num-
ber sc of non-negative values among the decryption
results, and compares sc to sd. Now we have
TI(p, q) ≥ 0 if and only if sc − sd = 1; therefore, the

user can still learn the sign of TI(p, q) , while the actual

value of TI(p, q) is concealed by the dummies. We have
confirmed that the information leakage of p approaches
zero as the number of dummies becomes large; see the
Security analyses for pudding dummies section for more
detailed discussion. (We have also developed another
security enhancement technique using sign-preserving
randomization of TI(p, q) ; see Section 2 of Additional
File 1 for details.)
Database security enhancement technique against illegal

query attack Illegal query attacks can be prevented if the
server can detect whether or not the user’s query is valid.
To keep user privacy, the server must conduct this task
with-out obtaining more information than the validity/
invalidity of the query. In fact, this functionality can be
implemented by using the NIZK proof by Sakai et al. [21]
mentioned in the Non-interactive zero-knowledge proof
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section. The improved protocol requires the user to send
the server a proof associated with the encrypted finger-
print bits qi, from which the server can check whether q is
indeed a valid fingerprint (without obtaining any other
information about q); the server aborts the protocol if q is
invalid. Here we use the “lifted” ElGamal cryptosystem as
our basic encryption scheme to apply Sakai’s scheme. (We
note that if we require the user to send Enc(−|q|) used by
server’s computation, then another NIZK proof is neces-
sary to guarantee the validity of the additional ciphertext,
which decreases the communication efficiency of our pro-
tocol. Hence our protocol requires the server to calculate
Enc(−|q|) by itself.) The formal definition of the valid
query is given in the Database privacy in malicious model
section.

Secure similar compounds counter
For the general case that the database consists of more
than one fingerprint p, we propose the protocol shown in
Algorithm 1 to count the number of fingerprints p similar
to the target fingerprint q. In the protocol, the server sim-
ply calculates the encryption of the threshold Tversky
indices for all database entries and, as discussed above,
replies with a shuffled collection of these true ciphertexts
and dummy ciphertexts, as well as the number sd of non-
negative dummy values. Then the value sc − sd finally
obtained by the user is equal to the number of similar
fingerprints p in the database.
Algorithm 1 The secure similar compounds counter

(SSCC)

• Public input: Length of fingerprints ℓ and para-
meters for the Tversky index θ = θn/θd, a = μa/g, b
= μb/g
• Private input of a user: Target fingerprint q
• Private input of a server: Set of fingerprints P = {p
(1), ..., p(M)}

1 (Key setup of cryptosystem) The user generates a key
pair (pk, sk) by the key generation algorithm KeyGen for
the additive-homomorphic cryptosystem and sends public
key pk to the server (the user and the server share public
key pk and only the user knows secret key sk).
2 (Initialization) The user encrypts his/her fingerprint q

as a vector of ciphertexts: E�nc(qk) := (Enc(q1), . . . , Enc(g�)) .
He/she also generates v as a vector of proofs. Each proof
vi is associated with Enc(qi).
3 (Query of entry) The user sends the vector of

ciphertexts E�nc(qk) and the vector of proofs v to the
server as a query.
4 (Query validity verification) The server verifies the

validity of E�nc(qk) by testing the vector of proof v. If v
does not pass the server’s test, the user cannot move on to
the next step.

5 (Calculation of threshold Tversky index)
(a) The server calculates the greatest common divisor of

g(θd − θn) + θn(μa + μb), θnμa and θnμb as g, and calculates
l1 = gθng−1 (θ−1 − 1 + a + b), l2 = gθng−1a, and l3 = gθng
−1b.
(b) The server calculates Enc(−|q|) = Enc

(
−

∑�

i=1
qi

)

from E�nc(qk) : Enc(−|q|) = −1 ⊗ ⊕�
i=1Enc(qi) .

