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Simple Summary: Protein–protein interactions (PPIs) play a central role in the evolution and progres-
sion of various biological processes. In this article, we constructed a novel ensemble-learning-based
model to predict potential PPIs, which only utilized the protein sequence information. The presented
method used Discrete Hilbert transform to extract amino acid sequence information from position-
specific scoring matrices. Then these extracted features were fed into rotation forest for training and
predicting. When applying our method to the three datasets (Yeast, Human, and Oryza sativa) for
detecting PPIs, we obtained excellent prediction performance. Furthermore, the comparison results
indicated that our computational model is effective and robust in predicting potential PPI pairs.

Abstract: Protein–protein interactions (PPIs) are crucial for understanding the cellular processes,
including signal cascade, DNA transcription, metabolic cycles, and repair. In the past decade,
a multitude of high-throughput methods have been introduced to detect PPIs. However, these
techniques are time-consuming, laborious, and always suffer from high false negative rates. Therefore,
there is a great need of new computational methods as a supplemental tool for PPIs prediction. In
this article, we present a novel sequence-based model to predict PPIs that combines Discrete Hilbert
transform (DHT) and Rotation Forest (RoF). This method contains three stages: firstly, the Position-
Specific Scoring Matrices (PSSM) was adopted to transform the amino acid sequence into a PSSM
matrix, which can contain rich information about protein evolution. Then, the 400-dimensional
DHT descriptor was constructed for each protein pair. Finally, these feature descriptors were fed
to the RoF classifier for identifying the potential PPI class. When exploring the proposed model
on the Yeast, Human, and Oryza sativa PPIs datasets, it yielded excellent prediction accuracies of
91.93, 96.35, and 94.24%, respectively. In addition, we also conducted numerous experiments on
cross-species PPIs datasets, and the predictive capacity of our method is also very excellent. To
further access the prediction ability of the proposed approach, we present the comparison of RoF with
four powerful classifiers, including Support Vector Machine (SVM), Random Forest (RF), K-nearest
Neighbor (KNN), and AdaBoost. We also compared it with some existing superiority works. These
comprehensive experimental results further confirm the excellent and feasibility of the proposed
approach. In future work, we hope it can be a supplemental tool for the proteomics analysis.

Keywords: protein–protein interaction; Discrete Hilbert transform; rotation forest; position-specific
scoring matrices
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1. Introduction

Predicting protein–protein interactions (PPIs) is essential for elucidating protein func-
tions and understanding the biological structures in cells [1]. Additionally, the prediction
of PPIs not only helps people to further examine how proteins exert their various functions,
but also provides the crucial information for the design of targeted drugs. in the past decade,
there have been many biological experimental approaches, including mass spectrometry [2],
tandem affinity purification [3], and two-yeast hybrids [4] have been extensively studied for
decades. However, these conventional studies present some drawbacks, such as high cost,
time-intensive, and suffer from high rate of false-positives and false-negatives. Accordingly,
the development of novel computational approaches to predict potential PPI pairs would
be of enormous value to biologists [5].

