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SUMMARY

Accurate state-of-health (SOH) prediction of lithium-ion batteries (LIBs) plays an
important role in improving the performance and assuring the safe operation
of the battery energy storage system (BESS). Deep extreme learning machine
(DELM) optimized by the improved sparrow search algorithm (ISSA) is developed
to predict the SOHof LIBs under random load conditions in the paper. Firstly, two
indirect health indicators are extracted from the random partial discharging
voltage and current data, which are chosen as the inputs of DELM by the Pearson
correlation analysis. Then, ISSA is presented by combining the elite opposition-
based learning (EOBL) and the Cauchy-Gaussian mutation strategy to increase
the diversity of sparrow populations and prevent them from falling into the local
optimization. Finally, the ISSA-DELM model is utilized to estimate the battery
SOH. Experimental results illustrate the high accuracy and strong robustness of
the proposed approach compared with other methods.

INTRODUCTION

Lithium-ion batteries (LIBs) are the core elements of Battery Energy Storage Systems (BESS) because they

are characterized by high specific energy, high efficiency, low maintenance, and long life (Kim et al., 2019).

The performance of batteries gradually deteriorates with the increase of service time, which might not only

affect the normal operation of electrical equipment but also bring about serious accidents (Saha et al.,

2009; Xie et al., 2020). The state of health (SOH) is a measure of the battery life and plays a vital role in

improving the performance of BESS and realizing timely maintenance of equipment. SOH is expressed

as the ratio of the current maximum allowable discharge capacity to the nominal capacity of a new battery:

SOH =
Ct

C0
3 100% (Equation 1)

where Ct and C0 represent the available capacity at time t and the nominal capacity of a new battery,

respectively. It is deemed to reach the end-of-life (EOL) when the capacity of the LIBs drops below 80%

of the nominal capacity.

The SOH of LIBs relies on the materials used for battery design and two electrodes, but it is affected by

operational conditions such as environmental temperature and discharge current (Panchal et al., 2018;

Rosa Palacin, 2018, Jia et al., 2021a). Considering that the battery will be charged when it is not discharged

to the cut-off voltage in actual operation, Yang et al. (Yang et al., 2021) used partial discharge voltage and

temperature of LIBs to realize the online prediction of SOH. Pang et al. (Pang et al., 2019) proposed the

combination of the wavelet decomposition technology (WDT) and the Nonlinear Auto-Regressive neural

network (NARNN) model to capture the capacity regeneration phenomenon of LIBs. Jia et al. (Jia et al.,

2021b) presented a combination of Wavelet neural network (WNN) with Unscented particle filter (UPF)

model to predict the battery SOH. However, these methods can only be used under deterministic

discharge conditions. The discharge current is variable in actual application practices, so estimating the

SOH of LIBs at uncertain discharge conditions is very difficult without considering the random discharge

current (Salinas and Kowal, 2020).

Nowadays both model-based and data-driven methods have been applied to estimate the SOH of LIBs

considering random discharge conditions. The model-based methods used equivalent circuit models
iScience 25, 103988, April 15, 2022 ª 2022 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:jiajianfang@nuc.edu.cn
https://doi.org/10.1016/j.isci.2022.103988
https://doi.org/10.1016/j.isci.2022.103988
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.103988&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS

iScience
Article
(ECM) (Bian et al., 2020) or electrochemical models (EM) (Xiong et al., 2017) to establish the corresponding

state-space equation or fitting formula of the battery degradation process. Because the model parameters

are complicated, these methods require the development of a battery degradation model with a balance

between accuracy and complexity. The data-driven methods do not need to consider the battery’s com-

plex aging mechanism or electrochemical reaction. They extract the implicit information on the battery

health status from a wide variety of experimental datasets to perform SOH prediction. Various machine

learning (ML) algorithms are employed to learn the relationship between the battery health indicators

(HIs) and SOH. Direct health indicators (DHIs) include battery capacity and internal resistance, which are

the most obvious characteristics of battery degradation. Richardson et al. (Richardson et al., 2017) used

multi-output Gaussian process regression (GPR) models to capture the battery capacity degradation

trends for predicting SOH. Although it had effectively exploited data from identical batteries to improve

forecasting performance, the capacity acquisition method is mainly the ampere-hour method based on

the current at present, which has the cumulative errors in actual applications. Sepasi et al. (Sepasi et al.,

2015) proposed a hybrid method combining Coulomb counting (CC) and extended Kalman filter (EKF)

algorithm to derive the internal resistance of LIBs and then predict SOH. However, the internal resistance

of a battery cannot be measured directly online, and it is easily disturbed by noise.

Therefore, indirect SOH estimationmethods have also been proposed to predict the SOH of LIBs. They can

learn nonlinear mappings between the battery SOH and indirect health indicators (IHIs) extracted from

battery health information such as voltage, current, and temperature, which can be easily measured in

the process of battery use (Jia et al., 2020; Yu et al., 2017). Tian et al. (Tian and Qin, 2021) extracted the

discharge time, the voltage upward appreciation after discharge, and the variance of discharge voltage

curve from random discharge data to predict the SOH of LIBs. Venugopal et al. (Venugopal and

Vigneswaran, 2019) chose 18 IHIs from the change curve of discharge voltage, current, temperature, and

time. However, too many IHIs resulted in redundant degradation information and a complex extraction

process. Fan et al. (Fan et al., 2020) selected the observable variables such as charging voltage, current,

and temperature as inputs to study the change of SOH. They reported that the constant-current-con-

stant-voltage (CCCV) charging process was more peaceful and controllable than the random discharge

process. The charging curve of CCCV mode can reflect the battery capacity under random discharge.