(c) for j = 1 to M do
i. The server calculates −|p(j)| = −∑�

i=1 p(j)
i

and

encrypts it to obtain a ciphertext Enc(−|p(j)|) .
ii. The server calculates a ciphertext tj of threshold

Tversky index TI(p(j), q).
c ¬ Enc(0)
for k = 1 to ℓ do
if pk

(j) = 1
c ¬ c ⊕ Enc(qk) ▷ Computing Enc(|p(j) ∩ q|)
end if
end for
tj ¬ l1 ⊗ c ⊕ l2 Enc(−|p(j)|) ⊕ l3 ⊗ Enc(−|q|)
end for
6 (Padding of dummies)
(a) The server generates a set of dummy values {�1, ...,

�n} and counts the number sd of non-negative dummies
�i ≥ 0.
(b) The server encrypts �i to obtain a ciphertext Enc(�i)

for i = 1, ..., n.
(c) The server shuffles the contents of the set T = {t1, ...,

tM, Enc(�1), ..., Enc(�n)}.
7 (Return of matching results) The server sends T and

sd to the user.
8 (Decryption and counting) The user decrypts the con-

tents of T and counts the number sc of non-negative
values.
9 (Evaluation) The user obtains sc − sd as the number of

similar fingerprints in the database.

Parameter settings of the protocol
Decrypting an encrytion of too large value needs huge
computation cost if the lifted-ElGamal cryptosystem is
used. Therefore, in order to keep the consistency and effi-
ciency of the protocol, the range of TI(p, q) should not be
too large. i.e., the integer parameters l1, l2 and l3 in the
threshold Tversky index should not be too large. In fact,
this will not cause a problem in practice; For example, the
parameters become l1 = 9, l2 = l3 = 4 for computing
TI1, 1, 0.8 which is a typical setting of a chemical com-
pound search. In this case, a minimum value and a maxi-
mum value of TI(p, q) is -664 and 166 for 166 MACCS
keys, which is a sufficiently small range. (See Section 3 of
Additional File 1 for details.)
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Security analyses
In this section, we evaluate security of SSCC by several
approaches.
In the area of cryptology, the following two standard

security models for two-party computation have been
considered:

• Semi-honest model : Both parties follow the protocol,
but an adversarial one attempts to infer additional
information about the other party’s secret input from
the legally obtained information.
• Malicious model : An adversarial party cheats even in
the protocol (e.g., by inputting maliciously chosen
invalid values) in order to illegally obtaining additional
information about the secret.

We analyze user privacy and database privacy in both
the semi-honest and malicious models. For the database
privacy, we firstly compare attack success ratios for the
case of using our method which aims to output a binary
sign and the other case of using the previous methods
which aim to output a similarity score, and show that out-
putting a binary sign improves database privacy. We also
evaluate security strength of our method against a regres-
sion attack by comparing attack success ratios for the case
of using dummies and the ideal case that uses a versatile
technique (such as GP-MPC and FHE) to output a binary
sign, and show that the security strength for the case of
using dummies is almost the same as the ideal case under
realistic settings.

User privacy
The semantic security of the encryption scheme used in
the protocol (see the Additively homomorphic encryption
scheme section) implies immediately that the server
cannot infer any information about the user’s target
fingerprint q during the protocol. This holds in both the
semi-honest and malicious models.

Thresholding largely improves database privacy
We mentioned in the introduction section that minimiz-
ing information returned from the server reduces success
ratio of regression attack. Therefore, SSCC aims for “ideal”
case in which the user learns only the sign of TI(p, q)
during the protocol. The previous methods that compute
Jaccard Index aim for the “plain” case, in which the user
fully learns the value TI(p, q). Here we evaluate the effi-
ciency of the thresholding by comparing success probabil-
ities of regression attack for those two cases. We consider
the general case in which the user is allowed to send more
than one query and those queries are searched by Jaccard
Index. We also suppose that the database consists of a
single fingerprint p in order to clarify the effect of
thresholding.

