

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

β-D-Gulose

Tomohiko Ishii,^a* Shunsuke Ohga,^a Kazuhiro Fukada,^b Kenji Morimoto^b and Genta Sakane^c

^aDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, ^bDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, and ^cDepartment of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan

Correspondence e-mail: tishii@eng.kagawa-u.ac.jp

Received 23 March 2014; accepted 10 April 2014

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.035; *wR* factor = 0.073; data-to-parameter ratio = 11.7.

The title compound, $C_6H_{12}O_6$, a C-3 position epimer of Dgalactose, crystallized from an aqueous solution, was confirmed as β -D-pyranose with a 4C_1 (C1) conformation. In the crystal, O-H···O hydrogen bonds between the hydroxy groups at the C-1 and C-6 positions connect molecules into a tape structure with an $R_3^3(11)$ ring motif running along the *a*axis direction. The tapes are connected by further O-H···O hydrogen bonds, forming a three-dimensional network.

Related literature

For related structures. see: Fukada *et al.* (2010). For the chemical synthesis of the title compound, see: Morimoto *et al.* (2013). For hydrogen-bonding networks, see: Jeffrey & Saenger (1994); Jeffrey & Mitra (1983).

Experimental

Crystal data $C_6H_{12}O_6$ $M_r = 180.16$

Orthorhombic, $P2_12_12_1$ a = 7.0800 (3) Å b = 9.8644 (3) Å c = 10.6156 (4) Å V = 741.39 (4) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID II diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{min} = 0.645, T_{max} = 0.879$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.073$ S = 1.051358 reflections

Cu $K\alpha$ radiation $\mu = 1.28 \text{ mm}^{-1}$ T = 294 K $0.10 \times 0.10 \times 0.10 \text{ mm}$

organic compounds

7803 measured reflections 1358 independent reflections 1199 reflections with $F^2 > 2\sigma(F^2)$ $R_{int} = 0.070$

 $\begin{array}{l} 116 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.14 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.14 \text{ e } \text{ Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O6^{i}$	0.82	1.93	2.736 (3)	168
$O2-H2A\cdots O3^{ii}$	0.82	2.12	2.785 (3)	139
$O3-H3A\cdots O4^{iii}$	0.82	1.91	2.722 (3)	173
$O4-H4A\cdots O6^{iv}$	0.82	2.10	2.915 (3)	173
$O6-H6A\cdotsO1^{v}$	0.82	1.99	2.805 (3)	177

Symmetry codes: (i) x + 1, y, z; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z + 2$; (iii) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (v) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 2$.

Data collection: *RAPID-AUTO* (Rigaku, 2009); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *SIR2008* in *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5352).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
- Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193–1197.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Jeffrey, G. A. & Mitra, J. (1983). Acta Cryst. B39, 469-480.
- Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures, Study Edition. New York: Springer-Verlag.
- Morimoto, K., Shimonishi, T., Miyake, S., Takata, G. & Izumori, K. (2013). Biosci. Biotechnol. Biochem. 77, 253–258.
- Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2014). E70, o569 [doi:10.1107/S1600536814008046]

β-D-Gulose

Tomohiko Ishii, Shunsuke Ohga, Kazuhiro Fukada, Kenji Morimoto and Genta Sakane

1. Comment

The crystal system (orthorhombic), space group ($P2_12_12_1$), and number of molecules in the unit cell (Z = 4) of the title compound are the same as for the typical hexose (C₆H₁₂O₆) monosaccharides (Fukada *et al.*, 2010). There is a difference in the hydrogen bonding patterns, having a circular chain network returning to the same molecule, and the intermolecular interactions between two adjacent β -D-gulose molecules in the crystal.

In an equatorial OH group at C-2 position, the hydrogen bond can be confirmed as a donor, which connects to the OH group at C-3 position of the neighboring molecule. However, for the axial OH groups at C-3 and C-4 positions, each has hydrogen bonds both as a donor and an acceptor to the OH groups at either the C-2 and C-4, or the C-3 and C-6 positions, respectively. In the OH group at the C-6 position, there is an intermolecular hydrogen bond between the OH groups at C-4 position of the neighboring molecule, and there are two additional hydrogen bonds with the OH groups at different C-1 positions in these two different *D*-gulose molecules. There is an infinite hydrogen bonding chain along to the *a*-axis (…O1—H1A…O6—H6A…O1—H1A…), which is connecting to a finite chain (O2—H2A…O3—H3A…O4—H4A…O6—H6A). Therefore, the hydrogen bonding network can be categorized as Jeffrey's class (iv) (Jeffrey & Saenger, 1994; Jeffrey & Mitra, 1983). There is a step for returning to the same gulose molecule in an infinite chain (…gulose O1—H1A…O6—H6A…O1—H1A…gulose O6—H6A…). Such a significant circular hydrogen bonding ring should be treated differently from the typical infinite chain.

