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Abstract: Tissue engineering is an emerging field of research that initially aimed to produce 3D
tissues to bypass the lack of adequate tissues for the repair or replacement of deficient organs. The
basis of tissue engineering protocols is to create scaffolds, which can have a synthetic or natural
origin, seeded or not with cells. At the same time, more and more studies have indicated the low
clinic translation rate of research realised using standard cell culture conditions, i.e., cells on plastic
surfaces or using animal models that are too different from humans. New models are needed to
mimic the 3D organisation of tissue and the cells themselves and the interaction between cells and
the extracellular matrix. In this regard, urology and gynaecology fields are of particular interest.
The urethra and vagina can be sites suffering from many pathologies without currently adequate
treatment options. Due to the specific organisation of the human urethral/bladder and vaginal
epithelium, current research models remain poorly representative. In this review, the anatomy, the
current pathologies, and the treatments will be described before focusing on producing tissues and
research models using tissue engineering. An emphasis is made on the self-assembly approach,
which allows tissue production without the need for biomaterials.
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1. Introduction

Despite the significant advances in medicine of the last decades, many illnesses are
still challenging. Indeed, the treatments themselves can be insufficient, or their side
effects may negatively impact the patient’s quality of life. From congenital anomalies to
various injuries or illnesses that may develop, the list goes on and can range from a simple
annoyance to a deadly threat. Affectations of the genitourinary tissues are no exception in
this respect and can significantly contribute to undermining the social and emotional life
of individuals [1–5]. In this context, a particular focus will be placed on the male urethra
and the vagina. This review examines the anatomy, pathologies and treatments. Current
treatments will be studied, as well as encountered problems and possible solutions offered
by tissue engineering. The field of tissue engineering has emerged in the past decades,
aiming to treat or replace damaged tissues. Various approaches will be described, and
some of their applications either repair the urethra and the vagina or create study models.
A new and exceptionally innovative approach will then be put forward: The self-assembly
technique [6].

2. Male Genitourinary Tissue: Focus on the Urethra

The blood is filtered through the kidneys to produce urine which contains toxic waste.
Urine is carried through the ureters down to the bladder, where it is stored until its excretion
via the urethra. The latter is also used during reproduction to transport semen.
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2.1. Anatomy

The 15 to 20 centimetres of the male urethra are divided into several sections from
the bladder neck to the meatus, and described as the prostatic, membranous, bulbar,
pendulous and fossa navicularis sections of the urethra. The two first parts constitute the
posterior urethra, whereas the following are known as the anterior urethra. The urethra
is lined by an epithelium whose organisation varies by location. The posterior urethra is
characterised by a transitional epithelium followed by a pseudostratified epithelium. Both
are very similar and are known as urothelium. Finally, the squamous epithelium is found
in the fossa navicularis, roughly similar to the oral mucosa [7]. The urothelium consists
of three elements. The basal layer contains most of the progenitor/stem cells allowing
for normal turnover of the epithelium. On the basal layer lies several layers containing
intermediate cells with a potential of division depending on their level of differentiation.
The progenitor/stem cells present in these layers are those implicated in repair after
injuries. Finally, the superficial layer contains flattened, sometimes binucleated, terminally
differentiated cells. These cells are called umbrella cells and are mainly responsible for
the barrier function against urine [8]. At least in part, the basal and the intermediate
cells are directly connected to the basal lamina, which separates the urothelium from the
lamina propria, the underlying connective tissue. Like other lower urinary tract structures,
the urethra contains three layers of muscles: Internal and external muscle layers are
longitudinal, whereas the medial muscle layer is circular. Internal and medial muscle fibres
are extensions of the muscle fibres of the bladder detrusor, while the outer longitudinal
fibres are composed of striated muscles.

2.2. Pathologies

Surgical reconstructions are often needed to restore the normal function of the geni-
tourinary system of patients affected by congenital or acquired anomalies. Among them,
hypospadias and urethral stricture are the most common pathologies seen by urologists.
One in 250 newborn male is affected by hypospadias [9,10], a penile malformation rep-
resenting 73% of all congenital penile anomalies [11]. Several studies have reported an
increasing prevalence of hypospadias in men [12–16]. Its prevalence varies by region: It
was lower in Asia and higher in North America [17]. Studies have estimated that the ge-
netic component of hypospadias is between 57 and 77% risk of inheriting, coming through
both maternal and paternal sides [18]. Specific mutated genes were brought to light that
can influence the apparition of hypospadias, such as Wilms’ tumour 1 or androgen receptor
genes [19]. Because the risks for siblings and sons from the same family are similar, genetic
and shared environmental factors, such as endocrine disruptor exposition, are expected
to play a significant role in familial hypospadias [20]. Androgens and oestrogens play a
critical role in genital development. Animal models have already shown the impact of
exposure to synthetic oestrogens on hypospadias prevalence.

Additionally, maternal exposure to these components and certain drugs, such as
diethylstilbestrol or valproate, has been associated with a higher risk of hypospadias [21].
Hypertension, oligohydramnios and preterm delivery are linked to severe hypospadias,
suggesting a significant role of underlying placental insufficiency potentially through
inadequate levels of human chorionic gonadotropin in the foetus [22]. Hypospadias is
characterised by an improperly positioned urethral opening, where the meatus is below
the tip of the glans, and can be observed anywhere along the ventral side of the penis [7].
The severity of the hypospadias depends on the location of the urethral opening along the
penis, with increasing severity as the meatus is closer to or at the scrotum. Severe forms
often require surgery [23–25]. Hypospadias is a significant health problem and can mobilise
considerable health care resources [26]. Indeed, more severe cases may require subsequent
surgeries, due to complications, such as complete dehiscence, stenosis or fistulas [27].

Male urethral stricture is most commonly the result of an injury, including iatrogenic
trauma, infection or non-infectious inflammatory conditions of the urethra. However, it
can also be found after hypospadias surgery [28]. Less common causes can also be found,
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such as congenital urethral strictures or resulting from a malignant tumour. In the United
States, office visits for urethral stricture reached nearly 1.8 million between 2005 and 2013,
with a total annual cost of nearly $ 300 million in 2010 [29,30]. Urethral strictures can also
lead to a high rate of urinary tract infection and incontinence [31].