To date, several computational methods for PPIs’ prediction have been presented. In
general, these methods can be broadly grouped into three types: ligand-based approaches,
structure-based methods, and sequence-based methods. Typically, the sequence-based
methods do not perform as well as the first two methods, while the ligand and structure-
based approaches usually need the a priori information of proteins. The challenging
problem will arise when this information did not exist. In recent years, following the
advancement of genome technologies, a large amount of protein sequence data had been
collected and entered in databases. Therefore, the sequence-based methods to identify
PPIs have aroused an increasing concern. The vast majority of the existing computational
methods are usually based on the machine learning algorithms, including rotation forest [6],
support vector machine [7,8], and Naive Bayes [9]. For example, Huang et al. [10] adopted
discrete cosine transform descriptors and weighted sparse representation model to predict
PPIs from protein sequence. You et al. [11] proposed a method called PCA-EELM, which
utilized four different types of sequence information to predict PPIs. Li et al. [12] proposed
a method called PSIPEL that combined an novel feature extraction approach, Low Rank
Approximation with Rotation Forest, to predict PPIs from protein primary sequences. Zeng
et al. [13] developed a deep learning framework to predict PPIs, which employed a sliding
window and text convolutional neural network to capture local contextual and global
sequence features from target proteins, respectively. Chen et al. [14] applied Fast Fourier
Transform to capture protein feature descriptors and fed them to Random Projection
for training and detecting self-interacting proteins [15]. Different from the traditional
machine learning-based methods, deep learning-based approaches can not only extract
feature vectors from the protein sequence directly, but also can capture their nonlinear
relationships to improve the prediction performance. As a consequence, deep learning
algorithms also have been widely employed in PPI prediction in recent years. For example,
Sun et al. [16] first adopted a deep learning technique, stacked autoencoder, for predicting
human PPIs from amino acid sequence. Zhang et al. [17] presented Ensemble Deep Neural
Networks (EnsDNN), which is a neural network-based method that employs different
protein descriptors to detect PPIs. Yao et al. [18] designed a novel method called Res2vec
to represent protein sequences, then the residual representation was integrated into a
deep neural network for training and predicting. Hashemifar et al. [19] developed a
method named DPPI, which combined data augmentation, convolutional neural network,
and random projection to predict PPIs. Richoux et al. [20] made a comparison of two
powerful deep learning models and discussed the required attention when applying the
deep learning algorithm to PPI prediction. Despite of these achievements, there is still great
room for these computational based approaches to attain improvement [21].

Inspired by these excellent works, we herein attempted to develop a new compu-
tational model to predict potential PPIs from the information of amino acid sequences.
Specifically, we first transformed the sequences into a position-specific scoring matrix
(PSSM), from which we could preserve the evolution information of primary protein se-
quence. Then the Discrete Hilbert transform (DHT) algorithm was adopted to capture
feature descriptors from the PSSM. Finally, the Rotation Forest (RoF) classifier was used for
training and determining whether the proteins are related or not. In order to access the pre-
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dictive ability of our approach, we performed it on the Yeast, Human, and Oryza sativa PPIs
datasets, and yielded a high prediction accuracy of 91.93, 96.35, and 94.24%, respectively.
Moreover, we compared our approach with several existing sequence-based methods. We
also applied it on four independent PPI datasets. Experimental results demonstrated that
our method is effective for identifying whether the protein pairs interact or not, and it can
be considered as a supplemental tool to the commonly used experimental methods.

2. Materials and Methodology
2.1. Protein Interaction Dataset

In this article, the presented approach was first validated on a high-confidence PPIs
dataset named Yeast, which was selected from the Database of Interaction Proteins (DIP) [22]
by Guo et al. [23]. This dataset was collected from the Saccharomyces cerevisiae core subset
which contains 5996 interaction pairs. In order to remove redundant information, the
CD-Hit [24,25] was employed in this work. CD-Hit is a multiple sequence alignment tool
for removing the homologous sequence pairs. After removing the protein pairs which
had ≥40% sequence identity or the fragments with less than 50 residues, we obtained
5594 protein pairs as the positive samples. For the construction of a negative dataset,
we randomly chose 5594 additional Yeast pairs from different subcellular compartments.
Accordingly, the final Yeast PPIs dataset contained 11,188 protein pairs.

To indicate the generality of the proposed approach, we also verified our experiment
on the Human and Rice (Oryza sativa) PPIs dataset. The Human dataset was selected from the
Human Protein Reference Database (HPRD) [26]. After removing sequences with greater
than 25% sequence identity, we employed 3899 interaction pairs, which collected from 2502
different human proteins to construct the positive samples. For the negative samples, we
used the same approach to construct the negative samples of Human dataset. Finally, the
negative set consisted of 4262 pairs from 661 proteins. In addition, Oryza sativa dataset was
collected from the PRIN [27] database. The Oryza sativa dataset is consists of 4800 positive
samples and 4800 negative samples.