But these IHIs were not artificially processed, so the SOH predictive accuracy was undesirable. Hence,

selecting IHIs with high-quality and simple calculations remains a challenging problem.

Recently, deep learning (DL) and extreme learning machine (ELM) have gained popularity in natural

language processing, time series forecasting, system modeling, etc. DL networks can automatically learn

abstract features of multisource heterogeneous data by designing a complex multilayer neural network

model, which brings the dawn of artificial intelligence research (Mu and Zeng, 2019). ELM is a single-hid-

den-layer feedforward neural network, where input weights and biases can be assigned independently

without changing, and the output weight can be analytically determined by simple generalized inverse

operation (Ding et al., 2014). In addition, ELM has better generalization performance and faster learning

speed compared with backpropagation neural networks (BPNN). Fan et al. (Fan et al., 2020) developed

a hybrid network of gate recurrent unit-convolutional neural network (GRU-CNN) for the battery SOH esti-

mation, which can find the shared information from characteristic parameters of the battery and learn time

dependencies of these parameters. Li et al. (Li et al., 2021) proposed a battery SOH estimation model of a

recurrent neural network with a long short-term memory structure (LSTM-RNN) to overcome the limitation

of the short memory of RNN. They pointed out that the model could play a powerful role in handling noisy

inputs and did not require specific inputs. A hybrid gray wolf optimizer (HGWO) algorithmwas used to opti-

mize the key parameters of the Forgetting Online Sequential Extreme Learning Machine (FOS-ELM) for

higher efficiency and accuracy (Fan et al., 2019).

However, the random generation of an input weight and the presence of only one hidden layer reduce

the ability of ELM to learn typical features of the input data when faced with larger data. Although DL

strategies have a stronger learning ability than ELM, the reverse fine-tuning process andmultilayer network

structure make the algorithm run slowly. Deep extreme learning machine (DELM) can use extreme learning

machine-automatic encoder (ELM-AE) to initialize the input weights of each hidden layer and perform

hierarchical unsupervised training without the reverse fine-tuning process, which is faster than the

traditional DL strategy (Li et al., 2019). In addition, the prediction accuracy of DELM is higher than that

of ELM (Tang et al., 2017). However, the current DELM lacks a mechanism to select the optimal key
2 iScience 25, 103988, April 15, 2022



Table 1. The specific operating environment of the battery

Battery no RW discharge current RW discharge duration

RW3, RW4, RW5 A randomized sequence of discharging

currents between 0.5A and 4A

5 min

RW14 Be skewed toward selecting lower currents

between 0.5A and 5A

1 min

RW20 Be skewed toward selecting higher currents

between 0.5A and 5A

1 min
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parameters, and the efficiency of online learning is low. As a result, it is necessary to find the optimal

solution for these parameters and improve the weight learning efficiency of multilayer feed-forward

networks.

The sparrow search algorithm (SSA) is superior to gray wolf optimizer (GWO) and particle swarm

optimization (PSO) in terms of solution speed, stability, and convergence accuracy (Xue and Shen, 2020).

Similar to other optimization algorithms, diversity loss of SSA’s population in optimization procedures

may cause local minima. Therefore, driven by the desire to improve the ability of SOH prediction accuracy,

a deep extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is

proposed to effectively estimate the battery SOH under the condition of random current discharge in

this paper. The contributions and innovations of this paper are as follows:

1) Through the analysis of the random aging dataset, it is revealed that the battery’s internal resistance

and voltage standard deviation (SD) extracted from the small fragments of the random discharging

voltage and current curve show an identical trend with the degraded battery capacity.

2) Two IHIs are extracted from the random partial discharging voltage and current data. They are inter-

nal resistance within a short time (IRWST) and voltage SD within a short time (VSDWST), respectively.

IHIs are highly robust to random partial discharging data, which enables the proposed method to

estimate battery SOH in random partial discharging conditions.

3) An improved SSA is proposed to optimize the input weights and biases of the DELM to effectively

learn the nonlinear mapping between IHIs and the battery SOH. The improved SSA can expand

the search space and speed up the movement of the population by utilizing the elite opposition-

based learning (EOBL) and the Cauchy-Gaussian mutation operator. Experimental results

demonstrate that the proposed method can obtain higher estimation accuracy and faster running

speed compared with the combinations of other optimization algorithms and DELM.