2.3. Current Treatments

Repair or replacement of the urethra can be done using a wide variety of tissues,
such as skin grafts, including genital and extragenital skin flaps, tunica vagina, lingual
mucosa, bladder and mouth [32]. Oral mucosa has become the current gold standard;
however, many complications are encountered. The first use of the oral mucosa as a urethral
substitute was by Kirill Sapezhko, a Ukrainian surgeon from the Russian empire, in 1890 on
a 40-year-old patient with an idiopathic urethral stricture [33]. This pioneering technique
was also reported by Graham Humby in 1941 and independently rediscovered in 1992 by
Bürger [34] and Dessanti [35]. However, all these substitutes have limitations compared
to autologous urethral tissue, leading to complications, such as stenosis formation [36,37].
Despite the improvement of harvesting techniques, donor sites remain limited in the
amount of tissue collected and can also be affected by complications. Indeed, about 80%
of patients present side effects after harvesting buccal mucosa, such as pain, numbness,
submucosal scars, dry mouth, lesions, neurosensory defects, discomfort and limitation of
the opening of the mouth and risk of infections [38–43]. This lack of a sufficient amount
of tissue to be grafted can be problematic in the case of extended defects. In addition, in
postoperative complications, the surgeon cannot collect oral tissues twice from the same
site, limiting surgical options.

3. Female Genitourinary Tissue: Focus on the Vagina

The vagina is an elastic muscular tubular structure that extends from 7 to 15 cm from
the cervix to the vulva. Its primary roles are to allow sexual intercourse and to be the natural
way for childbirth. It also has an essential role in the constitution of the bacterial flora of
newborns, which poses the problem of the increase in births by caesarean section [44].

3.1. Anatomy

The vaginal wall consists of three layers: The vaginal mucosa, an intermediate muscle
layer, and the adventitia, which serves as structural support for the organ. The vagi-
nal mucosa is composed of a non-keratinised, multi-layered squamous epithelium [45].
The vaginal epithelium has an average thickness of 150–200 µm when the woman is pre-
menopausal [46]. It has an original organisation with a basal layer, suprabasal layers,
several middle layers of glycogen-rich cells and an apical layer [47]. Because the epithelial
cells differentiate and migrate apically, their glycogen content increases. Thus, only the
suprabasal and apical layers contain glycogen. The epithelial cells of the middle layers
adjust their glycogen content depending on oestrogen levels. The vaginal epithelium varies
throughout a woman’s life as it is subject to hormonal and environmental fluctuations. Be-
fore puberty, the vaginal epithelium is thin because it comprises only basal and suprabasal
layers. When women are of reproductive age, the vaginal epithelium thickens and contains
an average of 28 layers of epithelial cells [48]. After menopause, the decline in oestrogen
concentration induces vaginal epithelial atrophy, depletion of glycogen reserves and a
phenomenon of keratinisation on the surface of the vaginal epithelium, which becomes
more similar to the epidermis [49]. The vaginal epithelium serves as a barrier to the en-
try of pathogens, mainly based on intercellular junctions between epithelial cells. The
colonisation of the vagina by lactobacilli allows the production of lactic acid, which creates
an acidic microenvironment, protecting against other potentially pathogenic bacteria and
viruses, such as Human Immunodeficiency Virus (HIV) [50,51].
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3.2. Pathologies

Numerous pathologies, whether congenital or acquired, can affect the vagina. Bladder
and cloacal Exstrophy, in which the anatomical structures of the pelvis (including the
bladder, genitals and colon) fail to fuse in the midline, are examples of such malforma-
tions [52]. Children with intersex disorders, such as congenital adrenal hyperplasia [53]
and cloacal abnormalities, can have significant anatomical defects and often need outside
tissue sources for reconstructive surgery.

Müller’s agenesis, also known as Mayer–Rokitansky–Küster–Hauser syndrome (MRKH),
is the most common abnormality in the development of the Müllerian duct, which results in
vaginal agenesis [54–56]. MRKHS covers a range of abnormalities associated with vaginal
and uterine abnormalities, but may also have other associated outcomes.

Women with cancer of the cervix, uterus, ovary, rectum, vagina or bladder may require
partial or total vaginal resection. Furthermore, they may need a partial or total vaginal
replacement to recover sexual function and restore native anatomy. Vaginal stenosis can
also occur after radiation therapy treatment to treat colorectal and cervical cancers (80% of
women treated). It is characterised by a decrease in the length and diameter of the vagina,
followed by the formation of scar tissue [57].

In addition, vaginal strictures can also occur with vaginal atrophy, hypoestrogenic
states, inflammatory and autoimmune diseases, and chemical vaginitis [57]. Transient and
long-term damage to the vagina and its supporting tissues have also been documented
after vaginal birth. Most parous women have anatomical evidence of disturbed supporting
tissues [58–60].

3.3. Current Treatments

Depending on the severity of the problem, non-surgical or surgical treatments can be
proposed to the patients. Non-surgical treatments rely mainly on the Frank/Ingam procedure or
the Vecchietti technique, while surgical treatments rely mainly on the Abbè/McIndoe procedure.

3.3.1. Non-Surgical Treatments

Frank’s technique [61] involves using dilators, gradually increasing in diameter and
length, which are placed three times a day in the future vaginal opening and held in place
for 20 to 30 min. In Ingram’s technique [62], the patient uses a bicycle seat to hold the
vaginal dilators in place, taking advantage of the pressure created by the patient’s weight.
Both techniques require the presence of a vaginal dimple of 3–4 cm, which is not present
in cases of severe agenesis. The advantages are the preservation of the existing vaginal
tissue and the often-high satisfactory results. The limitations are the discomfort, the time
required for this long-term treatment and the limitation to sexually mature patients [63].
The Vecchietti technique [64] is based on the placement of an acrylic olive connecting
the vagina to the abdominal wall. The dilatation happens by internal traction. Within a
few days, a neovagina is formed. The procedure is minimally invasive and preserves the
existing vaginal tissue, but is limited by the discomfort and the use of dilators. There are
risks of long-term contraction, prolapse and urological lesions.

3.3.2. Surgical Treatments

Patients with congenital or acquired reproductive tract malformations often require
extensive surgical reconstruction. In 1898, Abbè’s vaginoplasty was introduced, consisting
of an autologous skin graft taken from the anterior thigh [65,66]. However, from 1938,
autografts of skin for vaginal reconstruction became popular with the McIndoe method
of wrapping a skin graft around a plastic stent. From the 1970s, the choice of grafts was
oriented according to the areas of vascularisation, such as the musculocutaneous flaps of
the gracilis muscle or the rectus muscle of the abdomen. This surgical procedure does
not require dilators, making it a preferred procedure in a paediatric setting. Despite the
difference of opinion on sigmoid vaginoplasty in the literature, this approach seems to give
satisfactory results, but carries a risk of digestive complications. Other anatomical substi-
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tutes have been described for vaginal reconstruction: Oral mucosa, amniotic membrane,
peritoneum, accelerated dermis matrices and oxidised cellulose matrices.