The goal of an attacker is to reveal p by analysing the
results returned from the server. It is generally effective
for the attacker to exploit the difference between the two
outputs obtained by sending two different queries. In
fact, when the server returns TI , TI(p, q) - TI(p, 0)
becomes positive if and only if pi = 1, where q = (0, ..., qi
= 1, ..., 0) and 0 = (0, ..., 0). This means that the attacker
can reveal any bit in p by sending the single query after
sending the first query 0. Therefore, p can be fully
revealed by sending only ℓ + 1 queries. On the other
hand, there is no deterministic attack for revealing p
from only the sign of TI , because two different inputs do
not always lead to different outputs. Since we know of a
linear algorithm that fully reveals p in response to at
most 2ℓ queries after making a “hit” query q such that
TI(p, q) > 0 , here we evaluate database privacy by the
probability of making at least one hit query when the
user is allowed to send x queries. (See Section 4 of Addi-
tional File 1 for details.) This probability is denoted as

∑
p

Pr(X = p) · (1 − (1 − fp)x), (2)

where fp, defined as follows, is the probability that the
user makes one hit query with a single trial when p is
given.

fp :=
∑
q

Pr(Y = p) · Pr(TI(p, Y) > 0|Y = q).

For ease of calculation, we computed the upper bound
of equation (2) for x = 1, 10, 102, ..., 106 and θ = 0.7, 0.8,
0.9, 1.0. (See Section 5 of Additional File 1 for details.)
Since publicly available 166 MACCS keys are the most
popular fingerprint for chemical compound searches, we
set ℓ to 166. From the results shown in Figure 3, we can
see that the probability of making a hit query is sufficiently
small for practical use even though the user is allowed to
send a million of queries. Considering that the user learns
p by using no more than ℓ + 1 queries when he/she learns
TI , we can conclude that database privacy is dramatically
improved by thresholding. In other words, the proposed
protocol, which aims to output only the sign of the simi-
larity score, has stronger security than other previous
methods, which directly output similarity scores.

Security analyses for padding dummies
We showed that the output privacy in the “ideal” case is
significantly improved from the “plain” case. Here we
experimentally evaluate how the actual situation of our
proposed protocol is close to the “ideal” case.
Before going into detail analyses, let us discuss how to

generate dummies. It is ideal for the server privacy to gen-
erate a dummy according to the same distribution where
TI(p, q) is generated from. However, this is not realistic
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because TI(p, q) is determined by both p and q which is
user’s private information. Therefore, in our analyses, we
assume that a dummy is generated from uniform distribu-
tion over possible values of TI(p, q) . For example, if possi-

ble values of TI(p, q) is {1, 2, 3, 4, 5}, dummies are
randomly selected from any one of them. The purpose of
padding dummies is to mitigate the risk of leaking
TI(p, q) . In order to clarify the effect of the use of dummy
values, we concentrate on the basic case; the database con-
tains a single p, and there exist k possible values of
TI(p, q) . i-th value of the k possible values arises as the

true TI(p, q) according to the probability wi. Namely, true

TI(p, q) is generated from the multinomial distribution
with k different probabilities w = w1, ...,wk, while dummies
are generated from the multinomial distribution with
equal probability 1/k. To conduct stringent analyses, we
assume that the user knows w, and he/she also knows that
dummies are uniformly distributed over k possible
TI(p, q) .
The security provided by our protocol can be formalized

in the following manner. First we recall that, in our proto-
col, the server computes encryption of TI(p, q) and
encryption of dummy values �1, ..., �n, and then sends the
user the n+1 encrypted values as well as the number of
positive dummy values in �1, ..., �n. For the purpose of for-
malizing the security, we introduce a “fictional” server that
performs the following: It first receives the encrypted
values TI(p, q) , �1, ..., �n from the real server. Secondly, it

gets the sign of TI(p, q) . (We note that a real server can-
not do it since it requires unrealistic computational power
that breaks the security of the encryption scheme, so this
is just fictional for the sake of mathematical definition.)

Thirdly, it generates another dummy value TI′ randomly,
and independently of the values of TI(p, q) , �1, ..., �n

(except for the sign of TI(p, q) ), in the following manner:

• If TI(p, q) is positive, then TI′ is chosen randomly
from positive values.
• If TI(p, q) is negative, then TI′ is chosen randomly
from negative values.