RESULTS

As summarized in Table 1, this paper uses the experiment data of five batteries (identified as RW3, RW4,

RW5, RW14, RW20) in a random battery aging dataset provided by NASA (Bole et al., 2014b). Here, the

random current discharge of a battery is called random walk (RW). The experiment is performed with

18,650 LIBs whose nominal capacity is 2Ah and the cut-off voltage of charging and discharging are 4.2V

and 3.2V, respectively. In an RW cycle, the CCCV strategy is adopted for charging, including the CC

step at 2A until 4.2V and the CV step until 0.01A. Then the discharge rate is randomly selected from a

predefined current set and each partial discharging cycle lasts for the same time until the battery

discharges to the cut-off voltage. After every 50 RW cycles, two reference charge and discharge cycles

are carried out to provide the real SOH. The reference charging process is the same as that of the RW

experiment, but the discharge process uses constant current discharge. Further details about this battery

dataset can be found in Ref (Bole et al., 2014a). Figure 1 shows the capacity degradation process of five

batteries. The current and voltage curves of one reference charge-discharge experiment and one RW

experiment of the battery RW3 are shown in Figure 2.

The internal resistance within a short time (IRWST) and the voltage SD within a short time (VSDWST) can be

extracted from random partial discharging data for estimating battery SOH. The Pearson Correlation

Coefficient (PCC) g is used to mathematically prove the effectiveness of the extracted IHIs in indicating

the battery capacity, and its formula is:
iScience 25, 103988, April 15, 2022 3



Figure 1. The attenuation curves of the battery reference capacity (Bole et al., 2014b)
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g =

Pn
i = 1ðIHIi � IHIÞðCi � CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðIHIi � IHIÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1ðCi � CÞ2
q (Equation 2)

where n is the number of the extracted IHI and the battery capacity; IHI and C are the average values of the

IHI and the battery capacity, respectively. When the value g is close to one or -1, it indicates that IHI has high

linearity with the battery capacity. Tables 2 and 3 show the PCCs corresponding to different time intervals

for IRWST and VSDWST of RW3 in different voltage windows, respectively.

The data extracted from the 4.2V–3.5V of the four batteries are integrated as a training dataset and the

data extracted from the 4.2V–3.5V of the remaining battery is used as the testing dataset. The DELM

network is constructed using three hidden layers, taking into account the fact that adding hidden layers

complicates the network and increases training time. Experiments have shown that increasing the

number of hidden layers to four increases the execution time of the algorithm by 2.48 times, but the

RMSE is only reduced by 0.12%. To accurately predict the battery SOH, through repeatedly simulating

trials, the number of nodes in the three hidden layers is determined to be 30, 20, and 10, respectively.

The network activation function is the sigmoid function, and the Tikhonov regularization is set to 1012.

The population number, iteration times, percentage of discoverers, and warning value of SSA are 30,

80, 0.7, and 0.6, respectively. The SOH estimation results with different time intervals for five batteries

are shown in Figure 3.

In practical applications, the battery may be recharged before it is completely exhausted, so it would

be more practical to implement the proposed SOH estimation method under different RW partial

discharging conditions. Therefore, the extraction of two IHIs and the ISSA-DELM algorithm are
4 iScience 25, 103988, April 15, 2022



Figure 2. The current and voltage curves of the battery RW3

(A–D) (A) voltage of two reference charge and discharge cycles and 50 RW cycles, (B) voltage of one reference charge-

discharge cycle and one RW cycle, (C) current of two reference charge-discharge cycles and 50 RW cycles, (D) current of

one reference charge-discharge cycle and one RW cycle
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performed under different voltage windows to evaluate the effectiveness of the proposed method in

different practical discharging conditions. The overall estimated results of five batteries are given in

Figure 4.

Furthermore, to explain the effectiveness of the SOH estimation based on the proposed method, the

prediction results obtained in the 4.2V–3.5V voltage window are considered and compared with those

of SSA-DELM, IGWO-DELM, and IPSO-DELM. IGWO is composed of gray wolf optimization (GWO)

and differential evolution (DE) (Zhu et al., 2015), and IPSO is formed by merging particle swarm

optimization (PSO) and genetic algorithm (GA) (Kao and Zahara, 2008). To make comparisons without

deviations, the population size and iteration times of four optimization algorithms are set to 30 and

80, respectively. The upper and lower bounds of the scaling factor of IGWO are 0.2 and 0.8, respectively,

and the crossover probability is 0.1. The inertia weight, crossover probability, and mutation probability of

IPSO are 0.7, 0.7, and 0.3, respectively. SSA-DELM has the same parameters as ISSA-DELM. Figure 5

shows the SOH estimation results and the iterative convergence curve of fitness function of five batteries

using four different methods. The RMSE and execution time of these methods are shown in Tables 4

and 5, respectively.
iScience 25, 103988, April 15, 2022 5



Table 2. PCC between IRWST and the battery capacity

Time intervals 4.2V–3.5V 4.2V–3.6V 4.2V–3.7V 4.2V–3.8V 4.2V–3.9V 4.2V–4.0V

5s �0.993 �0.991 �0.989 �0.988 �0.987 �0.987

15s �0.985 �0.984 �0.983 �0.984 �0.984 �0.990

30s �0.983 �0.982 �0.981 �0.983 �0.987 �0.992
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DISCUSSION

In this study, an indirect SOH estimation method based on ISSA-DDLM is proposed to predict the SOH of

LIBs under random discharging conditions. In addition, the extracted IHIs must be highly correlated with

battery capacity to estimate accurate SOH well.