2.2. Encoding Amino Acid Sequence as Date Matrix

The Position-Specific Scoring Matrix (PSSM) was adopted to represent the protein
sequence. It was presented by Gribskov et al. [28] to analysis the sequence similarities of
proteins. PSSM produces excellent results in many fields, such as in protein secondary struc-
ture prediction [29], disorder region prediction [30], and DNA function prediction [31]. A
PSSM is a matrix that can be represented as PSSM = {ϕm,n : m = 1 · · · b and n = 1 · · · 20},
where m denotes the length of the protein sequence, and the number 20 represents the
20 amino acids. The ϕm,n can be expressed as follows:

ϕm,n =
20

∑
t=1

P(a, q)× w(b, q), a = 1 · · · P, b = 1 · · · 20 (1)

where P(a, q) indicate the frequency value of the qth amino acid at the position a of
the probe, and w(b, q) indicate the value of Dayoff mutation matrix between the acid
of bth and qth. The main concern in applying the PSSM algorithm is that it can enable
the sequence to match the alignment table by awarding a higher score to a conservative
position, while a good score means a conservative position and a low score represents a
low-conserved position.

In this work, the PSI-BLAST tool was applied to transform the protein sequence into a
PSSM matrix. BLAST is a useful resource for searching local similarity regions between
different amino acid sequences. It can make a comparison of sequences and nucleotides
with particular databases, and compute a statistical significance of the matches, to infer
functions and evolutionary associations between different sequence. PSI-BLAST is an
enhanced BLAST technique, which can robustly identify novel proteins in distantly related
organisms. The main improvement of PSI-BLAST is that it can adopt the profile to search
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the non-redundant SWISS-PROT database, and then employ the searched results to rebuild
the profile, and so on, until no new results are generated. SWISS-PROT is an annotated
protein sequence database and the sequences collected in it are searched for by many
authoritative biologists. Moreover, to better exploit the performance of the PSI-BLAST
algorithm, we chose three iterations, and the e-value parameter was assigned to 0.001,
and the PAM was selected as the scoring matrix. The other parameters were set to their
default values.

2.3. Discrete Hilbert Transform

In this work, the Discrete Hilbert transform [32] (DHT) algorithm was adopted to
capture feature values from the PSSM matrix to generate the feature vectors, which can
make the prediction results more accurate. Discrete Hilbert transform was first employed
to analysis the signal in the frequency and time domains. Before introducing the 2-D DHT,
the 1-D DHT is first used in spatial and frequency domain. Let `(a) represent the discrete

signal,
∧
`(a) can be shown as:

∧
`(a) = `(a) ∗ p(a) (2)

where:

p(a) =
1− (−1)a

aπ
a = 1, 2, 3 · · · (3)

After applying the Fourier transform (FT),
∧
`(a) could be represented as:

∧
`(a) = IDFT

[∧
F(jΩ)

]
= IDFT[F(jΩ)− [−jsgn(Ω)]] (4)

In Equation (4), IDFT represents the Inverse Discrete Fourier transform [33], and

the Fourier transform of `(a) and
∧
`(a) can be described as

∧
F(jΩ) and F(jΩ), respectively.

Above all, the function H(jΩ) can be written as:

H(jΩ) = −jsgn(Ω) =

{
−j Ω > 0,
j Ω < 0,

(5)

where angular frequency is Ω and the finite discrete signum function is denoted by sgn(Ω).
For better capturing feature vectors from the PSSM matrix, we applied the 2D DHT [34] that
was defined in the frequency domain to extract features from the PSSM. The odd and even
parts of the PSSM features in the frequency domain refer to the highly conserved order of
amino acids within a particular protein sequence. Suppose that the odd and even parts of
PSSM features in a frequency domain are defined by f0(x, y) and fe(x, y), respectively. The
formula of the 2D Discrete Hilbert transform can be written as:

f0(x, y) = [sgn(x, y) + bdy(x, y)] fe(x, y) (6)

sgn(x, y) =


1 0 < x < 1

2 , 0 < y < H2
2

−1 H1
2 < x < H1, H2

2 < y < H2
0 elsewhere

(7)

where bdy(x, y) is employed to adjust the boundary and the finite discrete signum function
is described by sgn(x, y). H1 and H2 represent the size of f0(x, y) and fe(x, y), respectively.

