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Background: Endometrial cancer (EC) is one of the most common gynecological
cancers. The traditional diagnosis of EC relies on histopathology, which, however, is
invasive and may arouse tumor spread. There have been many studies aiming to find the
metabolomic biomarkers of EC to improve the early diagnosis of cancer in a non-invasive
or minimally invasive way, which can also provide valuable information for understanding
the disease. However, most of these studies only analyze a single type of sample by
metabolomics, and cannot provide a comprehensive view of the altered metabolism in EC
patients. Our study tries to gain a pathway-based view of multiple types of samples for
understanding metabolomic disorders in EC by combining metabolomics and
proteomics.

Methods: Forty-four EC patients and forty-three controls were recruited for the research.
We collected endometrial tissue, urine, and intrauterine brushing samples. Untargeted
metabolomics and untargeted proteomics were both performed on the endometrial tissue
samples, while only untargeted metabolomics was performed on the urine and intrauterine
brushing samples.

Results: By integrating the differential metabolites and proteins between EC patients and
controls detected in the endometrial tissue samples, we identified several EC-related
significant pathways, such as amino acid metabolism and nucleotide metabolism. The
significance of these pathways and the potential of metabolite biomarker-based diagnosis
were then further verified by using urine and intrauterine brushing samples. It was found
that the regulation of metabolites involved in the significant pathways showed similar
trends in the intrauterine brushings and the endometrial tissue samples, while opposite
trends in the urine and the endometrial tissue samples.

Conclusions: With multi-omics characterization of multi-biosamples, the metabolomic
changes related to EC are illustrated in a pathway-based way. The network of altered
metabolites and related proteins provides a comprehensive view of altered metabolism in
the endometrial tissue samples. The verification of these critical pathways by using urine
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and intrauterine brushing samples provides evidence for the possible non-invasive or
minimally invasive biopsy for EC diagnosis in the future.
Keywords: endometrial cancer, biomarkers, metabolic pathways, metabolomics, proteomics
INTRODUCTION

Endometrial cancer (EC) is one of the most common cancers
among women in the world. According to the latest statistics, EC
accounted for 417,367 new cases and 97,370 deaths in 2020
worldwide (1). Risk factors like obesity (2), diabetes (3), and
hypertension (4) have been found to relate to the occurrence and
deterioration of EC, but the pathogenesis of EC is still unclear.
Histopathology is the gold standard for tumor diagnosis, but is
less efficient in the detection of small lesions (5). Moreover, the
traditional histopathology methods require complex operations,
which are highly invasive and may arouse tumor spread (6).
Finding biomarkers for EC can support early screening,
diagnosis, or postoperative follow-up in a non-invasive or
minimally invasive way. It has been reported that the increase
of serum cancer antigen 125 (CA125) is a sign of several types of
cancers including EC (7), but is not specific for any of the
cancers. The lack of specific screening methods, the lack of non-
invasive diagnostic methods, and the lack of comprehensive
understanding of pathogenesis for EC are the major current
problems in the study, detection, and treatment of EC.

The quantitative characterization of metabolites involved in
various metabolism pathways can reveal the dynamic status of
investigated systems, and provide opportunities for finding disease
biomarkers and investigating disease mechanisms (8). Previous
studies on EC metabolomics mainly measured a single type of
biosample, such as tissue (9, 10), plasma (11–16), serum (15, 17–
24), urine (25), and cervicovaginal fluids (26), focusing on the up-
or down-regulation of specific compounds or the selection of a
group of compounds for building diagnostic models. Though
many promising results have been achieved in identifying
metabolite biomarkers of EC, especially lipids, hormones, and
amino acids (27), the inconsistency among various biosamples in
the studies was not taken into consideration, and it is still unclear
how metabolomic pathways are perturbed in EC (28, 29). Since
metabolites are the very downstream compounds in the metabolic
process and one metabolite may participate in several reactions,
the dysregulation of a specific metabolite may result from various
processes, making it difficult to identify the real alteration of
metabolic pathways in EC solely by metabolomic analysis. The
current limitation of untargeted metabolomics on compound
identification (30) requires the utilization of other techniques,
e.g., proteomics, to fetch up. As demonstrated in studies on other
diseases like COVID-19, multi-omics analyses can facilitate the
understanding of metabolic changes related to pathogenesis (31),
and multi-organ analyses can provide a comprehensive landscape
of the corresponding disease (32).

