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Abstract Background/purpose: While there are numerous reports on surgical techniques and
materials for bone grafting, limited methods are available to enhance the body’s inherent ca-
pacity to heal bones. Here we investigated microRNA-199a (miR-199a), a molecular that pro-
motes osteoblast differentiation and bone healing.
Materials and methods: To construct a miR-199a delivery complex, miR-199a-5p mimics were
coated with mesoporous silica nanoparticles (MSNs) following modified with polyethyleneimine
(PEI) and peptide WEAKLAKALAKALAKHLAKALAKALKACEA (KALA) to obtain 199a-5p-loaded
MSN-PEI-KALA. Nanoparticle complexes are assessed for particle size and zeta potential using
transmission electron microscopy and dynamic light scattering. Then MC3T3-E1 cells are
exposed to MSN_miR-199a-5p @PEI-KALA. The impact of MSN_miR-199a-5p@PEI-KALA at vary-
ing concentrations on cell viability is assessed using Cell Counting Kit-8. Cell uptake and distri-
bution were analyzed by double fluorescent staining with fluorescein amidite-labeled
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MSN_miR-199a@PEI-KALA and lysosome labeling. On day 7 after osteogenic induction, alkaline
phosphatase (ALP) staining was conducted.
Results: The findings indicated that the nanoparticle complexes encapsulating PEI and peptide
exhibited an augmentation in both particle size and zeta potential. At a dosage of 10 mg/mL,
MSN_miR-199a@PEI-KALA displayed the lowest cytotoxicity compared to the control group.
MC3T3-E1 cells treated with MSN_miR-199a-5p@PEI-KALA exhibited intensified ALP staining
and elevated mRNA expression levels of ALP, runt-related transcription factor 2, and osteopon-
tin, suggesting the involvement of miR-199a-5p-loaded MSN-PEI-KALA in osteogenic differenti-
ation.
Conclusion: The successful construction of the delivering complex MSN_miR-199a@PEI-KALA in
present research highlights the promise of this biomaterial carrier for the application of miR-
NAs in treating bone defects.
ª 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier
B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.
org/licenses/by-nc-nd/4.0/).
Introduction

Nanodentistry is an extension of nanotechnology in
dentistry that has revolutionized every branch of the field.1

Nanomaterials are now used as therapeutic and diagnostic
tools as well as aids in maintaining oral hygiene.2 A
comprehensive evaluation of the anatomy and physiology of
the target site is essential for the advancement of
biocompatible nanoproducts.3 Despite the many limitations
of revolutionary nanotechnology in terms of clinical appli-
cations, it has added a new dynamic to traditional dental
techniques.4

Synthetic nanoparticles present a promising avenue for
delivering plasmid DNA, various RNA types, and drugs.5e8

Recently, there’s a burgeoning interest in studying the
biomedical potentials of mesoporous silica nanoparticles
(MSNs).5,9 MSNs boast a remarkable surface area of up to
1500 m2/g and significant pore volumes reaching approxi-
mately 1 cm3/g, enabling the retention of significant drug
quantities owing to their textural properties.10,11 These
nanoparticles demonstrate excellent biocompatibility,
biodegradability, adjustable physicochemical attributes,
site-specific functionalization, and a robust framework.8,12,13

Furthermore, the Polyethyleneimine (PEI)-coated MSNs
exhibit notable affinity for genes in the form of DNA, small
interfering RNA (siRNA), and microRNA (miRNA).14 However,
PEI’s high toxicity hinders clinical translation.15 The WEAK-
LAKALAKALAKHLAKALAKALKACEA (KALA) peptides can
condense nucleic acid drugs into multimers through elec-
trostatic force, generally demonstrating significantly lower
toxicity compared to traditional cationic polymers like
PEIs.16 Moreover, studies have demonstrated that KALA is
capable of traversing the lipophilic cellular membrane bar-
rier and deliver various reagents.17e19 Recent research in-
dicates that core-cone MSNs coated with PEI have the ability
to promote bone regeneration by manipulating the micro-
environment through both the nanoparticles and their car-
rier miRNA-26a.20 The application of surface-modified MSNs
promotes the development of bone marrow mesenchymal
stromal cells by facilitating the transport of miRNA-26a.21

Numerous physiological and pathological processes are
regulated by the miR-199 family. Among them, miR-199a-5p
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is a crucial molecule for the maintenance of bone homeo-
stasis.22,23 Its presence has also been observed in various
cancer types, including colorectal and liver cancers.24,25

Despite the growing attention in miRNA research, there
are few articles on miR-199-loaded MSN. Hence, this study
aims to investigate miR-199-based therapy for osteo-
genesis. A new delivery complex for miR-199a was created
using MSNs coated with PEI and KALA, according to their
characteristics.