Finally, the fictional server sends the user an encryption
of TI′ (instead of TI(p, q) ) as well as the encrypted �1, ...,
�n and the number of positive values in �1, ..., �n. We
note that, when the user receives a reply from the fictional
server, the user can know the sign of TI(p, q) which is the
same as that of TI′ , but cannot know any other informa-
tion on TI(p, q) since TI′ is independent of TI(p, q) . In
the setting, the following property can be proven:
Theorem 1 Suppose that the user cannot distinguish,

within computational time TIME, the sets of decrypted
values of ciphertexts involved in outputs of the real ser-
ver and of the fictional server. Then any information
computable within computational time TIME from the
decryption results for output of the real server is equiva-
lent to information computable within computational
time TIME′ from the sign of TI(p, q)only, where TIME′
is a value which is close to TIME.
Proof Let A be an algorithm, with running time

TIME, which outputs some information on the
decrypted values for an output of the real server. We
construct an algorithm A′ which computes, from the
sign of TI(p, q) only, an information equivalent to the
information computed by A . The construction is as fol-
lows; from the sign of TI(p, q) , A′ generates dummy
values by mimicking the behavior of the fictional server,
and then A′ inputs these dummy values to a copy of
A , say A∗ , and gets the output of A∗ . Now if the out-
put of A′ is not equivalent to the output of A , then
the definition of A′ implies that the probability distribu-
tions of the outputs of A with inputs given by the
decrypted values for outputs of the real server and of
the fictional server are significantly different (since A∗
used in A′ is a copy of A ); it enables the user to distin-
guish the two possibilities of his/her received values by
observing the output of A , but this contradicts the
assumption of the theorem. Therefore, the output of A′
is equivalent to the output of A as claimed. Moreover,
the computational overhead of A′ compared to A is
just the process of generating dummy values by mimick-
ing the behavior of the fictional server; it is not large (i.
e., TIME′ is close to TIME as claimed) since the server-
side computation of our proposed protocol is efficient.
Hence, the theorem holds.

Figure 3 Upper bounds of the probabilities that the user has
at least one hit query out of making 1, 10, ..., 106 queries. Note
that the hit query becomes the critical hint for revealing database
information. Each line shows the results with one of the four
different thresholds.
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Roughly rephrasing, if the assumption of the theorem
is true for a larger TIME, then the actual situation of
our proposed protocol becomes closer to the “ideal”
case provided we focus on any information available
from efficient computation. As a first step to evaluate
how the assumption is plausible (i.e., how the value
TIME in the assumption can be large), we performed
computer experiments to show that some natural
attempts to distinguish the actual and the fictional cases
do not succeed, as explained below.
In this experiment, we evaluate the security of our pro-

tocol by comparing the probabilities that the user correctly
guesses the value TI(p, q) in two cases: The case in which
the user makes a guess based only on a prior knowledge
w, and the other case in which the user makes a guess
based on the observation of the search result under the
condition that he/she knows w.
For the first case, the user’s best strategy for guessing

TI(p, q) is to choose the i0-th possible value, where

i0 = arg max wi
1≤i≤k

. (3)

In this case, the success probability of the guess is wi0 .
Let us consider the best strategy for the second case. As

described above, we consider an practical case that n
dummy values �1, ..., �n chosen from the k possible values
uniformly at random, and the user makes a guess from the
received n + 1 shuffled values �1, ..., �n, TI(p, q) . Now
suppose that the user received the i-th possible value ai
times for each 1 ≤ i ≤ k (hence

∑k
i=1 ai = n + 1 ). Since the

choices of �1, ..., �n are independent of TI(p, q) , the prob-
ability that the user received i-th possible value ai times
for each 1 ≤ i ≤ k and that TI(p, q) is i0-th possible
value is

(
n

a1, . . . , ai0 − 1, . . . , ak

)(
1
k

)n

· wi0 = ai0 · wi0
n!

a1! · · · ak!kn
.

Therefore, the conditional probability that TI(p, q) is
the i0-th possible value, conditioned on the set of the
user’s received values, is

(
n

a1, . . . , ai0 − 1, . . . , ak

)(
1
k

)n

· wi0

∑k
i=1

(
n

a1, . . . , ai0 − 1, . . . , ak

)(
1
k

)n

· wi

=
ai0 · wi0∑k
i=1 ai · wi

.