In this work, we performed multi-omics analysis for
characterizing multiple types of clinical samples to study the
perturbation of metabolomic pathways in EC. By integrating
2

metabolomics with proteomics, a more credible explanation for
the metabolic dysregulation of EC was achieved in a pathway-
based way. By combining and comparing the results of multi-
biosamples, the selected dysregulated pathways were further
verified, and the potential of non-invasive or minimal invasive
diagnosis of EC based on metabolite biomarkers was assessed.
Forty-four EC patients and forty-three controls were recruited for
this research. The endometrial tissue, urine, and intrauterine
brushing samples were collected for proteomic and metabolomic
analysis. Intrauterine brushings are bioliquid samples collected by
aspiration biopsy using special brushes, containing a mixture of
endometrial cells, blood cells, and surrounding secretion. Based on
the differential metabolites and proteins between EC patients and
controls detected in the endometrial tissue samples, EC-related
significant pathways, such as amino acid metabolism and
nucleotide metabolism, were identified. Then, the significance of
the pathways was further evaluated using the urine and
intrauterine brushing samples. The up- and down-regulation of
the differential metabolites were compared among tissue, urine,
and intrauterine brushing samples to illustrate the diversity of
metabolism in multi-biosamples. The regulation of metabolites in
the intrauterine brushings showed similar trends to that in the
endometrial tissue, while the regulation of metabolites in the urine
showed opposite trends compared to the tissue. We also
demonstrated the potential of non-invasive or minimally
invasive biopsy for EC diagnosis using the identified metabolic
biomarkers with urine or intrauterine brushing samples.
MATERIALS AND METHODS

Chemicals
Acetonitrile (ACN), formic acid (FA), methanol, and deionized
water were all HPLC grade, from Merck (Darmstadt, Germany).
Phosphate buffered saline (PBS) and sodium dodecyl sulfate
(SDS) were from Solarbio (Beijing, China). Analytical reagent
grade acetone was from Sinopharm (Shanghai, China).
Iodoacetamide (IAA), trizma base, urea, and C18 ZipTip were
from Sigma-Aldrich (Darmstadt, Germany). Proteome grade
trypsin was from Promega (Madison, WI, USA). Bond-breaker
TCEP solution (0.5 M), triethylammonium bicarbonate (TEAB),
protease inhibitor cocktail (EDTA-free, 100X), Pierce enhanced
bicinchoninic acid (BCA) protein assay kit, and Pierce
quantitative colorimetric peptide assay kit (23275) were from
Thermo Fisher Scientific (San Jose, CA, USA).

Clinical Sample Collection and Preparation
The enrolled EC patients were all suffering from type I
endometrial carcinoma, or more specifically, grade 1 and
grade 2 endometrioid endometrial carcinoma. The enrolled
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controlsall had a normal state of endometrium, but suffered
from gynecological diseases including hysteromyoma, cyst,
endometrial polyps, and cervix diseases.

Endometrial tissues were collected after surgical intervention.
Each tissue sample (about 50 mg) was placed in a sterile container,
properly labeled, and stored at −80°C immediately after sample
collection.Urine specimenswere collected in themorning before the
day of the surgical operation and after the subjects had fasted for 10–
12 h (33). The secondmicturition was collected for each subject and
aliquots (about 5 ml) were stored at −80°C. Intrauterine brushings
were collected using a special hollow tube with a brush, as a mixture
of endometrial cells, blood cells, and surrounding secretion by
aspiration biopsy. The mixture was then added with 1 ml of ice-
cold 80% methanol/water immediately and stored at −80°C.