Given an image P(x, y), the 2D DHT of
∧
P(x, y) in the frequency domain can be expressed as:

∧
P(x, y) = [sgn(x, y) + bdy(x, y)]·P(x, y) (8)

where x = 0, 1, · · · , H1 − 1 and y = 0, 1, · · · , H2 − 1; H1 and H2 are the size of the
input image.
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Let T(i, j) represent an image, then the 2D DHT of T(i, j) in spatial domain can be
defined as:

∧
T(i, j) = T(i, j) ∗ R(i, j) (9)

R(i, j) =
(

cot
(

π

H1

)
i + cot

(
π

H2

)
j
)

2
H1H2

(10)

where i = 0, 1, 2, · · · , H1 · · · 1 and j = 0, 1, 2, · · · , H2 − 1. Because of the same mathematic
principle between 1D and 2D DHT, the image f (i, j) can be expanded as a 2D Fourier series:

f (i, j) =
1

ZQ

Z−1

∑
u=0

Q−1

∑
v=0
|F(α, β)| sin(φα,β(i, j)) (11)

where F(α, β) = ∑Z−1
i=0 ∑Q−1

j=0 f (i, j)e−j2π( αi
Z +

βj
Q ), α = 0, 1, 2, · · · , Z − 1, and i = 0, 1, 2, · · · ,

Q− 1; Z and Q are the size of the image.

2.4. Ensemble-Learning-Based Classifier

Rotation forest (RoF) is an ensemble learning algorithm, which was introduced by
Rodriguez et al. [35] to improve the diversity and accuracy of each classifier in the ensemble
system. The main contribution of the RoF algorithm is that it applies the principal compo-
nent analysis (PCA) technique to construct a rotational matrix, which can then transform
initial variables into new variables to construct new independent decision trees. Moreover,
PCA algorithm ensures the diversity of the classifier, and it retains most of the evolutionary
information of the protein feature descriptors [36]. The specific framework of this algorithm
is summarized as follows.

Let T represents the training sample set, H denotes the feature set, and E be the
corresponding labels. Let α be the set of class labels {α1, α2}, from which E takes values.
Assume that T is a N × n matrix, where n and N represents the features and training
samples in the PPIs data set. The data will be divided randomly into K subsets of the
approximate size; there are L decision trees represented as D1, . . . , DL, respectively. In the
RoF algorithm, L and K are the two parameters that require advance optimization. The
specific details of the RoF algorithm can be defined as follows:

(1) Divide the feature set H optionally into K subsets. Assume that K is a factor of m,
then, each feature will include u = m/K features.

(2) Let Hij represent the j-th subset of features for training classifier Di. The features
of dataset T in Hij is defined as Tij. Then a bootstrap subset of size 75% of the data set is
extracted to construct the training set, which is defined as Tij

′. Then the PCA algorithm is

adopted with Tij
′ to generate the coefficients into a matrix Cij. Denoted as a(1)ij , · · · , a(Mi)

ij ,
the size of each Tij

′ is U × 1.
(3) Using the coefficients in Cij to build a spare rotation matrix Ri and it can be

expressed as follows;

Ri =

a(1)i1 , · · · , a(M1)
i1 {0} · · · {0}

{0} a(1)i1 , · · · , a(M2)
i2 · · · {0}

{0} {0} · · · a(1)iK , · · · , a(MK)
iK

 (12)

In the classification stages, provided there is a target sample x, let dij(XRa
i ) denotes

the probability produced by the classifier Di to the class αi. Finally, the confidence level of
each class can be found through the mean combination technique:

λi(x) =
1
L∑ L

i=1dij(xRa
i ) (13)

In this way, the test sample x can 190 be easily distributed to the class with the
highest confidence.
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3. Results
3.1. Evaluation Measures