Materials and methods

Construction of nanoparticles

The MSN_miR-199a@PEI-KALA was synthesized by modifying
previously reported methods.21 Initially, 1 mg MSN (Jian-
cheng Bioengineering, Nanjing, China), 160 mL ethanol
(Sigma-Aldrich, St. Louis, MO, USA), and 40 mL 4M Guanidine
hydrochloride (MW Z 95.53; Sigma-Aldrich) were mixed
and subjected to ultrasonic treatment (P Z 80 W) for
10 min. Following this, 20 mL of 0.1 nmol/mL miR-199a
mimic or fluorescein amidite (FAM)-labeled miR-199a
mimic or mimic NC (Sangon Biotech, Shanghai, China) or
RNase-free water was added, and the mixture underwent
sonication. At 4 �C, the mixture was shaken for 1 h at
200 rpm and subsequently underwent centrifugation at
12000 rpm for 10 min at the same temperature. After dis-
carding the supernatant, the particles were sonicated with
400 mL of ethanol, and then 400 mL 1 mg/mL PEI
(MW Z 25,000Da; Sigma-Aldrich) ethanol solution was
gradually added. After ultrasonic dispersion for another
15 min, the mixture underwent centrifugation, and the
obtained particlesdMSN coated with PEI (MSN@PEI),
MSN_miR-NC@PEI, MSN_miR-199a@PEI were collected.
Particles generated were resuspended in 400 mL ethanol, to
which 40 mL of 0.2 mg/mL N-succinimidyl-3-(2-
pyridyldithiol) propionate (SPDP; Sigma-Aldrich) was
added. This mixture underwent a 15-min sonication, left to
stand for 30 min, followed by centrifugation and discarding
the supernatant. The sediment was sonicated in 400 mL
RNase-free water, and 150 mL of 1 mg/mL KALA (Sangon
Biotech) peptide was added. After another round of
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sonication, it was left to stand for 30 min, centrifuged, and
the supernatant discarded, resulting in the isolation of
MSN@PEI-KALA, MSN_miR-NC@PEI-KALA, MSN_miR-
199a@PEI-KALA. The particles were resuspended in RNase-
free water and kept for future use at �20 �C (Fig. 1).

Characterization of nanoparticles

The morphology of MSN, MSN@PEI-KALA, MSN_miR-NC@PEI-
KALA, MSN_miR-199a@PEI-KALA were observed with trans-
mission electron microscopy (TEM; Talos L120C; Thermo
Fisher Scientific, Waltham, MA, USA). The size and zeta
potential of the nanoparticles in liquid solution were
determined using dynamic light scattering (DLS; ZetaSizer
Lab; Malvern Panalytical, Malvern, UK).

Cell culture

The MC3T3-E1 cells (iCell Bioscience, Shanghai, China)
were cultured in Eagle’s Minimum Essential Medium (MEM;
Gibco� Thermo Fisher Scientific, Warsaw, Poland) supple-
mented with 10 % Fetal Bovine Serum (FBS; Sigma-Aldrich)
and 1 % Penicillin-Streptomycin (Sigma-Aldrich) in incu-
bator under constant conditions. The medium was switched
to osteogenic differentiation medium after incubation for
24 h. The osteogenic differentiation medium consisted of
MEM with FBS, Penicillin-Streptomycin, ascorbic acid, so-
dium b-glycerophosphate, and dexamethasone (Sigma-
Aldrich).