Metabolite Extraction
Ice-cold 80% methanol/water was used as extracting solution to
extract metabolites. Concretely, 50 mg of thawed tissue sample was
added with 1 ml extracting solution and then ground thoroughly.
Thawed urine (200 ml) was addedwith 800 ml of extracting solution
and vortexed for 15 s. The processed tissue and urine samples were
stored at −80°C overnight for a thorough extraction of metabolites.
Intrauterine brushings had already been added with the extracting
solution during collection and stored at −80°C before further steps.
All the liquid mixtures of different biosamples were then thawed
and centrifuged (12,000 rpm, 5 min, 4°C). The supernatant was
lyophilized and stored at −80°C until measurement.

Protein Extraction, Digestion, andQuantification
Tissue samples were rinsed by PBS, ground thoroughly, and
resuspended in a lysis solution (8 ml per 1-mg sample) containing
1% SDS, 8 M urea, and 1× protease inhibitor cocktail in deionized
water. Samples were then sonicated for 30 min in an ice-water bath
using an ultrasonic cell homogenizer (Ningbo Scientz
Biotechnology, Ningbo, China) with the working power ≤ 47.5 W
to avoid bubble formation. Protein extracts were obtained after
centrifugation (15,000 rpm, 15min, 4°C) and the protein level in the
supernatant was determined by the Pierce BCA protein assay kit.
One hundred micrograms of protein per sample was transferred
into a new centrifuge tube, and the final volume was adjusted to 100
ml with 8 M urea. Two microliters of 0.5 M TCEP was added and
the sample was incubated at 37°C for 1 h, and then 4 ml of 1 M IAA
was added to the sample and the incubation lasted for 40 min
protected from light at room temperature. After that, five volumes
of −20°C pre-chilled acetone was added to precipitate the proteins
overnight at −20°C. The precipitates were washed twice with 1 ml of
pre-chilled 90% acetone aqueous solution and then re-dissolved in
100 ml of 100 mM TEAB. Proteome grade modified trypsin was
added at the ratio of 1:50 (enzyme:protein, weight:weight) to digest
the proteins at 37°C overnight. The peptide mixture was desalted by
C18 ZipTip, quantified by Pierce quantitative colorimetric peptide
assay, and then lyophilized.

LC-MS/MS Analysis
For untargeted metabolomic analysis, three replicated injections
were performed for each sample. The metabolites were analyzed
Frontiers in Oncology | www.frontiersin.org 3
by an ESI-Q-TOF mass spectrometer (SCIEX TripleTOF 4600,
USA) coupled with an LC-20A HPLC system (Shimadzu, Tokyo,
Japan). Each lyophilized sample was re-dissolved in 100 ml of
95% solvent A (0.1% FA in water) and centrifuged (8,000 rpm, 20
min, 4°C) to remove the insoluble constituents. Five microliters
of the extracted metabolite sample were loaded by an
autosampler, and the metabolites were separated by a Waters
ACQUITY UPLC HSS T3 C18 column (100 × 2.1 mm, 1.8 mm,
Waters, Milford, MA, USA) with the flow rate of 0.2 ml/min.
Water (containing 0.1% FA) and ACN were used as solvent A
and B, respectively, with the gradient elution program as follows:
0–6–11–13–15–20–30–30–40 min, 5%–25%–35%–40%–55%–
95%–95%–5%–5% of solvent B. The ESI-Q-TOF was run in
information-dependent acquisition (IDA) mode with parameters
optimized as follows: (1) MS: ion spray voltage = +5,500 V; scan
range = 50–1,000 m/z; precursor ions = 15; excluding precursor
for 3 s; enabling dynamic background subtraction; (2) MS/MS:
collision energy = 45 eV.