As can be seen in Figure 1, the reference capacity decay rate for different RW discharge currents is various.

Because the charging conditions of the five batteries are the same, it can be concluded that the difference

in the reference capacity trend may be related to the difference in discharge current. Most of the existing

research works only focus on the standard charging and discharging modes with many assumptions.

Because the batteries are always used under random load conditions, the standard tests cannot be

performed to measure the battery reference capacity and calculate SOH. Hence, it is usually necessary

to indirectly predict the SOH based on the collected random discharge data.

From Figure 2, it can be seen that the random current is composed of several constant currents. Within a

short period, the battery discharging current is static, and the discharging voltage changes because of the

influence of internal resistance. Therefore, the IHIs related to the SOH can be extracted from those current

and voltage curves within a short discharging interval. This paper extracts two IHIs called IRWST and

VSDWST from randompartial discharge data. The correlation coefficients between two IHIs and the battery

capacity are shown in Tables 2 and 3, respectively.

It can be observed from Table 2 that for any given voltage window, a shorter time often results in a stronger

correlation between IRWST and the battery capacity. Table 3 shows that under a particular voltage window,

the linearity between VSDWST and the battery capacity is greatly affected by different time intervals. The

shorter the time interval, the higher the relationship between VSDWST and battery capacity. Therefore, this

paper chooses 5s as the time interval. It is important to point out that with the same time interval, different

voltage windows are studied so that the extracted IHIs can be applied to different actual half-discharging

environments. It can also be seen from Tables 2 and 3 that in each voltage window, the absolute values of

the PCC of two IHIs extracted in 5s are all more than 0.980, which proves that there is a strong linear

correlation between the capacity and each IHI. Therefore, high accuracy SOH estimations can be obtained

by using these IHIs as model inputs.

As shown inFigure3,when the IHIsareextractedwithin5s, theSOHestimationcurvesof fivebatteriesareexceed-

ingly close to the actual SOH values, and the AEs are well limited under 3%. Especially for RW4 and RW5, their

RMSEs are only 0.49 and 0.65%, respectively. Moreover, extending the time interval from 5s to 15s generally re-

sults in a greater RMSE, with a maximum increase of 1.2%. When the time interval is extended to 30s, the SOH

estimation error is larger, and the maximum RMSE reaches 3.42%. Both of these phenomena are more evident

for two batteries RW14 and RW20. This is because their random load switching time is one-fifth of the random

load switching time of the other three batteries, and there is a large difference between the IHIs and the battery

capacity. These results confirm that IHIs extractedwithin 5s have the highest correlationwith the battery capacity,

under an ideal scenario that 4.2V–3.5V discharging curves are available. Thus, it is a good choice to extract the

battery’s internal resistance and voltage SD within 5s.
Table 3. PCC between VSDWST and the battery capacity

Time intervals 4.2V–3.5V 4.2V–3.6V 4.2V–3.7V 4.2V–3.8V 4.2V–3.9V 4.2V–4.0V

5s �0.982 �0.983 �0.981 �0.982 �0.982 �0.990

15s �0.972 �0.968 �0.967 �0.969 �0.969 �0.966

30s �0.964 �0.956 �0.955 �0.958 �0.961 �0.969

6 iScience 25, 103988, April 15, 2022



Figure 3. The SOH estimation results with different time intervals for the five batteries

(A–F) (A) SOH estimation result of RW3, (B) SOH estimation result of RW4, (C) SOH estimation result of RW5, (D) SOH

estimation result of RW14, (E) SOH estimation result of RW20, (F) Histogram of RMSE for different time intervals for five

batteries
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Figure 4A illustrates the deviation of the estimated SOH from the actual SOH at various voltage windows

andMAE value to quantify the deviation. ThemaximumMAE of 1.01% is achievedwhen the voltage window

is 4.2V–4.0V, whereas the minimum MAE of 0.70% occurs when the voltage window is 4.2V–3.8V. When the

voltage window is shortened to 4.2V–3.5V and below, the MAE are all within 1.01%, indicating that the

proposed SOH estimation method can be extended to different local RW discharge conditions with

high prediction accuracy.

The relationship between the SOHestimation accuracy and the voltagewindow is shown in Figure 4B. As can

be seen fromFigure 4B, the proposedmethod can generally guarantee satisfactory accuracy under different

voltage windows, and the RMSE of each battery can bewell limited in the range of 0.17–2.15%. The accuracy

of the SOHestimate is slightly reducedonlywhen thebattery RW20 is used as the testingbattery. This canbe

explained by the RW20 degradation tendency to choose a higher current compared to the other four

batteries. Within the same discharge window, the IHIs of RW20 have relatively low linear correlation with

the battery capacity. In terms of the voltage window, the average RMSEs show that the voltage window
iScience 25, 103988, April 15, 2022 7



Figure 4. The overall estimated results of five batteries

(A and B) (A) estimated and actual values for various voltage windows, the blue straight line indicates zero deviation between estimated and actual values, (B)

RMSEs for each testing battery, and average RMSE for five batteries with different voltage windows
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has less effect on the accuracy of the SOHestimation. Across the five different voltagewindows, the average

RMSE is well limited from0.89% to 1.32%, indicating that these voltage ranges provide sufficient information

to indicate the SOH. Consequently, the ISSA-DELM-based indirect SOH estimation method can be simply

and accurately applied to partial random discharging conditions.