In this study, in order to avoid over-fitting to affect the predictive ability of the pro-
posed method, we used the five-fold cross-validation (five-fold CV) technique to measure
the predictive ability of the proposed method. All samples were randomly split into five
subsets, in which four were used as a training set and the other one was adopted as the
test set. In this experiment, this procedure was performed five times to guarantee that
each subset was used once as a test subset. Lastly, the average and standard deviations
of these five experiments were taken as the final experiment results. In our experiments,
several evaluation criteria were employed to estimate the predictive ability of the pro-
posed model, including accuracy (ACC), sensitivity (Sen.), specificity (Spec.), precision
(PR), and Matthews’ correlation coefficient (MCC) to access the predictive power. Their
corresponding calculating formulae are as follows:

ACC =
TP + TN

TN + FP + TP + FN
(14)

Sen. =
TP

FN + TP
(15)

Spec. =
TN

TN + FP
(16)

PR =
TP

FP + TP
(17)

MCC =
TN × TP− FN × FP√

(TP + FN)× (TP + FP)× (TN + FP)× (TN × FN)
(18)

where true positive (TP) indicated the quantity of true samples, which can be identified
correctly; false positive (FP) represents the amount of true non-interacting pairs detected
to be PPIs falsely; true negative (TN) is the amount of true non-interacting pairs that are
correctly identified; false negative (FN) represents the number of true samples categorized
as non-interacting pairs incorrectly. Additionally, the receiver operating characteristic
(ROC) curves were also plotted in order to prove the predictive power of our method. The
AUC (area under ROC curves) values were also calculated to express the ROC values in a
more accessible way.

3.2. Prediction Performance on Three PPIs Datasets

In this study, we first validated our model on the Yeast data set, and Table 1 summarizes
the results of the five-fold cross-validation (five-fold CV) experiment. It can be seen from
Table 1 that the average accuracy, sensitivity, specificity, precision, and MCC values are
91.93%, 89.78%, 94.05%, 93.82%, and 85,14%, and their standard deviations were 0.69%,
0.79%, 1.30%, 1.19%, and 1.15%, respectively. Then, the proposed method was performed
on the Human PPIs dataset; we also yielded excellent predicted results shown on Table 2,
with average accuracy, sensitivity, specificity, precision, and MCC values of 96.35%, 95.76%,
96.87%, 96.57%, and 92.95%, and their standard deviations were 0.56%, 0.78%, 0.71%, 0.64%,
1.03%, respectively. In addition, to further demonstrate the robustness of the proposed
model, we finally applied it to a plant PPI dataset, Oryza sativa. With respect to the Oryza
sativa dataset, the average accuracy, sensitivity, specificity, precision, and MCC values of
the proposed model are shown in Table 3 as 94.24%, 94.50%, 94.02%, 94.02%, and 89.14%,
and their standard deviations were 0.37%, 0.97%, 0.82%, 1.03%, and 0.66%, respectively.
The receiver operating characteristic (ROC) curves for the three benchmark datasets are
shown in Figures 1–3. We also calculated the area under the ROC curve (AUC) values of
these three PPI datasets for further evaluate the predictive power of our model, and they
were 0.9586, 0.9831, and 0.9667, respectively.
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Table 1. Five-fold CV results performed by the proposed model on the Yeast PPIs dataset.

Dataset ACC (%) Sen. (%) Spec. (%) PR (%) MCC (%) AUC

1 90.88 89.13 92.67 92.57 83.42 0.9562
2 91.55 90.31 92.79 92.55 84.52 0.9581
3 92.40 89.42 95.37 95.04 85.93 0.9581
4 92.49 90.90 94.15 94.20 86.10 0.9608
5 92.31 89.15 95.30 94.73 85.75 0.9599

Average 91.93 ± 0.69 89.78 ± 0.79 94.05 ± 1.30 93.82 ± 1.19 85.14 ± 1.15 0.9586 ± 0.0018

Table 2. Five-fold CV results performed by the proposed model on the Human PPIs dataset.