For untargeted proteomic analysis, the peptides were re-
dissolved in solvent A (0.1% FA in water) to reach the
concentration of 0.5 mg/ml and analyzed by online nanospray
LC-MS/MS with an Orbitrap Fusion™ Lumos™ Tribrid™ mass
spectrometer (Thermo Fisher Scientific, MA, USA) coupled to an
EASY-nanoLC 1200 system (Thermo Fisher Scientific, MA,
USA). The peptide sample (3 ml) was loaded onto an analytical
column (Acclaim PepMap C18, 75 mm x 25 cm) and separated
with a 120-min gradient. The column flow rate was maintained
at 600 nl/min with a column temperature of 40°C. Water and
ACN (both containing 0.1% FA) were used as solvent A and B,
respectively, with the gradient elution program as follows: 0–4–
80–110–112–120 min, 4%–7%–20%–30%–90%–90% of solvent
B. The electrospray voltage of 2 kV versus the inlet of the mass
spectrometer was used. The mass spectrometer was run under
data independent acquisition mode and automatically switched
between the MS and MS/MS modes. The parameters were as
follows: (1) MS: scan range (m/z) = 350–1500; resolution =
120,000; AGC target = 4e5; maximum injection time = 50 ms; (2)
HCD-MS/MS: resolution = 30,000; AGC target = 2e5; collision
energy = 32; (3) DIA: variable isolation window; each window
overlapping 1 m/z; window number = 60.

Different strategies were utilized for the quality control (QC)
of untargeted metabolomic and proteomic analyses. For
metabolomic analysis, a mixed QC sample by taking a small
volume of each experimental sample served as a technical
replicate throughout the data acquisition in three respective
batches (tissue, urine, and intrauterine brushings). The EC and
control samples were analyzed alternately in a randomized order
with 3 replicates of each sample, while QC samples were injected
at the beginning of each analytical batch, every 6 samples, and at
the end of each analytical batch.

For proteomic analysis, QuiC (Biognosys AG, Switzerland)
was used to evaluate MS stability. Full peak width at half
maximum (FWHM), retention time (RT), and peak capacity of
LC, as well as MS1 area, MS1/MS2 mass accuracy, MS1/MS2
scan intensity, and TIC of MS were calculated to assess the
stability of measurement. Coefficient of variation, data
April 2022 | Volume 12 | Article 861142
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completeness, heatmap of intensity, and consistency of
identification were visualized to demonstrate the quality of
the data.

Data Analysis
For untargeted metabolomic analysis, raw data were converted to
mzXML by MSConvert software (34) and then processed with R
package XCMS (35). The retention time range for extraction was
set as 0–20 min. The generated matrices of mass spectral features
included information on m/z value, retention time, and peak
intensity. MS1 signal intensities were then normalized by the
summation of all peaks for an individual sample to calculate
relative quantity and were performed with log transformation
and auto scaling to form the matrices for subsequent statistical
analysis. Univariate and multivariate statistical analyses were
done by MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) (36).
VIP values in PLS-DA models and the p-values from t-tests on
the normalized peak intensities were used to select differential
features, the rule of which was VIP > 1 or p < 0.05. The structural
identification of differential metabolites was performed
by MetDNA (http://metdna.zhulab.cn/) (37), including
accurate mass, MS/MS spectra, and online databases: METLIN
(http://www.metlin.scripps.edu) (38).

For untargeted proteomic analysis, raw data of DIA were
processed and analyzed by Spectronaut 14 (Biognosys AG,
Switzerland) with default settings, and the retention time
prediction type was set to dynamic iRT. Data extraction was
determined based on extensive mass calibration. The ideal
extraction window was determined dynamically depending on
iRT calibration and gradient stability. Q-value (FDR) cutoff on
precursor and protein level was applied as 1%. Decoy generation
was set to mutate. All selected precursors passing the filters were
used for quantification. MS2 interference will remove all
interfering fragment ions except for the 3 least interfering
ones. The average of the top 3 filtered peptides, which passed
the 1% Q-value (FDR) cutoffs, was used as the major group
quantities. The quantitative data were local normalized before
statistical analysis. After Welch’s ANOVA test, differently
expressed proteins were filtered with p.adj value < 0.05 and
fold change > 1.5.