Comparing the SOH estimation curves of other methods, it can be seen from Figure 5 that the prediction

error of SSA-DELM is always the largest. Among the SOH prediction results of five batteries, the

ISSA-DELM algorithm can track the changing tendency of the battery SOH well, and the error is smaller
8 iScience 25, 103988, April 15, 2022



Figure 5. The comparison among different models for five batteries

(A–E) (A) SOH estimation result of RW3, (B) SOH estimation result of RW4, (C) SOH estimation result of RW5, (D) SOH

estimation result of RW14, (E) SOH estimation result of RW20
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than the other algorithms. The main reason for this phenomenon is that EOBL and Cauchy-Gaussian mu-

tation operators can increase the population diversity of the SSA algorithm to some extent and prevent the

algorithm from prematurely converging and falling into the local optimization. The ISSA algorithm

converges faster than the IGWO algorithm, but its convergence speed is not as fast as that of the IPSO

and SSA algorithms. However, the ISSA algorithm can jump out of the local optimization and reduce the
Table 4. RMSE (%) of different methods

Method RW3 RW4 RW5 RW14 RW20

ISSA-DELM 0.93 0.49 0.65 1.05 1.34

SSA-DELM 2.03 2.06 1.90 2.63 2.35

IGWO-DELM 1.26 1.69 1.15 2.08 1.90

IPSO-DELM 1.33 1.75 1.62 2.21 2.14

iScience 25, 103988, April 15, 2022 9



Table 5. Execution time (s) of different methods

Method RW3 RW4 RW5 RW14 RW20

ISSA-DELM 8.77 8.63 9.07 8.75 8.53

SSA-DELM 6.50 6.57 6.55 6.11 6.49

IGWO-DELM 13.60 13.97 13.13 13.91 13.60

IPSO-DELM 13.49 13.41 13.15 13.87 13.06
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prediction error of the DELM neural network, which is a trade-off between the fast convergence speed and

low residual error simultaneously. As can be seen from Figure 5C, the ISSA algorithm starts to converge

quickly at the 18th iteration. As the number of iterations increases, the algorithm can jump out of the local

optimization, and finally find the global optimal solution in the 34th iteration. On the contrary, the SSA

algorithm started to converge at the 28th iteration and fell into the local optimization. Similarly, the

IPSO algorithm also tends to converge prematurely and fall into the local optimization. Although

the IGWO algorithm can jump out of the local optimization, its optimization performance is volatile and

the fitness function curve fluctuates significantly.

Tables 4 and 5 summarize the RMSE and execution time of four methods, respectively. It can be found from

Table 4 that the RMSE of ISSA-DELM is smaller than that of the other three methods, indicating that the

combination of ISSA and DELM neural network can more accurately capture the nonlinear mapping

between two IHIs and the SOH, and the proposed algorithm is more accurate than the other optimization

algorithms in terms of convergence accuracy. Table 5 shows that the ISSA-DELM algorithm runs about half

as long as the IPSO-DELM and IGWO-DELM algorithms. This is primarily because EOBL uses only elite in-

dividuals to search the current search space and mapping space in parallel. Compared to the DE or GA

algorithm, this can reduce the time spent on each iteration of the optimization algorithm to some extent.
Conclusions

Because the battery capacity cannot be obtained through online measurement in actual applications, it is

also a challenging problem to estimate the SOH of LIBs under random discharging conditions. A deep

extreme learning machine (DELM) optimized by the improved sparrow search algorithm (ISSA) is

presented to effectively estimate the battery SOH. Two indirect health indicators (IHIs), named internal

resistance within a short time (IRWST) and voltage SD within a short time (VSDWST), are extracted from

random partial discharging data. Then, the EOBL algorithm and the Cauchy–Gaussian mutation strategy

are applied to increase the diversity of sparrow populations and prevent the SSA algorithm from falling

into the local optimization. Finally, the key parameters of DELM are optimized utilizing the improved SSA

algorithm, and an ISSA-DELM model is constructed to carry on the SOH estimation. Long-term cycling

tests of five batteries with different random discharging currents have been employed to verify the

effectiveness of the proposed method. Even if the random discharging voltage window is very small

from 4.2V to 4.0V, the RMSE can be well limited under 1.71%. Hence, the ISSA-DELM algorithm has

higher prediction accuracy than the other three algorithms SSA-DELM, IGWO-DELM, and IPSO-DELM,

while maintaining a short running time.
Limitations of the study

This method can be utilized to estimate the SOH of LIBs under partially random discharge conditions.

However, the selected IHIs were only extracted from the voltage and current data. Because the tempera-

ture variation during the battery charge and discharge also affects the SOH, it is necessary to further study

the temperature profile to obtain more information for characterizing the battery SOH. Furthermore, the

method is only validated usingNASA’s randombattery aging dataset. In many applications, such as electric

vehicles, the use of random loads is very complex and irregular, so the prediction method should be further

validated using actual operating data.
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METHOD DETAILS

The proposed approach consists of IHIs extraction, DELMmodel, ISSA algorithm, explained in detail in this

section.
IHIs extraction

By the mechanism analysis and the geometric analysis of RW discharging curves, two IHIs IRWST and

VSDWST are extracted for performing the SOH estimation. The extraction process of IHIs using the battery

RW3 is an example in the paper.