Cell viability assay

Cell Counting Kit-8 (CCK-8; Abbkine, Wuhan, China) was
used to measure the cell viability in compliance with the
manufacturer’s instructions. Following seeding into 96-well
plates, MC3T3-E1 cells were exposed to various doses (5,
10, 20, 40, and 60 mg/mL) of MSN@PEI-KALA, MSN_miR-
NC@PEI-KALA and MSN_miR-199a@PEI-KALA. The control
group consisted of the cells that were not given any
treatment. Each well received 10 mL of CCK-8 after 48 h,
and the mixture was incubated for 90 min at 37 �C. The
microplate reader was used to test the samples’ absor-
bance at 450 nm (Rayto, Shenzhen, China).

Fluorescent staining

The MC3T3-E1 cells were treated with 10 mg/mL FAM-
labelled MSN_miR-199a@PEI-KALA. After 6 h of
Figure 1 Flowchart for the construction of MSN_miR-199a@PEI-K
MSN mesopores; B: PEI coating MSN_miR-199a; C: Attaching KA
BioRender.com.
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incubation, the medium was changed to Lyso-Tracker Red
probe-containing medium (Solarbio, Beijing, China) for
lysosome labelling. 40,6-diamidino-2-phenylindole (40,6-
DAPI; Thermo Fisher Scientific) was used to mark the
nuclei. Fluorescence microscopy was used to collect the
fluorescent images. (DP73; Olympus, Tokyo, Japan).

Alkaline phosphatase staining

The MC3T3-E1 cells were treated with 10 mg/mL MSN@PEI-
KALA, MSN_miR-NC@PEI-KALA, and MSN_miR-199a@PEI-
KALA. The Alkaline Phosphatase (ALP) Staining Kit (Beyo-
time, Shanghai, China) was used to stain the cells on day 6
after osteogenesis induction. In brief, the cells were
initially fixed in 4 % paraformaldehyde, rinsed with PBS,
stained with BCIP/NBT reagent and then rinsed again for
observation.

Quantitative real-time polymerase chain reaction

The MC3T3-E1 cells were treated with 10 mg/mL MSN@PEI-
KALA, MSN_miR-NC@PEI-KALA, and MSN_miR-199a@PEI-
KALA. To investigate the efficiency of MSN_miR-199a@PEI-
KALA as delivery system, miR-199a expression level of
MC3T3-E1 after transfection for 12 h were detected by
Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR). 7 days after osteogenic induction, qRT-PCR was used
to measure the mRNA expression of markers of osteogenic
differentiation, such as ALP, runt-related transcription
factor 2 (RUNX2), and osteopontin (OPN). The CFX96 Real-
Time PCR machine (BIO-RAD, Hercules, CA, USA) was used
to perform qRT-PCR after the cDNA was reverse tran-
scribed. b-actin served as the internal control for the
evaluation of mRNA expression, and U6 was utilized as an
internal standard to identify miRNA. The 2DDCT method was
utilized to determine the relative expression of each re-
action, which was carried out in triplicate (Table 1).

Statistical analysis

The mean values derived from at least three technical
replicates are used to present experimental values. The
standard error of the mean is displayed with the mean
values. Prism 9.5.0 (GraphPad Software, San Diego, CA,
USA) was used to analyze the data. One-way or two-way
analysis of variance was used to compare the groups with
each other. P < 0.05 was regarded as the threshold for
statistical significance.
ALA nanoparticles. A: MiR-199a mimics are encapsulated within
LA peptides to MSN_miR-199a@PEI’s surface. Created with
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Table 1 Primer sequences used for qRT-PCR analysis.

Gene Forward Reverse

ALP 50-GTTGTTGTGAGCGTAATCTACC-30 50-TCATTCCCACGTTTTCACATTC-30

OPN 50-AAACACACAGACTTGAGCATTC-30 50-TTAGGGTCTAGGACTAGCTTGT-30

Runx2 50-TGCTATTGCCCAAGATTTGC-30 50-GAGGGGGAAATGCCAAATAA-30

b-actin 50-TATGCTCTCCCTCACGCCATCC-30 50-GTCACGCACGATTTCCCTCTCAG-30
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Results

Characterization of nanoparticles

The morphology of the MSNs, MSN@PEI-KALA, MSN_miR-
NC@PEI-KALA and MSN_miR-199a@PEI-KALA were observed
by TEM (Fig. 2). Figs. 3 and 4 display the zeta potential and
size of the four different types of particles as determined
by the DLS experiment. After coated with PEI, the particle’s
zeta potential changed from negative to positive
(Fig. 3AeD), proving that PEI was effectively modified onto
MSN. Compared to MSN@PEI-KALA, both MSN_miR-NC@PEI-
KALA and MSN_miR-199a@PEI-KALA possess a smaller size
and a higher positive potential, which is more favorable for
the nanoparticles to penetrate the cell membrane.