Dataset ACC (%) Sen. (%) Spec. (%) PR (%) MCC (%) AUC

1 96.20 95.23 97.08 96.72 92.67 0.9834
2 95.47 95.23 95.69 95.47 91.34 0.9808
3 96.94 97.10 96.78 96.62 94.06 0.9850
4 96.63 95.73 97.40 96.89 93.44 0.9817
5 96.51 95.53 97.41 97.14 93.24 0.9846

Average 96.35 ± 0.56 95.76 ± 0.78 96.87 ± 0.71 96.57 ± 0.64 92.95 ± 1.03 0.9831 ± 0.0018

Table 3. Five-fold CV results performed by the proposed model on the Oryza sativa PPIs dataset.

Dataset ACC (%) Sen. (%) Spec. (%) PR (%) MCC (%) AUC

1 93.91 94.64 93.22 92.94 88.55 0.9635
2 94.38 94.64 94.13 93.83 89.38 0.9656
3 94.79 95.09 94.48 94.70 90.12 0.9674
4 94.22 95.28 93.17 93.22 89.10 0.9628
5 93.91 92.84 95.08 95.40 88.54 0.9689

Average 94.24 ± 0.37 94.50 ± 0.97 94.02 ± 0.82 94.02 ± 1.03 89.14 ± 0.66 0.9667 ± 0.0022

Figure 1. ROC curves generated by the proposed model on the Yeast dataset.
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Figure 2. ROC curves generated by the proposed model on the Human dataset.

Figure 3. ROC curves generated by the proposed model on the Oryza sativa dataset.

3.3. Compared with Different Classifier Models

To date, there are a lot of machine learning algorithms have been developed for
detecting PPIs. To further verify the prediction accuracy of the proposed model, we
compared it with some popular classifiers, including Support vector machine (SVM),
Random Forest (RF), K-Nearest Neighbor (KNN), and AdaBoost algorithm. To be specific,
we utilized the same DHT descriptors and compared the predictive performance between
RoF and these classifiers. We used the LIBSVM tool to train and predict the SVM-based
model. To optimize the best parameter of the SVM classifier, the grid search method
was adopted to select the best parameters of SVM c and g. We set c = 13, g = 0.0006
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and c = 3, g = 0.0005 for the Yeast and Human data set. When performing on the Oryza sativa
data set, we set c = 7, g = 0.0009. The parameter K of RF classifiers of the Yeast, Human,
and Oryza sativa dataset were 27, 7, and 17, respectively. The parameters of KNN model
included the number of neighbors and distance measures. In this article, all the experiments
used the Manhattan distance, and the number of neighbors for these three PPI data sets
were 15, 17, and 4, respectively. Table 4 illustrated the details of the prediction results of
these four state-of-art classifiers on the Yeast, Human, and Oryza sativa data set. To identify
any potential overfitting or underfitting problems in the proposed model, we also used a
train/test/validation process for predicting these datasets. The experimental results based
on this approach can be seen in our Supplementary Materials Tables S1–S4.

Table 4. Predictive performance comparison among four different classifiers.

Dataset Method ACC (%) Sens. (%) Spec. (%) PR (%) MCC (%) AUC

Yeast

SVM 84.44 ± 0.84 83.14 ± 1.01 85.77 ± 1.40 85.37 ± 1.68 73.71 ± 1.17 0.9149 ± 0.0061
RF 81.97 ± 0.41 80.26 ± 1.27 83.68 ± 0.48 83.09 ± 0.84 70.41 ± 0.55 0.8979 ± 0.0038

KNN 81.39 ± 1.07 75.19 ± 2.16 87.63 ± 1.17 85.88 ± 1.21 69.47 ± 1.37 0.8967 ± 0.0057
AdaBoost 78.15 ± 1.82 76.88 ± 1.90 79.45 ± 2.95 85.46 ± 2.85 65.87 ± 1.97 0.8546 ± 0.0120

RoF 91.93 ± 0.69 89.78 ± 0.79 94.05 ± 1.30 93.82 ± 1.19 85.14 ± 1.15 0.9586 ± 0.0018

Human

SVM 87.93 ± 0.86 85.78 ± 1.28 89.89 ± 1.37 88.59 ± 1.53 78.69 ± 1.31 0.9446 ± 0.0069
RF 95.32 ± 0.96 92.63 ± 1.93 97.82 ± 0.94 97.50 ± 1.03 91.04 ± 1.74 0.9804 ± 0.0016