Multivariant statistical analyses, e.g., principal component
analysis (PCA) and partial least squares-discriminant
analysis (PLS-DA), of metabolomic and proteomic data were
performed using MetaboAnalyst 5.0. Pathway analysis and
enrichment analysis of metabolomic data were performed
using MetaboAnalyst 5.0. Functional annotation of proteins
was carried out based on the euKaryotic orthologous groups of
proteins (KOG) database and Gene Ontology (GO) annotations
(https://www.ebi.ac.uk/QuickGO/). Network analysis of
differential metabolites and differential proteins was performed
using MetaboAnalyst 5.0 based on the search tool for
interactions of chemicals (STITCH) (39) and the network
diagram was generated by Cytoscape 3.9.1 (40).

Metabolomic biomarker analysis was performed using
MetaboAnalyst 5.0. Multivariate exploratory analysis was
utilized to test the performance of models by ROC curve
analyses based on the PLS-DA algorithm. ROC curves were
Frontiers in Oncology | www.frontiersin.org 4
generated by MCCV. In each MCCV, two-thirds of the samples
were used to evaluate the feature importance. The top 2, 3, 5,
10…100 (max) important features were then used to build
classification models that were validated for 1/3 of the samples
that were left out. The procedure was repeated multiple times to
calculate the performance and confidence interval of each model.
RESULTS

In this study, 44 patients suffering from EC and 43 controls with
a normal state of endometrium were enrolled, and samples of
endometrial tissue, urine, and intrauterine brushings were
collected for metabolomic and proteomic analysis. The type of
EC for all the patients was type I endometrial carcinoma, namely
endometrioid endometrial carcinoma grade 1 (G1) and grade 2
(G2), which was estrogen dependent and closely related to
metabolic processes (41). The experimental design is illustrated
in Figure 1. Sampling details and patient information including
age, body mass index (BMI), menopausal status, previous
pregnancy circumstances, medical history of diabetes and
hypertension, smoking history, hormone replacement therapy
(HRT) history, and the grade and FIGO stage are described in the
“Materials and Methods” section and Supplementary Table 1.
Untargeted Metabolomic and Proteomic
Profiling of EC Tissue Samples
The significance of tumor tissues in EC pathogenesis research
has been demonstrated in previous studies (9, 10), and the
histopathological examination of tumor tissues is the “gold
standard” of clinical diagnosis of EC (7). Tissue samples were
obtained from 24 patients with EC and 18 controls, and
measured by both untargeted metabolomics and proteomics
for the determination of important pathways. Untargeted
metabolomics was performed using an HPLC-QTOF-MS/MS
system in the positive ion mode. Total ion-current
chromatograms (TICs) of QC samples (Supplementary
Figure 1) showed a good overlap, demonstrating the stability
and repeatability of the measuring system. A total of 4410
features were extracted from the raw data using XCMS (35).
After data normalization and transformation, PCA and PLS-DA
were performed on the metabolomic data. Results showed that
the EC group and control group can hardly be separated by the
unsupervised analysis, i.e., PCA (Supplementary Figure 2), but
can be clustered into two discriminative groups by the supervised
analysis, i.e., PLS-DA (Figure 2A). Hierarchical clustering
heatmap generated using the top 500 features with smallest p-
values (Supplementary Figure 3) also showed that the samples
from the EC group and control group bear a trend to be
distinguished, but a minority of them were wrongly classified.
The results indicated that the metabolomic characteristics
between the EC and the control groups were generally similar,
but with changes in specific features that might be derived from
the metabolomic perturbation in EC. Volcano plot (Figure 2B)
showed that many features were up- or down-regulated in the EC
group compared to the control group.
April 2022 | Volume 12 | Article 861142
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The differential features were then subjected to structure
identification by MetDNA (37). A total of 74 metabolites were
identified from the features with t-test p-values < 0.05 or PLS-DA
variable importance in the projection (VIP) values > 1
(Supplementary Dataset 1). In order to characterize the roles
of the differential metabolites, a Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis was performed using
the MetaboAnalyst 5.0 (36). Figure 2C shows the top 25
enriched pathways. The highly enriched pathways for the
differential metabolites from EC tissue samples include the
amino acid metabolism pathways (such as metabolism related
with tyrosine, arginine, proline, and alanine), nucleotide
metabolism pathways (pyrimidine metabolism and purine
metabolism), and metabolism pathways of cofactors and
Frontiers in Oncology | www.frontiersin.org 5
vitamins (such as CoA biosynthesis and biotin synthesis), most
of which are associated with energy metabolism (42).