This implies that the user’s best strategy is to guess
that TI(p, q) is the i0-th possible value, where

i0 = arg max ai · wi
1≤i≤k

. (4)

We estimated success probabilities of user’s guess for
the both cases by simulation experiments. Here we

assumed typical case when TI1,1,0.8 and 166 MACCS keys
are used. In this case, k = 831 and we performed the
experiments for n = 831 × 100, 831 × 101, ..., 831 × 104 on
three different distributions of TI(p, q) which were
obtained by the following schemes:
1 We randomly selected one fingerprint q from

ChEMBL and calculated TI(p, q) for all the entries in
ChEMBL and used the observed distribution as w. In
our experiment, 177159-th fingerprint was selected as q
(referred as wChEMBL-177159).
2 The same scheme as 1) was used when q was

265935-th fingerprint (referred as wChEMBL-265935).
3 We randomly selected a value from 1, ..., k for m

times and count frequency of i as hi and set wi = hi/m
(referred as wrandom). We used k × 5 as m.
All the distributions used here are shown in Section 6

of Additional File 1.
We performed 100, 000 trials for each experiment.

Each trial consisted of choosing �1, ..., �n uniformly at
random; choosing TI(p, q) according to w; deciding
the user ’s guess i0 by formula (3) and formula (4)
respectively (we adopted a uniformly random choice if
there were more than one such i0); and checking
whether or not TI(p, q) was the i0-th possible value
for both rules (i.e., the user’s guess succeeded). The
results of the experiment are given in Table 1; they
show that the user’s attack success probability became
significantly close to the ideal case when a sufficiently
large number of dummies were used; therefore, our
technique of using dummies indeed improves the out-
put privacy.
Security analyses for padding dummies for the case

when the user is allowed to send more than one query
One might suspect that the attacker can detect the

true TI(p, q) by sending the same query twice and
finding the value which is appeared in both results.
However, this attack does not easily succeed if n is suf-
ficiently larger than k (i.e., ideally, all possible values of
TI are covered by sufficient number of dummies), and
we consider that k is not too large in practice as we
discussed in Parameters settings of the protocol
section.
In order to evaluate the security achieved by the pad-

ding dummies for the case when the user is allowed to
submit L queries, we performed following analyses. Here
we evaluate the security achievement by comparing the
case of using our protocol based on the padding dummy
and the ideal case of returning only the sign of TI(p, q) .
In order to perform rigorous analyses, we assume the
most severe case in which the attacker keeps sending
the same query L times. For this case, the probability
that TI(p, q) is the i0-th possible value after sending L
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queries on condition that frequency of i-th possible

value of j-th query a(j)
i i for j = 1, ..., L is

L∏
j=1

a(j)
i · wi∑k

h=1 a(j)
i · wh

. (5)

This implies that the user’s best strategy is to choose i-th
possible value which maximizes equation (5). As men-
tioned above, we compared the success ratio of the attack
based on the above strategy and the ideal success ratio
when the user makes the guess only from the given distri-
bution w. We also assumed more realistic case that user
did not know the exact distribution of dummy but knew
the distribution that was similar to the actual distribution
the server used. For the evaluation of this case, we gener-
ated dummies from the distribution u, which was slightly
different from uniform distribution, while the user
assumed that dummies were generated from uniform
distribution. u was generated as follows:

ui = r · 1/k, where r ∼ N(1, δ2).

We performed the experiment for L = 1, 10, 102, ..., 105,
n = 831 × 10, 831 × 50, 831 × 102 and δ = 0, 0.05, 0.1,
0.15, 0.2 based on the same approach used in the evalua-
tion of single query security. i.e., for each trial, n dummies
were randomly chosen according to u (note that u was
equal to uniform distribution when δ = 0), true value
TI(p, q) was selected according to w and the attacker’s
guess was made based on the equation (5). We performed
10, 000 trials for each triplet of L, n and δ. Those experi-
ments were conducted for the same three distributions:
wChEMBL-177159, wChEMBL-265935 and wChEMBL-random. We
compared the success ratio of the attack and the ideal suc-
cess ratio when the user made the guess without seeing
search results. The results are shown in Figure 4. The suc-
cess ratio of user’s attack decreased as the number of
dummies increased and became closer to the ideal value
when the sufficient number of dummies are given, even
for the case that a large number of queries were sent.
Although an efficient method for dummy generation
remains as a future task, the results also show that hiding
the distribution of dummy is significantly effective for

protecting database privacy and the user has to know it
with high accuracy in order to steal extra information
from the server.