KNN 87.92 ± 1.19 76.67 ± 2.44 98.23 ± 0.49 97.51 ± 0.74 78.10 ± 1.96 0.9758 ± 0.0046
AdaBoost 75.64 ± 1.69 71.36 ± 3.87 79.53 ± 3.04 76.19 ± 2.29 62.88 ± 1.83 0.8362 ± 0.0170

RoF 96.35 ± 0.56 95.76 ± 0.78 96.87 ± 0.71 96.57 ± 0.64 92.95 ± 1.03 0.9831 ± 0.0018

Oryza
sativa

SVM 85.58 ± 1.27 84.06 ± 1.08 87.16 ± 2.46 86.73 ± 2.63 75.32 ± 1.78 0.9246 ± 0.0085
RF 84.19 ± 0.92 81.71 ± 1.23 86.68 ± 1.03 85.99 ± 0.85 73.34 ± 1.24 0.9070 ± 0.0096

KNN 76.51 ± 0.70 85.19 ± 0.88 67.82 ± 0.91 72.58 ± 1.10 63.50 ± 0.77 0.8327 ± 0.0040
AdaBoost 80.82 ± 1.37 81.50 ± 1.87 80.16 ± 1.61 80.40 ± 2.00 69.01 ± 1.67 0.8876 ± 0.0132

RoF 94.24 ± 0.37 94.50 ± 0.97 94.02 ± 0.82 94.02 ± 1.03 89.14 ± 0.66 0.9667 ± 0.0022

As shown in Table 4, the proposed method provided the best results on the three PPI
data sets in terms of all the metrics, and the least accuracy improvement was reached with
7.49% on the Yeast dataset, 1.03% on the Human data set, and 8.66% on the Oryza sativa data
set. The lowest enhanced AUC values were reached with 3.34% on the Yeast dataset, 0.13%
on the Human dataset, and 4.17% on the Oryza sativa dataset. For the visual analysis, we
drew a histogram for the ACC and AUC values that were generated by these powerful
classifiers in Figure 4. These experimental results further demonstrated that rotation forest
is the best classifier for the features that we introduced.

3.4. Evaluation of Prediction Ability on Four Independent Dataset

Although the proposed model has achieved satisfactory results on the Yeast, Human,
and Oryza sativa PPI datasets, we also applied it on four independent datasets, including H.
sapiens, H. pylori, M. muscules, and C. elegans, to further demonstrate the suitability of our
method. In this experiment, we utilized all of the Yeast dataset as the training set and the
other four independent datasets were used as the test sets in order to verify the robustness
of the proposed method. In addition, we also compared the predictive performance with
some excellent approaches. Table 5 summarizes the results of the accuracy comparisons
between our model and some existing methods on the four datasets. It can be seen that the
prediction accuracy yielded by our method on the H. sapiens, H. pylori, M. muscules, and
C. elegans datasets were all higher than 91%, which were 94.27, 91.67, 93.12, and 92.14%,
respectively. These experimental results further indicated that our method has strong a
generalization ability to predict PPIs. (N/A means not available.)
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Figure 4. Comparison of the results produced by different classifier models on three benchmark
datasets. (a) Is the obtained accuracy results on the three benchmark datasets. (b) Is the obtained
AUC results on the three benchmark datasets.

Table 5. Prediction accuracy of the four independent datasets.

Species Test Pair Our Method Ding et al. [37] Huang et al. [10] Zhan et al. [38] Wang et al. [39]