4. Tissue Engineering

In 1993, Langer and Vacanti published a paper in Science entitled “Tissue Engineering”
(TE) [67]. This was the first assay to conceptualise the notion of TE and its goals. From
this date, TE has been considerably developed to offer new and innovative solutions to
old problems. In the context of ageing and the sedentary behaviour of human populations,
the appearance of chronic diseases that require organ repair or replacement is increasing
even though the number of organs available for transplants is reducing precisely because
of this ageing and sedentary behaviour, but also the strengthening of selection criteria by
regulatory agencies. Tissue engineering consists of the in vitro reconstruction of tissues
or organs for the replacement/repair and 3D models for fundamental research. Synthetic
or natural biomaterials, including decellularised organs as scaffolds, seeded or not with
cells, have been studied. Various techniques have been described to create the scaffold,
such as casting [68], electrospinning [69–71] or bioprinting [72]. Other methods like the
self-assembly technique, which does not require any exogenous biomaterial, have also
been developed.

4.1. Synthetic Materials

Synthetic biomaterials present many advantages, such as their low cost, ability to be
highly tunable and form the desired geometry [73–75]. They also present some drawbacks,
such as their difference in composition and organisation compared to a natural extracellular
matrix (ECM), which can impact adhesion, proliferation and differentiation of cells [76].
Indeed, the low diversity of the components used to produce these biomaterials appears
simplistic compare to the numerous components of a native ECM. Nevertheless, significant
progress has been made with the functionalisation of synthetic biomaterials in the last
decades. For many applications, the use of hydrogels is interesting, and recent studies have
shown a potential for them functionalised with different peptides to recreate, at least in
part, the microenvironment of the target tissues [77]. This kind of functionalised hydrogels
could support cell growth/differentiation, as well as vehicles for the delivery of stem cells,
drugs or bioactive proteins.

4.2. Natural Materials

Contrarily to synthetic materials, natural biomaterials used as scaffolds, especially
those using elements coming from ECM [78], provide better adapted environments for mi-
gration, proliferation and differentiation of cells when used under appropriate conditions.
Nevertheless, these biomaterials generally have weaker mechanical properties compared
to native ECM. Indeed, the mechanical properties of ECM are not only due to the molecules
it is composed of, but also, more importantly, because the organisation of these molecules
in the matrix.

Among other promising biomaterials, decellularised tissues are becoming more and
more attractive with new protocols of decellularisation [79]. Indeed, it seems convenient to
use the complexity of native materials to repair themselves. Decellularising tissues to re-
move antigenic molecules responsible for immunological response and potential pathogens
before being recellularised with patient’s cells allows tissue production, which is very close
to the autograft or even better if the disease’s causal effect is also corrected. Decellulari-
sation of tissue can be obtained by successive hypo/hypertonic shocks, combined or not
with the addition of detergents, to destroy the cell membrane [80]. Enzymes can be used to
remove proteins and nucleic acids. The tissue can originate from a human cadaver or be
obtained from animals.

Nevertheless, several problems slow down the use of such prostheses: Ethical problems
and various regulatory issues, such as the risk of immune reaction in ineffective/incomplete
decellularisation. However, the main problem remains the ability to maintain the ECM
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architecture that provides good mechanical and biological characteristics to the graft. In-
deed, heavy decellularisation can induce a loss of the native matrix architecture and its
non-immunogen components, whereas weak decellularisation could be insufficient to
obtain a safe biomaterial [81–83]. In the past, ECM was largely disorganised or modified by
the decellularisation process, losing the mechanical properties, resistance, elasticity and cell
differentiation potential. An increasing number of protocols are emerging to reduce these
problems, but more studies are needed to obtain a clear view for this option [84]. Recently
a novel approach to functionalise decellularised tissues has been proposed to improve en-
dothelial cell adhesion and accelerates endothelialisation, which is an important point, due
to the need to rapidly provide oxygen and nutrients to grafts to ensure positive outcomes.
This goal is achieved through selective immobilisation of REDV tetrapeptides [85].

4.3. Tissue Engineering for Urethral Reconstruction

Several groups have attempted urethral substitution using TE cell-free matrices, such
as bladder acellular matrix graft (BAMG) and small intestinal submucosa (SIS) or cellu-
larised matrices [86–93]. These matrices are prepared from native tissues by decellularising
and sterilising them. As shown in rabbits by Dorin et al., a significant problem of acellular
matrices is that urothelial regeneration is limited to 0.5 cm, which compromises success
in more complex cases, such as long strictures [94]. Synthetic polymers have also shown
advantages (poly-l-lactic acid, (PLLA) and poly(lactic-co-glycolic) acid, (PLGA)) for form-
ing low-cost, biocompatible, three-dimensional (3D) organs with controlled mechanical
properties. However, synthetic scaffolds without functionalisation by peptides do not allow
the proper differentiation of epithelial cells into well-organised tissue. Indeed, contrarily
to natural matrices, they cannot recreate the target organ microenvironment, especially
adequate ECM-cell interaction (e.g., lack integrin-binding peptide sequence, failure in
synchronisation between degradation rate and matrix neo-deposition) [73,95,96]. No long-
term experiment has been performed with a significant number of patients. Currently,
protocols developed are not used in clinics despite the media coverage of some, signalling
the immaturity of the works, which must continue to be improved [97]. TE substitutes that
contain autologous cells in addition to an extracellular matrix, close to the native one, are
more promising. The main advantage of this method is that a large graft of autologous cells
can be produced with a limited sample, such as a piece of oral or bladder mucosa. Indeed,
the extracted cells can be grown in vivo, seeded on the biomaterial and implanted with a
very low risk of rejection. Studies have also reported that stem cells can be obtained from
urine, making this approach potentially useful [98,99]. A downfall of this method is that
after long periods of culture to obtain well-differentiated tissues, the exogenous matrices
become challenging to manipulate and lose their mechanical and physical properties. De-
spite significant progress in urethral TE, very few teams have performed clinical trials and
published their results to date [100] (Table 1). However, the four clinical trials conducted to
date show promising results in a limited number of patients with long-segment and/or
complex stenosis [97,101–104]. While these models are certainly far from a “plug and
play” alternative with consistently reproducible results, they could offer an alternative for
complex cases requiring long segment urethral replacement [105].

Table 1. The scaffold used for urethral reconstruction.

Type of Scaffold Biomaterials Ref Example Advantages Drawbacks

Synthetic PLCL [106] - biocompatible
- mechanical properties - Degradation products

PLCL/Collagen [107] - low cost

- Poor differentiation of
epithelial cells (except for
cellularised collagen matrices;
improved by functionalisation)

PLA [108] - highly reproducible -degradation rate (too low or
too high)
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Table 1. Cont.