The internal resistance within a short time (IRWST)

As the battery ages, the internal resistance of the battery usually increases. When the current flows through

the battery, its operating voltage drops due to the interference of the internal resistance. Since the

discharge current is static in a short time, and the internal resistance of the battery increases, the internal

resistance in a short time can be used as a health indicator for indicating the health of the battery. Taking

RW3 as an example, Figure S1A shows the extraction process of IRWST. The specific calculation formula is

as follows.

IRWSTi =
Vstart � Vi

stop

Iistop
=
Vstart � Vi

start+T

Iistop
(Equation 3)

Among them, Vstart represents the given start voltage, T refers to the given time interval in seconds, Vi
stop

and Iistop are the voltage and current corresponding to the stop voltage of the ith RW cycle, respectively.

Figure S1C shows changes in the proposed IRWST within 5s under different starting voltages. The

degraded capacity DC is also given to show the identical trend between IRWST and degraded capacity,

which is defined as

DC = C0 � Ct (Equation 4)

Since the voltage drops quickly after being lower than 3.5V, there is a phenomenon that battery health in-

formation cannot be captured in a specific short time, so Figure S1C only shows the result of extracting

IRWST from the starting voltage 3.55V to 4.2V. As shown in Figure S1C, as the battery ages, the IRWST
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shows an increasing trend at different voltage levels, which is consistent with the trend of degraded capac-

ity. In practical applications, most lithium-ion batteries are recharged before randomly discharging to the

cut-off voltage, so the selected IHIs are expected to have a high robustness to the discharging partialness.

By calculating the average IRWST of the voltage interval 0.05V for a given voltage window, an indirect

health indicator related to this half-discharge window can be extracted to indicate the battery capacity.

To show clearly and intuitively the correlation, the correlations between extracted results in the 4.2V–

3.5V voltage window and the reference capacities of five batteries are visualized in Figure S1E, where

IRWST and the battery capacity are normalized between 0 and 1, respectively. The blue straight line rep-

resents the best correlation between the battery reference capacity and IHI. In Figure S1E, the points are

scattered from the upper left corner to the lower right corner, so IRWST and the battery capacity are nega-

tively correlated. The points are distributed near the blue straight line, indicating that IRWST has a relatively

strong correlation with the battery capacity.

The voltage standard deviation within a short time (VSDWST)

When the current passes through the battery, the working voltage of the battery will decrease due to the

influence of the internal resistance of the battery. Moreover, under the condition of high current discharge,

the electrode polarization enhances, the internal resistance increases and the discharge voltage decreases

rapidly. Correspondingly, in low-speed discharge, the discharge voltage decreases slowly due to the

relatively small internal resistance. Thus, VSDWST can be used to indicate SOH. The extraction process

of VSDWST is shown in Figure S1B, which can be computed as

VSDWSTi = std
�
Vstop;Vstop

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T + 1

��
Vstart � Vi

�2
+/+

�
Vi

stop � Vi

�2�s
(Equation 5)

where Vi is the average voltage within T time intervals of the ith random discharging cycle. Figure S1D

illustrates the VSDWST within 5 seconds at different starting voltages. It is shown in Figure S1D that the

trend of VSDWST and the degraded capacity under different voltage levels is roughly the same. Similar

to IRWST, VSDWST with the same voltage interval of 0.05V is extracted to investigate its effectiveness

on the RW partial discharging data. Figure S1F is a scatter plot of normalized reference capacity and

normalized VSDWST extracted in the voltage window 4.2V–3.5V. It can be seen from Figure S1F that the

correlation between VSDWST and the battery reference capacity is relatively high when the battery voltage

drops by 0.7V.
DELM model

The DELM overlaps multi-layer extreme learning machine-automatic encoder (ELM-AE) to form a deep

neural network, which has a better predictive effect than a single-layer ELM algorithm (Luo et al.,

2017). Moreover, the connection weights between the hidden layer and the output layer are

determined by the time-efficient least-squares method (Qu et al., 2016). The output weight is

obtained by minimizing the mean square error (MSE) during the training process. Therefore, it has a

fast-training speed and excellent generalization performance. DELM can be formulated as (Hussain

et al., 2021),

P = F
�
WA + 1T 5B

�
(Equation 6)

Y = bP (Equation 7)
P
E = Yt � YP =Yt � bP (Equation 8)
T
�

T
��1
b = YtP PP (Equation 9)

where F represents the activation function of the network, a sigmoid function is chosen as the

activation function so that its output is between 0 and 1. A is a combinatorial sequence of two IHIs. W,

B, b, P are input weights, the biases of the hidden nodes, the output weight, and the result value of hidden

nodes, respectively. In DELM, the output weight b is updated by constantly decreasing the evaluation error

(E) of themodel. And if E is close to zero, the prediction effect of DELM is best. Besides, to avoid overfitting,

the famous Tikhonov regularization can be used to change Equation (9) into

b = YPT
�
PPT + v2

0 I
��1

(Equation 10)

where v20>0 signifies the regularization term.
14 iScience 25, 103988, April 15, 2022
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ISSA algorithm

Because the input weights and the biases of the DELM neural network are randomly addressed, which will

reduce the accuracy of the battery’s SOH prediction. In this paper, the improved sparrow search algorithm

(ISSA), which combines elite opposition-based learning (EOBL), Cauchy-Gaussian mutation strategy, and

sparrow search algorithm (SSA), is applied to optimize the key parameters of DELM.