2. Experimental

D-Gulose was prepared from disaccharide lactitol by a combination of microbial and chemical reactions. 3-Ketolactitol, oxidized from lactitol by *Agrobacterium tumefaciens*, was reduced by chemical hydrogenation. The resulting product, *D*-gulosyl-(β -1, 4)-*D*-sorbitol containing *D*-gulose, was hydrolyzed by acid hydrolysis, and its subsequent hydrolysates were separated by chromatography. Lastly, a crude crystal from the concentrated *D*-gulose syrup was recovered by ethanol precipitation, and then its aqueous solution was recrystallized, resulting in pure *D*-gulose. The *D*-gulose was concentrated to a brix value in a range of approximately 85–90%. Ethanol (twice the volume of the resulting syrup) was added and the resulting solution was mixed vigorously. The resulting crystals were dissolved in ultrapure water and then concentrated and crystallized at room temperature. The specific optical rotation of *D*-gulose was analyzed using a polarimeter (JASCO P-1030 Tokyo). An optical rotation was also performed, providing $[\alpha]_{20}^{D} = -24.10$ (authentic sample = -24.74). The ¹³C-NMR spectra of the isolated D-gulose was measured at 600 MHz in D₂O using an ALPHA 600 system (Jeol Datum, Tokyo). All spectra were collected at 30 °C using trimethylsilyl propanoic acid as internal reference. All of the chemical shifts [δ = 94.6 (C1), 74.5 (C5), 71.9 (C3), 70.2 (C4), 69.8 (C2), 61.7 (C6)] corresponded well with an authentic *D*-gulose sample. These results indicate that the isolated material was *D*-gulose and that the current study was successful in preparing *D*-gulose. The gulose is a specialized member of the rare sugar family, therefore, the details regarding the synthesis, purification, and crystallization of gulose should be reported in a specialized journal (Morimoto *et al.*, 2013).

3. Refinement

H atoms bounded to methine-type C (H1B, H2B, H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bounded to methylene-type C (H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms bounded to O (H1A, H2A, H3A, H4A, H6A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(O)$, allowing for free rotation of the OH groups.

Figure 1

ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Figure 2

Part of the crystal structure of the title compound with hydrogen-bonding network represented as light blue dashed lines, viewed down the *c* axis. The hydrogen atoms are omitted for clarity.

β-D-Gulose

Crystal data $C_6H_{12}O_6$ $M_r = 180.16$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.0800 (3) Å b = 9.8644 (3) Å c = 10.6156 (4) Å V = 741.39 (4) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID II diffractometer	1358 independent reflections 1199 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.000 pixels mm ⁻¹	$R_{\rm int} = 0.070$
ω scans	$\theta_{\rm max} = 68.2^{\circ}$
Absorption correction: multi-scan	$h = -8 \rightarrow 8$
(ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.645, T_{\max} = 0.879$	$l = -12 \rightarrow 12$
7803 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from
$R[F^2 > 2\sigma(F^2)] = 0.035$	neighbouring sites
$wR(F^2) = 0.073$	H-atom parameters constrained
S = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0261P)^2]$
1358 reflections	where $P = (F_o^2 + 2F_c^2)/3$
116 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL2013 (Sheldrick,
Secondary atom site location: difference Fourier	2008)
map	Extinction coefficient: 0.0063 (12)

Special details

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

F(000) = 384.00

 $\theta = 4.2 - 68.2^{\circ}$

 $\mu = 1.28 \text{ mm}^{-1}$

Block, colorless

 $0.10 \times 0.10 \times 0.10$ mm

T = 294 K

 $D_{\rm x} = 1.614 {\rm Mg} {\rm m}^{-3}$

Cu Ka radiation, $\lambda = 1.54187$ Å

Cell parameters from 7124 reflections

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
01	0.6475 (3)	0.4070 (3)	1.02633 (16)	0.0367 (6)
O2	0.7927 (3)	0.6435 (3)	0.89378 (15)	0.0385 (6)
O3	0.4219 (3)	0.7683 (2)	0.87238 (18)	0.0369 (6)
04	0.3674 (3)	0.49846 (18)	0.64349 (14)	0.0295 (5)
05	0.3828 (2)	0.41908 (19)	0.90855 (15)	0.0259 (5)
O6	-0.0053 (3)	0.35032 (19)	0.92624 (16)	0.0304 (5)
C1	0.5316 (4)	0.4977 (3)	0.9615 (2)	0.0270 (7)
C2	0.6282 (4)	0.5724 (3)	0.8553 (2)	0.0257 (6)
C3	0.4871 (4)	0.6654 (3)	0.7890 (2)	0.0266 (7)