Type of Scaffold Biomaterials Ref Example Advantages Drawbacks

PU/mesh in PGA [109] - quickly available -mechanical properties during
or after degradation

PLGA [97] - functionalisation - poor angiogenesis
PLLA [110]

Natural Cellulose [111]
Silk Fibroin [86,112–114]

Collagen [78,88,115–119]

Acellular matrix SIS [81,120–125]

- Adequate
microenvironment for cell
proliferation and
differentiation

- Immune risk (including
DNA, prions)

Placental membrane [126] - Significant angiogenesis - Unfavourable clinical
experience

BAMG [127–129] - Quality of the matrix
Urethra [130]

Self-Assembly None [73,131,132]

- Excellent
microenvironment with
organ-specific cells
- Mechanical properties

- time and cost to produce
tissues

Most of the data in Table 1 can also be found in reviews [73,131–133]. PLCL: poly(l-lactide-co-
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-caprolactone); PLA: polylactic acid;
PU: polyurethane; PGA: polyglycolic acid; PLGA: poly(lactic-co-glycolic) acid; PLLA: poly-l-lactic acid; SIS: small intestinal submucosa;
BAMG: bladder acellular matrix graft.

4.4. Tissue Engineering for Vaginal Reconstruction

Vaginal abnormalities represent a significant health problem for women because
nearly 1% of women will suffer from the pathologies mentioned previously, resulting in
significant psychological impacts. Interestingly, tissue engineering is an area that aims to
replace or regenerate dysfunctional tissues and organs with autologous cells, biomaterials
or a combination of both. The success of vaginal reconstruction in these patients largely
depends on the use of a sufficiently large tissue substrate that adequately fulfils the physio-
logical functions of the vagina. Prior techniques have often relied on autologous tissues,
such as the intestine or skin, often associated with complications, due to the physiological
differences inherent to these substrates. To improve results, a variety of biodegradable
substitutes, including collagen matrices and a decellularised bladder submucosa, have
been used for vaginal replacement [102,134]. Reconstructions using these substitutes have
generally failed, due to functional, structural, mechanical or biocompatibility issues. Using
the patient’s vaginal tissue for reconstruction would be the most elegant and effective
solution, but this has often not been possible, due to the relative scarcity of healthy vagi-
nal tissue for autologous transplantation. There is a substantial clinical need to develop
technologies to facilitate the regeneration of injured or diseased tissues and organs. The
relentless prevalence of trauma, congenital abnormalities and diseases, such as cancer,
is driving demand, becoming increasingly urgent as the world’s population grows and
ages. A wide variety of tissues and organs would benefit from engineering-based repair-
ing or regeneration. Several graft materials have been used to line the surgically created
neovaginal cavity, including myocutaneous flaps or intestinal segments, full-thickness or
split-thickness skin grafts, amniotic membrane, peritoneum, buccal mucosa and vaginal
epithelial tissue [135–143]. These techniques are associated with contraction and/or steno-
sis of the graft, which may require long-term dilation. Oral mucosa vaginoplasties are
associated with donor site morbidities, due to the large volume of tissue taken to create
the neovagina. In addition, the amount of tissue that can be harvested from a donor site is
limited, which can be problematic, especially for significant defects. To overcome these
difficulties, alternative methods of vaginal reconstruction have been explored. Few groups
have attempted TE vaginal reconstruction using acellular and cellular matrices of natural
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or synthetic origin [144–149] (Table 2). The tissues were transplanted into mice, rabbits and
humans. However, further preclinical and clinical studies are needed, due to the limited
number of subjects included in these studies. It remains challenging to determine whether
the optimal technique was used.

Table 2. The scaffold used for vaginal reconstruction.

Type of Scaffolds Biomaterials Patients # References

Synthetic PGA 4 [149]

PLA (©PACIENA) 9 [150]

7 [151]

Natural Collagen IV and
hyaluronic acid 1 [146]

23 [146]

Acellular matrix Amnion 50 [152]

SIS 65 (vs Interceed) [153]

Monkey [154]

Acellular vaginal
matrix Rat [155]

Rat [148]

Artificial dermis 35 [156]

Self-Assembly Mouse [157,158]
Patient # = number of patients included in the study. PGA: polyglycolic acid; PLA: polylactic acid; SIS: small
intestinal submucosa.

5. The Self-Assembly Approach

New approaches are required to combine adequate cell signalling and differentia-
tion, cell maintenance, especially for stem cells, and sufficient mechanical resistance for
implantation. All this while minimising side effects. A new type of strategy has been
explored by the group of Dr. François A. Auger at LOEX: The “self-assembly” method [6].
Great discoveries and therapeutic achievements have been made possible thanks to this
unique technique which allows the production of reconstructed tissues free of exogenous
materials. Indeed, the use of exogenous biomaterials can lead to immunological, foreign
body reactions and the transmission of infections. This technique relies on cells cultured in
ascorbic acid to secrete and deposit their own ECM to form cohesive sheets of cells and
collagen [159,160]. While most biomaterials lose their mechanical and physical strength
properties in culture, these self-assembled tissue properties are roughly similar or even
exceeding those of native tissues in some models, due to the stabilisation of metallopro-
teinases [161]. The self-assembly technique has made it possible to construct models
from various stromal cells of the skin [162], fat [163], cornea [164], Warton’s jelly [165],
bladder [166] and vagina [157] exhibit not only excellent mechanical strength, but also an
allowance for adequate epithelial differentiation.