SSA is one of the newly metaheuristic algorithms, which consists of producers, entrants, and scouters.

Producers are responsible for finding food for whole sparrow populations. Then, scroungers decide

whether to snatch the discoverer’s food according to the food source quality. In addition, a few individuals

are selected as scouters and their task is to randomly find new foraging sites. This discovering and tracking

mode enables the SSA to have a high convergence speed and the ability to jump out of the local optimality.

And their locations are updated as follows:

Xt + 1
i;j =

8>><>>:
Xt
i;j,exp

�
� i

a,itermax

�
if R2<ST

Xt
i;j +Q,L if R2RST

(Equation 11)

Et + 1
i;j =

8>>><>>>:
Q,exp

 
Xt
worst � Xt

i;j

i2

!
if i>n=2

Xt + 1
P +

			Xt
i;j � Xt + 1

P

			,A+ ,L otherwise

(Equation 12)

Ct + 1
i;j =

8>><>>:
Xt
best + b,

			Xt
i;j � Xt

best

			 if fi>fg

Xt
i;j +P,

 			Xt
i;j � Xt

worst

			
ðfi � fwÞ+ ε

!
if fi = fg

(Equation 13)

A+ = AT
�
AAT

��1 (Equation 14)

f =

Pn
i = 1

�
ypðiÞ � ytðiÞ

�2
n

(Equation 15)

where X,E,C are the locations of producers, entrants, and scouters, respectively, which are potential

solutions for optimal input weights and hidden layer node bias of DELM neural networks. The fitness

function f is calculated by the mean absolute error (MSE) between the predicted SOH yp and the actual

SOH yt for evaluating the quality of potential optimal parameters. R2 and ST are the early warning index

and safety index that help producers efficiently search for the optimal solutions. Xi;j represents the position

of the ith sparrow in the jth dimension solution space. Xp, Xworst, Xbest refer to the best position occupied by

producers, the worst position of the whole sparrows, and the best position of the whole sparrows, respec-

tively. If i%n/2, it denotes that the ith entrant is around to the optimal parameters of DELM; while i>n/2, it

signifies that the ith entrant has poor fitness and needs to search elsewhere. fg and fw are the current best

fitness and worst fitness, respectively. When fi>fg it suggests that the sparrow is at the edge of the group

and vulnerable to predators. If fi=fg, this means that the individuals in the center of the group are aware of

the danger and need to fly to other individuals to reduce the capture risk.

The SSA algorithm has some shortcomings, such as being easy to fall into the local optimal solution and low

accuracy. In the initialization phase of SSA, the algorithm generates solutions randomly, and elite sparrows

with higher energy storage begin to guide other sparrows in the population to find food. When elite

sparrows fall into the local optimization, the foraging rate of all sparrows may slow down or even stagnate,

eventually leading to the local optimization of the entire sparrow population. EOBL can search original

initial solution and newly generated inverse solution in both directions to give momentum to the elite par-

ticles in the population (Tizhoosh, 2005). It can help elite particles jump out of the local extrema and guide
iScience 25, 103988, April 15, 2022 15
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other particles to fly towards the global optimal solution. Tubishat et al. (Tubishat et al., 2019) employed

EOBL to improve the population diversity in the initial stage of the whale optimization algorithm (WOA).

The EOBL technology was utilized to enhance the quality and speed of solutions of the cuckoo search

(CS) algorithm (Huang et al., 2016). Zhang et al. (Zhang et al., 2017) applied the EOBL strategy to avoid

the immature convergence of the GWO algorithm by balancing development and exploration. In this

paper, the EOBL is adopted for performing the search process simultaneously in all directions and

opposite directions of SSA. The mathematical definition is described as follows:

X�
i;jðtÞ = k

�
ajðtÞ + bjðtÞ

�� Xi;jðtÞ (Equation 16)� �

ajðtÞ = min XjðtÞ (Equation 17)

bjðtÞ = max
�
XjðtÞ

�
(Equation 18)

X�
i;j = rand

�
aj;bj

�
; if X�

i;j<aj or X
�
i;j > bj (Equation 19)

where Xi;jðtÞ and X�
i;jðtÞ represent the current and opposition-based solutions of the ith elite sparrow in

the j dimension, respectively; t is the current number of iterations; k is a randomnumber between 0 and 1. aj and

bj correspond to the upper and lower bounders of jth decision variable, respectively. The dynamic bounder of

the search space replaces the fixed bounder, which is advantageous for preserving the optimal solution.

Equation (19) shows that the inverse solution jumps out of the dynamic boundary, which is a feasible solution.