H. sapiens 1412 94.29% 90.23% 82.22% 91.93% 80.10%
H. pylori 1420 91.67% 90.34% 82.18% 91.34% N/A

M. muscules 313 93.12% 91.37% 79.87% 94.89% 89.14%
C. elegans 4013 92.14% 86.72% 81.19% 93.20% 92.96%

3.5. Compared with Existing Methods

In recent years, various kinds of computational methods have been proposed for
predicting potential protein–protein interactions. Here, we compared the prediction ability
of the proposed model with some popular methods on the Yeast and Human dataset, which
were also utilized in the five-fold cross-validation method. Tables 6 and 7 list the predictive
performance of these methods with several common evaluation criteria, including accuracy,
precision, sensitivity, and MCC. From Table 6, we can see that our method produced an
accuracy of 91.93% on the Yeast dataset; the precision is 93.82%, the sensitivity is 89.78%,
and the MCC value is 85.14%. The average accuracy results of selected methods are all
lower than our method on the Yeast dataset. Table 7 summarizes the average results of these
collected approaches on the Human dataset, and are between 90.57 and 96.09%, while the
average accuracy of our method is as high as 96.35%. These results further indicated that
combining the DHT descriptor and rotation forest classifier is effective for PPIs’ prediction.
(N/A means not available.)

Table 6. Performance comparisons of computational methods on the Yeast dataset.

Author Method ACC (%) PR (%) Sens. (%) MCC (%)

Guo et al. [23] ACC + SVM 89.33 89.93 88.87 N/A
Yang et al. [40] LD + KNN 86.15 90.24 81.30 N/A
Wang et al. [41] 3-MER + CNN 90.26 91.65 88.14 82.38
Zhou et al. [42] LD + SVM 88.56 89.50 87.37 77.15

An et al. [43] PSSMMF + SVM 90.48 90.58 90.26 82.84
You et al. [11] PCA + ELLM 87.00 87.59 86.15 77.36
Our method DHT + RoF 91.93 93.82 89.78 85.14
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Table 7. Performance comparisons of computational methods on the Human dataset.

Author Method ACC (%) PR (%) Sens. (%) MCC (%)

Ding et al. [37] MMI + RF 96.08 96.67 95.05 92.17
Li et al. [44] OLPP + RoF 96.09 96.56 95.20 92.47

Pan et al. [45] LDA + SVM 90.70 N/A 89.7 81.3
Li et al. [46] IWLD + SVM 90.57 89.01 91.61 81.22
Our method DHT + RoF 96.35 96.57 95.76 92.95

4. Discussion

The identification of protein–protein interactions (PPIs) can provide a novel perspec-
tive for clinical diagnosis and treatment. It also plays an important role in inter-cellular
and intra-cellular functions and inter-molecular connectivity. In this article, we presented a
novel ensemble-learning-based method to predict potential PPIs that only used the amino
acid sequence information. There are four reasons why the proposed model has excellent
prediction performance. First, all protein sequence data were preprocessed to remove
residues and redundant information. Second, the target protein sequences were calculated
into features by the PSSM technique, which can embed the evolutionary information in the
form of a matrix. Thirdly, the Discrete Hilbert transform (DHT) algorithm was employed
to extract the feature descriptors from the PSSM. In this way, the proposed model can
capture high-dimensional and complex potential information to improve the prediction
performance. Finally, the ensemble-learning-based classifier, rotation forest (RoF), was
utilized to deal with the classification problem. We performed our method on three PPIs
datasets (Yeast, Human and Oryza sativa) under five-fold cross-validation. To further demon-
strate the excellent prediction ability of our method, we also applied it in four independent
cross-species datasets and compared it with some existing excellent methods. The compre-
hensive experimental results indicated that our model can be served as a powerful tool to
guide researchers to study the functions and roles of proteins. However, there are still some
limitations in our work. Firstly, the negative datasets were the random section from the
non-interacting pairs. These negative sets may include false negative cases. This has the
potential to affect the prediction accuracy of the developed model. In future work, we will
investigate the DHT algorithm, which is more appropriate for problems involving large
feature dimensions and a small number of training samples; through this, we are hoping to
better solve the problem of protein–protein interaction prediction.

5. Conclusions

In this study, we proposed a novel ensemble learning based model that can greatly
improve sequence-based PPIs’ prediction. We conducted a comprehensive experiment on
three gold standard datasets. Furthermore, we performed independent validation on four
cross-species PPI datasets. Experimental results based on cross validations and comparison
indicated that our method is effective and robust in predicting PPIs.
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