The first step of a tissue’s reconstruction using the self-assembly technique is to seed
mesenchymal cells and cultivate them in the presence of ascorbate, also called vitamin C. It
is preferable to use organ-specific mesenchymal cells (e.g., dermal fibroblasts to reconstruct
skin substitutes, keratocytes to reconstruct cornea substitutes [167], bladder mesenchymal
cells to reconstruct bladder mucosa substitutes [133] and vagina fibroblasts to reconstruct
vaginal mucosa substitutes [168]). The use of unpaired mesenchymal cells can result
in inadequate differentiation. Indeed, cutaneous differentiation of corneal or urothelial
epithelial cells occurs when these cells are cultivated on dermal fibroblasts-derived stromas.
The ascorbate concentration was set at 50 µg/mL even if it is not the optimal concentration
for collagen deposition in dermal fibroblast cell culture. Indeed, higher concentrations
of this oxidative agent induce cell death, and thus, reduce the total amount of deposited
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collagen and the mechanical strength of the final product. After 3 to 6 weeks, depending on
the ability of the cultivated cells to deposit ECM, the mesenchymal cells have produced a
thick material similar to a native stroma of the target organ (Figure 1). It is possible to refine
the protocol by introducing, for example, at the initial seeding step, endothelial cells from
an umbilical vein or, even better, from the organ-specific microvascular network to form
a capillary-like network [169] or immune cells, such as monocyte-derived macrophages
to produce immunocompetent models [168]. A reseeding step can also be done after
two weeks to increase the tissue thickness and improve the cell distribution inside the
stroma, which can especially be helpful for the microvascular network and increase elastic
properties of the models [169] (Figure 2A). Following the step of stroma production,
epithelial cells can be seeded on the top of the construct and cultivated for one week
in submerged conditions, allowing the complete coverage of its upper surface before
being placed at the air/liquid interface for three weeks to obtain differentiation of the
epithelium. This technique has shown a high level of differentiation in various models,
showing epitheliums very similar to native tissues. To place bladder tissues in physiological
conditions, a bioreactor has been designed (Figure 2B). Detailed protocols can be found in
several research articles and reviews [170].
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Figure 1. Schema of the self-assembly method using the standard protocol. This protocol obtains
flat tissues with functional epithelium and a strong ECM sustaining manipulations by surgeons or
researchers [166,171,172]. The total time of production around 60 days. For the whole process, media
are supplemented with ascorbate (50 µg/mL). On day 0 (D0), mesenchymal cells are seeded into
petri dishes containing a paper ring as an anchorage device weighted by small metal lingots. Cells
are then cultured for 28 days. On day 28 (D28), stroma sheet (cells + ECM) are stacked (air bubble
must be avoided between sheets), then they are pinned together using a surgical clip (Ligaclip),
covered by a surgical sponge (Merocel) to protect from the direct contact with metal lingots use to
favour fusion through mechanical compression. Culture is pursued for 4 days until day 32 (D32) to
ensure adequate fusion. Then epithelial cells are seeded on the top of the construct and cultured for a
week to allow horizontal coverage of the scaffold. On day 39 (D39), the constructs are raised at the
air/liquid interface using a specific device allowing media circulation under the reconstructed tissue.
This phase allows the maturation of epithelium until day 60 (D60).
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Figure 2. Schema of the “reseeding” variation of the self-assembly protocol and the stimulation of
bladder mucosa substitute in a bioreactor. (A) The “reseeding” protocol reduces the cost and the
complexity of the self-assembly technique compared to the standard protocol, avoiding the need for
multiple sheets and their stacking. A better distribution of the cells throughout the tissue has also
been demonstrated. (B) Stimulation of bladder mucosa substitute using bioreactor. The substitute is
inserted between two chambers where the cell culture medium can circulate. To mimic the bladder
cycles of emptying and filling, the flow is modified and increased the pressure on the urothelial face
of the substitute in the filled status, whereas the substitute is more relaxed in the empty condition.

For tubular substitutes, such as blood vessels or urethras, the epithelial/endothelial
seeding does not happen immediately after the step of stroma production. The tissue-
like structure is detached from the petri dish and tightly rolled around a mandrel of the
appropriate diameter [161]. After the rolling step, the fusion of the rolls was helped by
maintaining a mechanical load. The cylindrical mandrel can then be removed from the
tubular structure, creating a lumen. The lumen is filled with liquid to avoid collapse,
and epithelial/endothelial cells can be seeded inside the tube for urethral or blood vessel
reconstruction, respectively. During the epithelial/endothelial cell seeding step, rotation of
the tube ensures a uniform distribution of these cells (Figure 3A). Once again, urologic tis-
sues can be matured under physiological conditions using bioreactors (Figure 3B). Various
refinement has been introduced for these constructs. Notably, mesenchymal cells can be
seeded directly on the mandrel to form the tubular structure, avoiding delamination of the
rolls in the case of their incomplete fusion [173].
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Figure 3. Schema of the technique used to produce tubular substitute using the self-assembly approach and the subsequent
stimulation in a bioreactor of the substitutes. For the whole process, media are supplemented with ascorbate (50 µg/mL).
(A) Mesenchymal cells are seeded at day 0 (D0) on a gelatin-coated square plate and cultured for 28 days. Contraction of
the tissue is avoided by putting flat metal lingots on its border. After the mesenchymal cells formed an ECM sheet (day
28 (D28)), the latter was rolled tightly around a cylindrical mandrel. Fusion of the rolls is allowed by maintaining a little
load on the tissue for 14 days. On day 42 (D42), the mandrel can be removed and epithelial cells seeded inside the tubular
structure [174,175]. (B) The day after, a bioreactor separates the external and internal parts of the tissue, a flow circulating
in the internal part mimicking the physiological flow. The cell culture medium is present in the external part to provide
nutrients. Maturation is done for 14 days until day 56 (D56) [176].

5.1. Self-Assembly to Reconstruct Human Tissues

Initially, the self-assembly technique had been developed to produce bilayered skin [162]
for severely burned patients and its tubular derivation, the tissue-engineered blood ves-
sel [161,177]. With time, the same technique has been used in a wide range of products
useful in regenerative medicine, such as corneas [164,178], heart valves [179], adipose tis-
sue [163,180,181], bone [182], bladder mucosa substitutes [166,171], ureter/urethra [174,176]
and vaginal mucosa substitutes [157,158]. The most advanced substitute is the bilayered
skin used to treat patients affected by burns and ulcers [183].

5.2. Self-Assembly Approaches to Produce Research Models

From these engineered tissues, has been derived, research models. In the case of the
skin, bilayered skin substitutes were used to study skin [184,185] and uveal melanoma [186].
It allowed to study the effect of epidermal ultraviolet irradiation [187], the basal cell car-
cinoma [186] and neurofibroma [188], wound healing [189], hypertrophic scars [190,191],
scleroderma [192], psoriasis [193] and epidermolysis bullosa [194]. They were also used
to detect amyotrophic lateral sclerosis through the cutaneous manifestation of the dis-
ease [195]. Fat tissue substitutes are great models to study several aspects of metabolic
disorders. Corneal substitutes are also exciting models to study Fuchs’ dystrophy [196]
or eye wound healing [197]. The self-assembly technique is fascinating because ECM
deposited by stromal cells recreates a microenvironment very similar to that of native
tissue and reconstructs the modular models. For example, the contribution of the dermal
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fibroblasts has been demonstrated in psoriasis by combining different sets of fibroblasts and
keratinocytes, healthy or diseased [193]. It was also demonstrated that fibroblasts extracted
from skin biopsies of patients affected by scleroderma at an early stage of the disease remain
sensitive to TGF-beta addition, increasing the dermis thickness of reconstructed tissues.