C4	0.3165 (4)	0.5860 (3)	0.7452 (2)	0.0255 (7)
C5	0.2385 (4)	0.5021 (3)	0.8521 (2)	0.0234 (6)
C6	0.0815 (4)	0.4071 (3)	0.8155 (3)	0.0277 (7)
H1A	0.7468	0.3971	0.9876	0.0441*
H1B	0.4786	0.5635	1.0210	0.0324*
H2A	0.7726	0.6811	0.9614	0.0462*
H2B	0.6682	0.5042	0.7937	0.0308*
H3A	0.4827	0.8379	0.8608	0.0443*
H3B	0.5483	0.7077	0.7161	0.0319*
H4A	0.3971	0.5441	0.5821	0.0354*
H4B	0.2191	0.6495	0.7164	0.0306*
H5A	0.1902	0.5641	0.9167	0.0281*
H6A	0.0367	0.2740	0.9386	0.0364*
H6B	-0.0125	0.4559	0.7669	0.0333*
H6C	0.1315	0.3348	0.7634	0.0333*

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ¹³	<i>L</i> / ²³
			0.0054 (11)			
01	0.0251 (10)	0.0477 (13)	0.0374 (11)	0.0010(11)	0.0001 (9)	0.0157 (11)
02	0.0320 (11)	0.0493 (15)	0.0341 (11)	-0.0151 (10)	-0.0014 (9)	-0.0041 (11)
O3	0.0461 (13)	0.0227 (12)	0.0420 (11)	-0.0050 (10)	0.0113 (10)	-0.0076 (10)
O4	0.0416 (12)	0.0273 (12)	0.0196 (9)	-0.0012 (10)	0.0020 (9)	0.0013 (8)
05	0.0241 (9)	0.0231 (10)	0.0305 (10)	-0.0011 (9)	-0.0031 (8)	0.0033 (9)
06	0.0276 (10)	0.0251 (11)	0.0384 (10)	-0.0001 (9)	0.0042 (9)	0.0057 (9)
C1	0.0263 (14)	0.0289 (17)	0.0258 (13)	0.0003 (13)	-0.0030 (13)	0.0012 (12)
C2	0.0230 (13)	0.0283 (16)	0.0257 (13)	-0.0054 (13)	-0.0010 (12)	-0.0013 (13)
C3	0.0302 (15)	0.0242 (17)	0.0253 (13)	-0.0006 (13)	0.0060 (13)	-0.0002 (12)
C4	0.0284 (14)	0.0251 (15)	0.0231 (13)	0.0058 (14)	-0.0004 (12)	0.0016 (13)
C5	0.0225 (13)	0.0247 (15)	0.0231 (12)	0.0041 (11)	0.0019 (12)	0.0011 (12)
C6	0.0265 (14)	0.0320 (17)	0.0248 (13)	0.0019 (14)	0.0006 (11)	0.0001 (13)

Geometric parameters (Å, °)

01—C1	1.396 (4)	O1—H1A	0.820	
O2—C2	1.420 (3)	O2—H2A	0.820	
O3—C3	1.424 (4)	O3—H3A	0.820	
O4—C4	1.429 (3)	O4—H4A	0.820	
O5—C1	1.424 (3)	O6—H6A	0.820	
O5—C5	1.440 (3)	C1—H1B	0.980	
O6—C6	1.439 (3)	C2—H2B	0.980	
C1—C2	1.510 (4)	C3—H3B	0.980	
С2—С3	1.527 (4)	C4—H4B	0.980	
С3—С4	1.513 (4)	C5—H5A	0.980	
C4—C5	1.510 (4)	C6—H6B	0.970	
C5—C6	1.505 (4)	С6—Н6С	0.970	
O3…H2A	2.7927	O6…H4A ^{viii}	2.0992	
04…H5A	3.2256	H1A…O6 ⁱⁱ	1.9284	
O1…H6A ⁱ	1.9853	H2A…O3 ^{ix}	2.1169	