Cell viability

In Fig. 5, MC3T3-E1 was cultured with MSN@PEI-KALA,
MSN_miR-NC@PEI-KALA, and MSN_miR-199a@PEI-KALA at
different particle concentrations for 48 h in order to test
the viability of the cells. The untreated cells were desig-
nated as the control group. MSN_miR-199a@PEI-KALA
showed the lowest cytotoxicity to MC3T3-E1 at a dose of
10 mg/mL compared with the control.

Localization and uptake of miRNA

In Fig. 6, nuclei are depicted by blue staining, while
intracellular lysosomes are depicted by red fluorescence,
miR-199a molecules are represented by green fluorescence
and exhibit biodistribution in a dot-like granular pattern
that overlaps with the red staining. Red and green fluo-
rescence overlaps, suggesting that the cell has internalized
MSN_miR-199a@PEI-KALA into the lysosome.
Figure 2 TEM images of the four nanoparticles. A: MSNs; B: MSN
KALA. The scale bar in each micrograph represents a distance of 5

1509
Alkaline phosphatase staining

In Fig. 7, cells were treated with MSN_miR-199a@PEI-KALA
and results showed higher ALP staining intensity than
other groups after 6 days of osteogenic induction. Accord-
ing to staining results, the introduction of MSN_miR-
199a@PEI-KALA into MC3T3-E1 cells facilitated early oste-
oblast differentiation.

Quantitative real-time polymerase chain reaction
analysis of transfection efficiency and osteogenic
gene expression

Compared to the other groups, MSN_miR-199a@PEI-KALA
had a considerably increased miR-199a level. However,
there was no apparent distinction between the control and
MSN@PEI-KALA and MSN_miR-NC@PEI-KALA-treated cells
(Fig. 8). The qPCR results showed that a high transfection
efficiency could be achieved with a low quantity of 10 mg/
mL of MSN_miR-199a@PEI-KALA, thus promoting the oste-
ogenic differentiation of MC3T3-E1.

After 7 days of osteogenic induction, MC3T3-E1 treated
with MSN_miR-199a@PEI-KALA exhibited the greatest levels
of ALP, OPN, and Runx2 (Fig. 9). The levels of OPN
expression in the other three groups did not differ signifi-
cantly. ALP levels were considerably greater in cells treated
with MSN_miR-NC@PEI-KALA, whereas Runx2 levels were
considerably higher in cells treated with MSN_PEI-KALA.
The reason for this needs to be investigated further.

Discussion

miRNAs exert a vital role in upholding biological homeo-
stasis by regulating essential processes such as cell prolif-
eration, differentiation, survival, apoptosis, and epithelial-
@PEI-KALA; C: MSN_ miR-NC@PEI-KALA; D: MSN_miR-199a@PEI-
0 nm.



Figure 3 Zeta potential distributions. A: MSNs; B: MSN@PEI-KALA; C: MSN_miR-NC@PEI-KALA; D: MSN_miR-199a@PEI-KALA.

Figure 4 Particle size distributions. A: MSNs; B: MSN@PEI-KALA; C: MSN_miR-NC@PEI-KALA; D: MSN_miR-199a@PEI-KALA.
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to-mesenchymal transition.26 Numerous bone illnesses,
such as osteopetrosis, osteogenesis imperfecta, and bone
cancers, have been linked to dysregulation of miRNAs.27

Extensive research has explored the clinical potential of
miRNAs in bone-related diseases and regenerative
1510
medicine. In addition to controlling signaling pathways and
transcription factors involved in osteogenesis, miRNAs are
essential for regulating the differentiation of osteoblasts,
osteoclasts, and chondrocytes.28,29 Regenerative medicine
therapies based on miRNAs are also gaining more



Figure 5 Cell viability of particles with CCK-8 Assay after 48 h incubation period at different particle concentrations (When
compared to the control, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

Figure 6 Fluorescent stained images of MC3T3-E1 cells incubated with FAM-labelled MSN_miR-199a@PEI-KALA after 6 h. A: miR-
199a; B: Nuclei; C: Lysosome; D: Merged. The scale bar in each micrograph represents a distance of 100 mm.