In contrast, the fibroblasts extracted from skin biopsies of patients at the late stage of
the disease are insensitive to TGF-beta [192]. This finding can orient therapy for specific
patients. It is also possible to add elements, such as capillary [169] or lymphatic [198]
networks, immune cells [168] or microbiota, developing more refined models.

5.3. Self-Assembly Protocol for Urethral Substitute Model

The self-assembly protocol was derived from producing urologic models. The skin
model was adapted to produce a bladder mucosa substitute, whereas the blood vessel
model was adapted to produce urethral substitutes.

Initially, stromal and urothelial cells were extracted from a single porcine bladder
biopsy [166]. It was shortly apparent that stromal cells of porcine origin—bladder, skin or
oral mucosa—gave substitutes with inadequate mechanical properties [199]. It is simpler to
obtain biopsies from human skin than the human bladder, thus, human dermal fibroblasts
and porcine urothelial cells produce mechanically resistant and watertight substitutes [171].
Following this step, bioreactors’ maturation was tested to simulate the physiological pres-
sure environment during bladder filling/emptying cycles [200]. After that, the importance
of respecting the organ-specific pairing between mesenchymal cells and epithelial cells
was demonstrated [133]. Human epithelial cells were used instead of porcine ones [172].
To simplify the process, the stacking of stroma sheets was replaced by a reseeding step
which improves cell distribution throughout the tissue while still maintaining adequate
mechanical properties [169]. This modification also forms a highly developed capillary-like
network. Another source of easily obtained cells should be considered. Biomaterials
derived from adipose stem/stromal cells (ASC) for bladder regeneration have been success-
fully designed [201]. The ASCs are easily harvested from a small sample of subcutaneous
fat and yield a high proportion of multipotent cells, representing approximately 2%. They
have immunomodulatory and proangiogenic properties that could potentially improve the
quality of construction.

Nevertheless, reconstruction using these cells demonstrated that it should be avoided
to put an ASC-derived stromal sheet directly in contact with urothelium. In direct contact,
urothelial cells cannot differentiate adequately to form a robust basal lamina. However,
interspersing one stromal sheet between the ASC-derived one and epithelial cells reestab-
lished the ability of adequate urothelium maturation. Bladder mucosa substitutes could be
used to replace/repair bladder after transurethral resection, i.e., cancer treatment.

Similar steps were followed for urethral substitute reconstruction. Human dermal
fibroblasts were used combined with porcine urothelial cells as a proof of concept to pro-
duce the first tubular structures [174]. Once the proof of concept was obtained, all cells
were extracted from the human bladder and skin biopsies. A critical role of the liquid flow
was demonstrated for an adequate differentiation of the urothelium compared to a static
culture [176]. Tissue-engineered genitourinary tubular grafts were characterised for their
histological and mechanical properties. This construction has an exceptional histological
organisation and excellent mechanical resistance. Therefore, urethral substitutes were sub-
cutaneously grafted in a mouse model to investigate the effects of prevacularisation [175].
An advanced 3D capillary-like network was observed. After transplantation, avoiding
ischemic events is the main obstacle observed in developing a thick biomaterial or recon-
stituted tissue in vitro. Therefore, seeding endothelial cells can be used and adapted for
human clinical applications. Indeed, the neovascularisation of a tissue is a slow process
that can take more than 15 days for tissue that is 1 mm in thickness. The vascular network
already presents in the conventional autologous transplant can reconnect by inosculation
to the host’s bloodstream within four days. The solution to the revascularisation of re-
constructed tissues in vitro could lie in the reconstruction of a capillary-like network in
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the graft before implantation. Encouraging results were obtained with inosculation on
day 4 in the case of construct transplantation containing endothelial cells. In addition to
improving the transplant, the early capillary network could also help remove blood cells,
fibrin and growth factors, such as TGF-β1, leading to fibrosis and disease recurrence. It
has, therefore, become obvious to use this tubular urological tissue as a model for urethral
substitution. The advantage of this protocol using the self-assembly technique is that
it contains mesenchymal cells that communicate with epithelial cells either by releasing
cytokines and growth factors or by cell-to-cell contact. Although the best cellular source for
urethral bioengineering by self-assembly is the mesenchymal cells of the patient’s target
organ, this is impractical as there are risks associated with urethral biopsies, such as the
creation of a fistula.

Nevertheless, it was demonstrated that cells derived from the bladder gave excellent
results. The absence of exogenous materials and the autologous property of the models
produced using the self-assembly protocols represent significant advantages over other
available grafts. Therefore, an autologous TE urethra—without urothelium—was im-
planted in a rabbit model, which is the gold standard for the study of penile surgery [202].
Technical adjustments were necessary to produce substitutes using rabbit cells as culture
conditions are different.

Several refinements were introduced in protocols to improve stem cell maintenance
by expanding urothelial cells in hypoxia [203] or to shorten production time by adding
lysophosphatidic acid in a cell culture medium [172].

Urethral abnormalities represent a significant public health issue as nearly 1% of men
suffer from these pathologies, which can have a significant psychological impact. Treatment
involves surgical correction, and current treatment options are associated with morbidities
and a lack of long-term sustainable results. The solution may lie in reconstructing an
autologous urethra from a small biopsy of the patient, the in vitro reconstruction, and its
subsequent implantation. A purely autologous tissue would have a better outcome. The
presence of stem cells during implantation would offer better growth potential, especially
for paediatric patients. The urethral substitute produced by the self-assembly protocol
is entirely autologous and free of exogenous material. It can be pre-endothelialised, and
therefore, almost native histological and mechanical characteristics present before implan-
tation. Thus, a reduction in adverse events following the transplantation of this living
urethral tissue can be expected. Moreover, it is expected to grow and develop as the
child ages. It would reduce the associated morbidity for patients at the implantation and
harvesting sites, and therefore, decrease the financial burden of urethral abnormalities on
the healthcare system.

Even if this model is associated with many advantageous characteristics, the graft
preparation time is not negligible. From cell culture to full maturation, the reconstruction
process takes three months, one month more if cell extraction/expansion is required.
However, penile abnormalities are chronic pathologies, and surgical correction is performed
on an elective basis. Indeed, most patients must wait months for surgery. Therefore, the
extra time for surgical correction is not a significant inconvenience. The need for skin,
bladder or fat biopsy is also a point to keep in mind, although this procedure is simple and
minimally invasive for the skin and fat.