O2…H6B ⁱⁱ	2.6723	H3A…O4 ⁱⁱⁱ	1.9072
O2…H6C ⁱⁱⁱ	2.5757	H3B····O5 ⁱⁱⁱ	2.5179
O3…H2A ^{iv}	2.1169	H4A…O6 ^{vi}	2.0992
O4…H3A ^v	1.9072	H5A…O4 ^{viii}	2.5185
O4…H5A ^{vi}	2.5185	H6A…O1 ^x	1.9853
O5…H3B ^v	2.5179	H6B…O2 ^{vii}	2.6723
O6…H1A ^{vii}	1.9284	H6C···O2 ^v	2.5757
C1—O5—C5	112.3 (2)	С6—О6—Н6А	109.480
O1—C1—O5	106.3 (2)	O1—C1—H1B	109.359
O1—C1—C2	114.5 (2)	O5—C1—H1B	109.362
O5—C1—C2	107.82 (18)	C2—C1—H1B	109.363
O2—C2—C1	113.41 (19)	O2—C2—H2B	107.098
O2—C2—C3	111.9 (3)	C1—C2—H2B	107.103
C1—C2—C3	109.9 (2)	C3—C2—H2B	107.097
O3—C3—C2	110.75 (19)	O3—C3—H3B	109.292
O3—C3—C4	107.5 (2)	С2—С3—Н3В	109.290
C2—C3—C4	110.7 (3)	С4—С3—Н3В	109.286
O4—C4—C3	110.1 (2)	O4—C4—H4B	109.124
O4—C4—C5	109.2 (3)	C3—C4—H4B	109.127
C3—C4—C5	110.15 (19)	C5—C4—H4B	109.123
O5—C5—C4	111.4 (2)	O5—C5—H5A	108.140
O5—C5—C6	106.1 (3)	С4—С5—Н5А	108.132
C4—C5—C6	114.7 (2)	С6—С5—Н5А	108.139
O6—C6—C5	110.29 (19)	O6—C6—H6B	109.601
C1—O1—H1A	109.471	O6—C6—H6C	109.595
C2—O2—H2A	109.468	С5—С6—Н6В	109.603
С3—О3—НЗА	109.466	С5—С6—Н6С	109.595
C4—O4—H4A	109.475	H6B—C6—H6C	108.127
C1	61.5 (3)	C1—C2—C3—C4	-55.0 (3)
C1—O5—C5—C6	-173.06 (15)	O3—C3—C4—O4	168.99 (18)
C5O5C1O1	172.54 (16)	O3—C3—C4—C5	-70.5 (3)
C5	-64.2 (3)	C2—C3—C4—O4	-69.9 (3)
O1—C1—C2—O2	-55.5 (3)	C2—C3—C4—C5	50.5 (3)
O1—C1—C2—C3	178.41 (18)	O4—C4—C5—O5	68.1 (3)
O5—C1—C2—O2	-173.59 (19)	O4—C4—C5—C6	-52.5 (3)
O5—C1—C2—C3	60.4 (3)	C3—C4—C5—O5	-53.0 (3)
O2—C2—C3—O3	-62.8 (3)	C3—C4—C5—C6	-173.52 (19)
O2—C2—C3—C4	178.08 (16)	O5—C5—C6—O6	66.8 (3)
C1—C2—C3—O3	64.1 (3)	C4—C5—C6—O6	-169.7 (2)

Symmetry codes: (i) x+1/2, -y+1/2, -z+2; (ii) x+1, y, z; (iii) -x+1, y+1/2, -z+3/2; (iv) x-1/2, -y+3/2, -z+2; (v) -x+1, y-1/2, -z+3/2; (vi) -x+1/2, -y+1, z-1/2; (vii) x-1, y, z; (viii) -x+1/2, -y+1/2, -y+1/2, -z+2; (x) x-1/2, -y+1/2, -z+2; (v) -x+1, y-1/2, -z+3/2; (vi) -x+1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2, -y+1/2, -z+2; (v) -x+1, y-1/2, -z+3/2; (v) -x+1/2, -y+1/2, -y+1/2,

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
01—H1A···O6 ⁱⁱ	0.82	1.93	2.736 (3)	168
O2—H2A····O3 ^{ix}	0.82	2.12	2.785 (3)	139

supplementary materials

O3—H3A···O4 ⁱⁱⁱ	0.82	1.91	2.722 (3)	173
O4—H4A···O6 ^{vi}	0.82	2.10	2.915 (3)	173
O6—H6A···O1 ^x	0.82	1.99	2.805 (3)	177

Symmetry codes: (ii) x+1, y, z; (iii) -x+1, y+1/2, -z+3/2; (vi) -x+1/2, -y+1, z-1/2; (ix) x+1/2, -y+3/2, -z+2; (x) x-1/2, -y+1/2, -z+2.