Figure 7 ALP staining of MC3T3-E1 incubated with various particles following 6 days of osteogenic induction.
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attention.30,31 However, delivering miRNA encounters
various challenges as a result of drawbacks like suscepti-
bility to degradation, significant negative charge, and bar-
riers in traversing cellular membranes.

The process of bone regeneration is a key part of dental
implant treatment.32 Accelerated bone healing is an
1511
important key to successful implant therapy.33 Although
there are many reports on bone grafting surgical techniques
and materials, there are few methods to promote endog-
enous bone healing capacity. In our previous article, we
analyzed miRNAs encapsulated in osteoblast-derived exo-
somes and investigated miRNAs involved in osteoblast



Figure 8 qRT-PCR evaluation of miR-199a level at 12 h after
transfection (****P < 0.0001 compared with the control).
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differentiation of periosteal cells. In vitro, exosomes from
osteoblasts promote the osteogenic differentiation of
periosteum-derived cells (PDCs). Additionally, co-culturing
with osteoblasts promoted the expression of exo-miRs
sets that could be relevant to apoptosis of muscle/fibrous
cells.34 Among the miRNA sets previously shown to induce
osteoblastic differentiation of PDCs from our results, we
Figure 9 Relative mRNA expression of genes associated with os
various particles following a 7-day period of osteogenic induction (*

1512
focused on miR-199. Based on the findings of the prior
work, by targeting TET2, miR-199a-5p could enhance
osteoblast development and block OVX-induced osteopo-
rosis.35 Apical periodontitis patients had reduced expres-
sion of miR-199a-5p in their periapical tissues, and miR-
199a-5p mimics significantly increased the cell prolifera-
tion and osteogenesis differentiation of human stem cells
from apical papilla, while miR-199a-5p antagomir signifi-
cantly reduced the osteogenesis.36 This study investigated
the potential of MSN as carriers to deliver miR-199a-5p in
bone regeneration therapy. This miR-199a-5p delivery sys-
tem was designed by combining three crucial factors: (1)
MSN has good biocompatibility, but cannot be directly
loaded with nucleic acids due to its negative charge in
aqueous solution; (2) PEI served as the ligand to coat the
surface, which helps in enhancing cell adhesion and ag-
gregation. However, the effect of PEI is bio-toxic at high
concentrations;37 (3) The KALA peptide not only improves
particle agglomeration but also reduces the toxicity of
PEI.38

The findings from the CCK-8 assay indicate that as con-
centrations increased, there wasn’t a notable decline in
cell viability within the MSN@PEI-KALA group when con-
trasted with both MSN_miR-NC@PEI-KALA and MSN_miR-
199a@PEI-KALA, presumably because the delivery complex
was not significantly cytotoxic.

The qPCR results showed that, despite a low concen-
tration of 10 mg/mL of MSN_miR-199a@PEI-KALA, a high
transfection efficiency could be achieved, thus promoting
the osteogenic differentiation. Its effectiveness in inducing
bone regeneration is strongly supported by the enhanced
expression of the osteogenic markers ALP, OPN, and Runx2
with MSN_miR-199a@PEI-KALA following osteogenic induc-
tion. Therefore, this nanocarrier miR-199a-5p is promising
as a potential strategy to promote endogenous bone
healing.
teogenesis, ALP, OPN, and Runx2, in MC3T3-E1 incubated with
P < 0.05, **P < 0.01, ***P < 0.001, compared with the control).



Journal of Dental Sciences 19 (2024) 1506e1514
However, further molecular mechanism research and
animal experiments are needed to fully evaluate the long-
term effects, scalability, safety and clinical translation of
these delivery systems. Nonetheless, the findings presented
herein provide a solid foundation for advancing miR-199a-
based treatment methods for bone defects and related
diseases in the future. Targeted delivery of miR-199a can
stimulate bone-forming cells, which will speed up the
repairing procedure. It may be feasible to treat osteopo-
rosis and enhance the integration of implants into natural
bone structures by using nanocarriers to deliver miR-199a.
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