Nevertheless, in the future, induced pluripotent stem cells (iPSC) [204], which can be
produced from the patient’s blood, could be differentiated into whole-cell types needed
to reconstruct urethral substitutes. This new technology could avoid invasive procedures,
such as harvesting by biopsy. Nevertheless, it is necessary to control the differentiation step
for all types of cells used to avoid differentiation errors and the potential development of
tumours. The significant expense associated with the manufacture of this biological graft
material must be considered, keeping in mind that it would be completely autologous, a
characteristic advantageous for patients. The current reference method is already associated
with significant expenses, such as the frequent need for surgical intervention to be carried
out in two stages, i.e., two distinct types of anaesthesia, several months apart, the additional
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risk of morbidity for the patient and the absence from work for a second major penile
surgery (six weeks each time). The self-assembly approach to reconstruct urological tissue
without biomaterial would open the door to reconstruct the ureters, spongiosum and
cavernosal bodies of the penis, which would significantly improve the quality of life of
patients severely disabled by congenital abnormalities.

5.4. Disease Models Derived from the Urological Substitute Model

Modelling urological disease could be an asset in avoiding animal experimentation,
and therefore, the interspecies differences that apply [205]. First, a bladder cancer model
could help better understand its mechanisms, and therefore, finds more efficient treatments.
The most common type of bladder cancer arises from the urothelium and results in urothe-
lial cell carcinoma (UCC). Of all UCC, 70% of tumours are non-muscle-invasive confined
to the urothelium and submucosa and associated with a favourable prognosis [206]. After
transurethral resection followed by administration of immunotherapy or chemotherapy
drugs, the UCC recurrence rate is the highest among solid tumours, reaching more than
70% [207,208].

Moreover, around 10–15% of such recurrent cases progress to invasive disease [209].
Understanding and preventing bladder cancer initiation and progression is of utmost
importance in clinics. It is suspected that UCC secretes factors activating stromal res-
ident fibroblasts into cancer-associated fibroblasts (CAF [210]). These cells could then
modify the stroma to facilitate cancer progression [211]. Unfortunately, current in vitro
models do not accurately recapitulate many critical aspects of cancer biology, especially
3D tumour-associated stroma and CAF activation [186]. The cancer stroma consists of an
ECM populated by various cells, including endothelial cells, immune cells and fibroblasts.
Under normal conditions, stroma acts by preventing epithelial-mesenchymal transition.
However, when cancer starts to grow, the stroma switches towards a tumour-supportive
function, primarily by CAF activation, and plays a crucial role in cancer progression [212].
To study these relations, a unique 3D UCC model based on tissue engineering has been
recently developed [213] (Figure 4A). After normal urothelial cell seeding on the stroma, a
mature urothelium developed on the basal lamina (appearing at day ten after air/liquid
step), including an uroplakin positive umbrella cell layer. Spheroids from T24 (invasive) or
RT4 (non-invasive) UCC cell lines were produced using the hanging drop method; they
were implanted on the surface of the construct at day 10 (after basal lamina formation).
Invasive and non-invasive behaviour of cancer cells from spheroids have been reported
and open the way to use primary cancer cell populations. This 3D model can also be used
to identify the molecular factors involved in the activation of fibroblasts into CAF.

Ketamine-induced cystitis has also been designed using urologic tissue substitutes.
Ketamine is an anaesthetic widely used in human and veterinary medicine [214]. However,
in recent years, it has also become a popular street drug under different names. Besides its
surgical applications, especially in paediatric and veterinary medicine, ketamine is used to
treat pain, mainly because it has little effect on respiratory and cardiac functions when used
under intended conditions. This medicine has analgesic properties at doses lower than
those used for anaesthesia [215]. Ketamine can also be used in the treatment of depression
and certain addictive pathologies [216,217]. Of more significant concern, this product is also
used beyond medical control for “recreational” purposes. Ketamine, inhaled or ingested in
soluble form, is consumed in large quantities, which may cause serious health problems.
In particular, since ketamine and its metabolites are mainly excreted in the urine, this drug
causes severe inflammation of the urinary tract and bladder. These effects can lead to
papillary necrosis, kidney failure and decreased bladder capacity secondary to chronic
interstitial cystitis [218,219]. The main symptoms are urinary pain and burning associated
with severe pollakiuria. Stopping ketamine improves symptoms, but there have been
reports of permanent bladder size-reduction requiring bladder enlargement. Cultures of
primary urothelial cells were treated with different increasing doses of ketamine in culture
medium, and several parameters were evaluated: Growth curve, size and morphology
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of cells [220]. The doses used in these tests correspond to the doses found in the urine
following therapeutic uses (0.5 and 1.5 mM) or (5 and 10 mM). The results clearly show a
decrease in urothelial cell growth at 0.5 and 1.5 mM compared to the control (which may
compromise the medium/long-term renewal of the bladder epithelium) and a decrease in
the cell number at 5 and 10 mM (which suggests acute damage to the epithelium).
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Figure 4. Models derived from the bladder mucosa substitute: Bladder cancer model and ketamine-
induced cystitis. (A) The bladder cancer model. The tissue were reconstructed until the 10th day
of air/liquid interface step (day 49). Bladder cancer cell spheroids were produced in parallel using
the nagging drop technique. On day 49 of tissue production, just after the basal lamina is formed,
spheroids were added and the culture is pursued 21 days more. As expected, spheroids made from
non-muscle-invasive bladder cancer cells (NMIBC, RT4 in detailed experiments) remained in the
epithelium and form papillary structures, whereas muscle-invasive bladder cancer cells (MIBC, T24
in detailed experiments) crossed the basal lamina and invaded the stroma. (B) The ketamine-induced
cystitis model. Reconstructed tissue (day 60) was treated with agarose cube containing ketamine of
paper imbibed of ketamine. In both cases, severe damages were observed in the area treated, but not
in adjacent areas or in untreated conditions. The superficial layer of the affected area was disturbed
and intermediate layers mainly destroyed.

Likewise, increasing doses of ketamine induce a reduction in cell size at 5 and 10 mM.
This very significant reduction is explained by the apoptotic morphology of the urothelial
cells. Because apoptosis, or programmed cell death, is a mechanism caused by the activation
of caspase enzymes, death by apoptosis of urothelial cells has been confirmed by assaying
the activity of caspases. After that, 3D bladder mucosa substitutes have been used to study
the toxic effect of ketamine (Figure 4B). Ketamine was applied on the mature urothelium
using paper or agarose vectors for 48 h. Whatever the vector used, the macroscopic
structure and the cell-cell cohesion of the urothelium, especially in the middle layers, were
severely affected. In contrast, no effect was observed in adjacent, non-treated-areas.