Database privacy in malicious model
For our protocol, the difference between the malicious
and semi-honest models is that in the malicious model
the user may use an invalid input q whose components
qi are not necessarily in {0, 1}. If the user chooses q in
such a way that some component qi is extremely large
and the remaining ℓ − 1 components are all zero, then
TI(p, q) will also be an extreme value (distinguishable
from the dummy values) and depend dominantly on the
bit pi; therefore, the user can almost surely guess the
secret bit pi. Since our protocol detects whether or not
qi is a bit value without invading user privacy, it can
safely reject illegal queries and prevent any illegal query
attacks, including above case.

Performance evaluation
In this section, we evaluate the performance of the pro-
posed method on two datasets created from ChEMBL.

Implementation
We implemented the proposed protocol using the C++
library of elliptic curve ElGamal encryption [24], in
which the NIZK proposed in the previous study [21] is
also implemented.
For the implementation, we used parameters called

secp192k1, as recommended by SECG (The Standards for
Efficient Cryptography Group). These parameters are con-
sidered to be more secure than 1024-bit RSA encryption,
which is the most commonly used public-key cryptosys-
tem. The implementation of
Owing to the limitation of the range of plaintext, the

implementation here does not include sign-preserving ran-
domization. For the purpose of comparison, we also
implemented a GP-MPC protocol by using Fairplay [25].
In order to reduce the circuit size of the GP-MPC, we
implemented s simple task that computes the sign of
Tversky index between a query and a fingerprint in the
database, and repeated the task for all the fingerprints in

Table 1 The experimental success ratios of the user’s guess based on the server’s return and the prior distribution of
true value (n = 813,

n = 831 n = 831 × 101 n = 831 × 102 n = 831 × 103 n = 831 × 104 Ideal value

wChEMBL−177159 0.03552 0.01738 0.01101 0.01009 0.00977 0.00981

wChEMBL−265935 0.02991 0.01337 0.00903 0.00798 0.00784 0.00807

wrand 0.00914 0.0041 0.00309 0.00279 0.00305 0.00289

TI1, 1, 0.8 (k = 831) is assumed and results are calculated for five different numbers of dummies (n = 831, 831 × 101, 831 × 102, 831 × 103, 831 × 104) are used

for three different distributions: wChEMBL−177159 and wChEMBL−265935 are actual distributions of TI1, 1, 0.8 on ChEMBL obtained by querying two randomly selected

fingerprints from ChEMBL, wrand is obtained by randomly selecting a value from 1, ..., k for m = 5 × 831 times and dividing each observed frequency by m.
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the database. Thus the CPU time and data transfer size of
the implementation is linear to the size of database.

Experimental setup
The Jaccard index along with the threshold θ = 0.8 were
used for both protocols. For SSCC, we used 10,000
dummies. These two implementations were tested on
two datasets: one, referred to as ChEMBL 1000, was the
first 1000 fingerprints stored in ChEMBL, and the other,
referred to as ChEMBL Full, was 1,292,344 fingerprints
in the latest version of ChEMBL. All the programs were
run on a single core of an Intel Xeon 2.9 GHz on the

same machine equipped with 64 GB memory. To avoid
environmental effects, we repeated the same experiment
five times and calculated average values.