In addition, in the later iteration of SSA, sparrows gradually fly closer to the optimal individual, which easily

leads to the loss of population diversity. If the current optimal individual is a locally optimal solution, then

the algorithm is easy to fall into the local optimum, especially when solving high-dimensional multimodal

functions. Therefore, it should be considered to improve the search speed of the optimal solution to avoid

sparrows being attacked by predators. To solve this problem, the Cauchy–Gaussian mutation strategy is

added to SSA (Li et al., 2017). Its basic principle is to perform Cauchy–Gaussian mutation operation at

the optimal solution position to obtain a new solution. Then, the position before and after mutation is

compared, and the better position is selected to execute the next iteration. The mathematical formula is

described as follows:

Mt + 1
best = Xt

best,



1 +

1� t2

t2max

c
�
0;s2

�
+

t2

t2max

g
�
0; s2

��
(Equation 20)

s =

8><>:
1 if f ðXbestÞ<f ðXiÞ

exp

�
f ðXbestÞ � f ðXiÞ

jf ðXbestÞj
�

otherwise
(Equation 21)

where Xt
best and Mt + 1

best denote the location of the optimal sparrow before and after mutation, respectively;

s2 is the standard deviation of the Cauchy–Gaussian mutation operator; c and g represent random

variables satisfying Cauchy distribution and Gaussian distribution, respectively. tmax is the maximum

number of iterations. In Equation (20), with the increase of t, the algorithm can adaptively adjust the

dynamic parameters, which is conducive to searching for the approximate optimal solution.
Proposed methodology

For each iteration, the ISSA uses EOBL and the Cauchy–Gaussian mutation strategy to enhance the search

speed of the space and to improve the quality of the optimum sparrow. More importantly, during DELM

training process, ISSA can reduce the error between the actual value and the predicted value of the network

iteration. The implementation flowchart of the SOH estimation algorithm using ISSA-DELM is shown in

Figure S2. The algorithm is typically divided into the following six steps:

Step 1. Normalize data: obtain the RW discharge data (voltage and current) and RW charging data (current)

of sensors, and calculate two IHIs through Equations (3)–(5). Then normalize these data and divide them

into the training set and testing set.
16 iScience 25, 103988, April 15, 2022
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Step 2. Initialize parameter: where W and B represent the weight and bias of DELM respectively. n is the

population size, t denotes iteration times, ST represents the safety value of sparrow population, lb and

ub are an upper bounder of scaling factor and lower bounder of scaling factor, respectively.

Step 3. SSA for a position update: according to Equations (11)–(15), update the location of producers,

entrants, and scouters. If the new position f is smaller than that of the previous position, update the

position.

Step 4. EOBL for a position update: According to the size of f, sparrows are ranked from the best to the

worst. Note that the smaller f is, the better the sparrow is. The top 30% of sparrows are regarded as elite

sparrows, and their positions are updated according to Equations (16)–(19). According to the agreed

criterion, sparrows replace the food source with a new location to ensure that the whole evolution process

would not recede. The greedy selection is expressed as follows.(
Xi;jðt + 1Þ=Xi;jðtÞ; f

�
Xi;jðtÞ

�
<f
�
X�
i;jðtÞ

�
Xi;jðt + 1Þ=X�

i;jðtÞ; f
�
Xi;jðtÞ

�
Rf
�
X�
i;jðtÞ

� (Equation 22)

where f ðXi;jðtÞÞ represents the fitness value of the ith sparrow of the t generation in the j dimension, Xi;jðtÞ
and X�

i;jðtÞ are the positions before and after the update, respectively.

Step 5. The Cauchy–Gaussian mutation strategy for updating the best sparrow’s position: a new solution is

obtained by Cauchy–Gaussian perturbation mutation at the potential optimal solution position according

to Equations (20) and (21). And then a greedy selection operator is used to determine whether to replace

the original position. 8<:Xt + 1
best =Xt

best; f
�
Xt
best

�
<f
�
Mt

best

�
Xt + 1
best =Mt

best; f
�
Xt
best

�
Rf
�
Mt

best

� (Equation 23)

Step 6. Terminate: when meeting the termination condition, the optimal parameter combination (W, B) is

output as the input of the DELM model, and SOH is obtained through regression. Otherwise, increase the

number of iterations by 1 and return to Step 3.

By monitoring the charge and discharge of the battery in real-time, the online voltage and current of the

battery can be easily obtained using sensors. Then, two IHIs can be extracted from the battery discharging

data. Finally, these IHIs are reprocessed and input into the ISSA-DELM model to realize the online

prediction of SOH.

Before the beginning of all experiments, the data of all RW experiments are preprocessed to extract the

corresponding health indicators and the battery capacity. In addition, to quantitatively evaluate the

performance of the proposed ISSA-DELM algorithm for SOH estimation, the root mean square error

(RMSE), mean absolute error (MAE), and the absolute error (AE) are used as evaluation criteria, that is

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ðyi � by iÞ2

r
(Equation 24)Xn
MAE =
1

n
i = 1

jby i � yij (Equation 25)

b
AE = jy i � yij (Equation 26)

where n is the number of samples, yi and by i refer to the actual SOH and the predicted SOH, respectively.
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