The use of urethral stents to relieve urinary tract obstruction is constantly questioned
because of the potential infection, encrustation and compression side-effects, which leads
to the need for early removal procedures. Biodegradable ureteral stents, generally made
from polymers, have been proposed to overcome these problems [221,222]. Recently,
absorbable metals have been viewed as potential materials offering both biodegradation
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and resistance [223]. A model of urological tissue has been used to assess the use of such
zinc-based alloys [224]. Histology of the reconstructed 3D ureter exposed to the metal
showed a urothelium with characteristics close to the native tissue: Tight junctions were
present at the surface layer and laminin at the basal layer, indicating a state of healthy
tissue even with the presence of metal samples up to seven days of exposure.

5.5. Self-Assembly Protocol for Vaginal Substitute Model

Using a similar technique, a vaginal mucosa (VM) substitute has recently been pro-
duced [157,158] (Figure 5A). Because the best source of cells for VM bioengineered using
the self-assembly technique is the patient’s target organ cells, epithelial and stromal cells
were extracted from the human vagina. The reconstructed tissues exhibit excellent mechan-
ical resistance and great elasticity. They had well-differentiated epithelium with oestrogen
receptor beta expression, glycogen storage [157] and could be pre-endothelialised [158].
To assess the biocompatibility of the substitutes, subcutaneous grafts were realised in a
mouse model. The tissue survived with no evidence of necrosis during the two months
of in vitro reconstruction and three weeks after implantation. The same limitations and
perspectives described for the urethral model can be applied to the vaginal model. The
development of an autologous vaginal mucosa reconstructed by TE would be a significant
advance in urogynaecology and would also have a considerable clinical impact. Providing
a non-immunogenic, autologous and exogenous biomaterial-free substitute for the replace-
ment of diseased tissues could bypass many disadvantages found when native tissues are
taken from the patient—among them, avoiding the formation of scars after extraction is
the primary benefit that can be found with the reconstruction of vaginal tissues using the
self-assembly approach while using cells from patients. Surgical reconstruction using this
method could significantly improve patients’ quality of life and could potentially reduce
the financial burden of vaginoplasty on the healthcare system.
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Figure 5. Reconstruction of vaginal mucosa pockets and the use of vagina mucosa as a HIV infection
model. (A) The vagina mucosa pocket. Two reconstructed vagina mucosa were associated, their
epithelium facing each other. The paper anchorage was removed, while the two substitutes were
sutured. An opening is let to allow stent entry and obtaining of a physiological air/liquid condition.
Such pockets were subcutaneously grafted into mice with success. (B) The HIV infection model.
After reconstruction of vagina mucosa three situations were examined, free HIV particles on the
epithelium, HIV-infected monocyte-derived macrophages (MDM) on the epithelium, or free HIV
particles on the epithelium, but with MDMs into the stroma. Only this latter condition showed the
entry of HIV in tissue and its replication.
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5.6. Disease Models Derived from the Vaginal Substitute Model

Investigating specific molecular events happening during infection of the human
vagina by HIV or fungi, such as Candida albicans, is limited by the lack of appropriate
experimental models [205,225]. Animal models especially show species-specific differences,
such as lactobacillus colonisation, hormonal cycle or vaginal epithelium organisation. New
biologically relevant models of the human female reproductive tract are needed to develop
new efficient drugs to treat patients. Therefore, models useful to investigate infectious
pathologies were derived from the human 3D organ-specific vaginal bilayered mucosa
reconstructed for vagina replacement/repair. A published example is HIV infection [168].
The model proved to be histologically close to native tissue, hormone-responsive, offer
mechanical resistance to be used in vitro, and sustained a macrophage population infected
or not by HIV-1.

Using human primary untransformed organ-specific cells, i.e., vaginal fibroblasts for
the stroma reconstruction and vaginal epithelial cells for the epithelium, allows adequate
crosstalk between the stroma and the epithelium, ensuring the production of a histologically
similar native tissue architecture. The model presents the proliferation and maturation
of the vaginal epithelium showing glycogen amounts that decline with the patient’s age
from whom the cells were extracted. To mimic the hormonal cycle, which induces in vivo
variation in the thickness of the vaginal epithelium rendering it more susceptible to infection
when thinner, a 10 nM supply of oestrogen was used during the reconstruction of the
vaginal mucosa of a 32-year patient. Oestrogen addition increases epithelial thickness as
expected, but has no impact on the tissue’s mechanical properties.

Once the primary model was characterised, it was challenged for HIV infection.
No active viral replication was observed when free HIV-1 particles were delivered in an
immuno-incompetent model, i.e., without the presence of monocyte-derived macrophages
(MDM) in the model. No more active viral replication was observed if MDMs HIV-infected
was seeded on the apical side of the 3D reconstructed vaginal mucosa tissue. However,
viral replication and transcytosis were observed when immunocompetent 3D reconstructed
vaginal mucosa tissues incorporated MDMs in the stroma and were infected with free
HIV-1 GFP viral particles.

This vaginal mucosa model offers a physiologically relevant tool to explore viral load
and HIV-1 transmission in an environment that may contribute to propagating the virus
and may help to develop new antiviral treatments in vitro. This model has also been used
to mimic an infection of the vaginal mucosa by Candida albicans, but the results are not
yet published.

6. Perspectives

The field of tissue engineering can bring potential alternatives to the constantly in-
creasing need for tissue repair/replacement of urological organs. To do so, a real challenge
is to combine good mechanical properties while maintaining stem cell potential. It must
also allow adequate epithelium differentiation, and its degradation product should not
imply adverse effects. It must be vascularised easily and not represent an immune risk for
patients, while being functional as soon as the graft is in place. We can, therefore, better
understand the significant obstacle that must be overcome.

In this article, we detailed the self-assembly technique, without using synthetic or
decellularised biomaterials/scaffolds. Indeed, genitourinary tissues have been developed
using animal cells and have been successfully implanted in animals. To facilitate clinical
translation and avoid interspecies differences, the next step is to graft human organ-specific
tissues in immunosuppressed animals before trying the prototype on human subjects.
These tissues constitute a promising avenue for the surgical correction of various defects,
whether from congenital or acquired origin.

Several new challenges emerge, such as urothelial, mesenchymal and endothelial
cells differentiated from iPSC derived from blood cells. This would avoid the need for a
biopsy with its potential comorbidities, and avoid the problem of the non-organ-specific
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communications between cells leading to aberration or the presence of inadequate cells
to harvest (e.g., cancer). However, there remains a lot to be done to obtain an adequate
differentiation from iPSC without aberrant expression of oncogenes. Another challenge
in the coming years should be to exclude the use of serum in cell culture. Serum could
induce a loss of reproducibility in some experiments and be a source of contamination and
raise ethical concerns. Furthermore, the world’s increase in demand will keep dragging
the price up while the global production of serum is stagnant.
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