Results
The results are shown in Table 2. Despite the proposed
method including elaborate calculation like the NIZK
proof, we can see from the results that both the CPU
time and communication size of the proposed method
are significantly smaller than those of the GP-MPC pro-
tocol. Furthermore, it is clear that SSCC provides indus-
trial-strength performance, considering that it works,

Figure 4 The comparison of the experimental success ratios of the user’s guess based on the server’s return as well as the prior
distribution of true value when the user sends many queries (δ = 0, ..., 0.2), and success probability based only on a guess from the prior
distribution (ideal value). TI1, 1, 0.8 (k = 831) is assumed and results are calculated for three different numbers of dummies (n = 831 × 10,
831 × 50, 831 × 102) when the user sends L = 1, 10, ..., 105 queries and three different distributions: wChEMBL−177159 and wChEMBL−265935 are actual
distributions of TI1, 1, 0.8 on ChEMBL obtained by querying two randomly selected fingerprints from ChEMBL, wrand is obtained by randomly
selecting a value from 1, ..., k for m = 5 × 831 times and dividing each observed frequency by m.
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even on a huge database like ChEMBL Full, taking no
more than 167 s and 173 s for the server and client
respectively.
The experiment on ChEMBL Full by using GP-MPC did

not finish within 24 hours. Since both CPU time and com-
munication size are exactly linear to the size of database
for the GP-MPC protocol, the results of ChEMBL Full for
GP-MPC are estimated to be more than 1600 hours for
both sides and 3 Gbyte data transfer from client to server,
considering the results of ChEMBL 1000.
By using simple data parallelization, the computational

speed will be improved linearly with the number of CPUs.
Since all the programs were run on the same machine
there was almost no latency for the communication
between the two parties in these experiments. Therefore,
GP-MPC, whose communication size is huge, is expected
to require far more time when it runs on an actual net-
work that is not always in a good condition. The other
important point is that SSCC requires only two data trans-
fers, which enables data transfer after off-line calculation.
On the other hand, GP-MPC must keep online during the
search because of the high communication frequency. We
also note that it took less than 100 MB to compile SSCC,
while GP-MPC required more than 16 GB. Considering
these observations, SSCC is efficient for practical use. It is
known that several techniques improve the performance
of GP-MPC and the previous work by Pinkas et al. [26]
reported that Free XOR [27] and Garbled Row Reduction
[26], which are commonly used in state-of-the-art GP-
MPC methods [28-31], reduced running time and com-
munication size by factors of 1.8 and 6.3 respectively when
a circuit computing an encryption of AES was evaluated.
Though these techniques are not implemented in Fairplay,
we consider that GP-MPC is yet far less practical for the
large-scale chemical compound search problem compared
to our method which improved running time and commu-
nication size by factors of 36, 900 and 12, 000.

Conclusion
In this study, we proposed a novel privacy-preserving
protocol for searching chemical compound databases.
To our knowledge, this is the first practical study for
privacy-preserving (for both user and database sides)
similarity searching in the fields of bioinformatics and
chemoinformatics. Moreover, the proposed method
could be applied to a wide range of life science pro-
blems such as searching for similar single-nucleotide
polymorphism (SNP) patterns in a personal genome
database. While the protocol proposed here focuses on
searching for a number of similar compounds, we are
examining further improvements of the protocol such as
the client being able to download similar compounds;
we expect this on-going study to further contribute to
the drug screening process. In recent years, open inno-
vation has been attracting attention as a promising
approach for speeding up the process of new drug dis-
covery [32]. For example, research on neglected tropical
diseases including malaria has been promoted by the
recent attempt to share chemical compound libraries in
the research community. In spite of high expectations,
such an approach is still limited to economically less
important problems on account of privacy problems
[33]. Therefore, privacy-preserving data mining technol-
ogy is expected to be the breakthrough promoting open
innovation and we believe that our study will play an
important role.
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Table 2 CPU time and communication size of secure
similar compounds counter (SSCC) and those of general-
purpose multi-party computation (GP-MPC).

ChEMBL_1000 ChEMBL_Full

CPU time (s)

SSCC (server) 0.69 167.19

SSCC (client) 1.53 172.37

GP-MPC (server) 4, 075.15 −

GP-MPC (client) 4, 366.18 −

Communication size (MB)

SSCC (server ® client) 2.24 265.33

SSCC (client ® server) 0.03 0.03

GP-MPC (server ® client) 42.50 −

GP-MPC (client ® server) 2, 128.00 −

The experiment on ChEMBL Full by GP-MPC did not finish within 24 hours.
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