To further explore the metabolomic changes of EC, a subset of
the tissue samples with 2 new controls, i.e., 12 EC and 11
controls, were subjected to untargeted proteomic analysis,
using a nano-UHPLC-Orbitrap-MS/MS system in the positive
ion mode. A total of 9,042 proteins were identified and quantified
by combining the EC and control groups. The heatmap
containing the intensity information and clustering results of
the protein groups (Supplementary Figure 4) showed a high
consistency among samples as well as a rough division between
the EC and control groups, suggesting the stability of the system
and the credibility of the data. PCA and PLS-DA were then
performed on the proteome data. Results showed that the EC and
FIGURE 1 | Schematic illustration of integrating metabolomic and proteomic characterization of multi-biosamples from endometrial cancer patients to identify and
verify metabolomic pathways significant to the pathogenesis of endometrial cancer.
April 2022 | Volume 12 | Article 861142
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control groups can be well clustered into two discriminative
groups by score plots of both PCA (Figure 3A) and PLS-DA
(Figure 3B), indicating that the proteomic state of EC patient
tissue samples was significantly perturbed compared with the
control ones. Volcano plot (Figure 3C) showed that there were
1,445 proteins (Supplementary Dataset 2) significantly up- or
downregulated in the EC group compared to the control group
(p.adj values < 0.05 and FC > 1.5).

To gain a deeper understanding of the significantly changed
proteins, the KOG database was applied for functional analysis.
According to the annotation results of KOG (Figure 3D), the
differential proteins were mostly distributed into 4 functional
groups: signal transduction mechanisms [T]; posttranslational
modification, protein turnover, and chaperones [O]; intracellular
trafficking, secretion, and vesicular transport [U]; and transcription
[K]. In addition to the 4 most significant functional groups, several
functional groups associated with energy metabolism were also
Frontiers in Oncology | www.frontiersin.org 6
found tobe prominent here, including the following: lipid transport
and metabolism [I], carbohydrate transport and metabolism [G],
amino acid transport andmetabolism [E], nucleotide transport and
metabolism [F], and energy production and conversion [C].
Pathway analysis of the differential metabolites and functional
analysis of the differential proteins both emphasized the role of
the bioenergetic process, especially those relating to amino acids
andnucleotides, showing consistency between themetabolome and
proteome data. Other bioinformatics analyses based on the
differential proteins, including GO functional analysis and KEGG
pathway enrichment analysis, are shown in Supplementary
Figures 5, 6. The GO classification indicates that genes relating to
the response to hormones were highly annotated, indicating a
change in the hormone state of EC (43). KEGG pathway plot
showed that half of the top 20 enriched pathways were related to
human diseases, which was well correlated with the fact that the
samples were cancer-oriented.
A

C

B

FIGURE 2 | Metabolomic analysis of EC tissue samples. (A) PLS-DA score plot for metabolomic data of tissue samples collected from EC and control groups by
LC-MS/MS in the positive ion mode. (B) Volcano plots of features from the metabolomic data with log2(FC) as the horizontal axis and −log10(p-value) as the vertical
axis. FC, fold change of EC to control. (C) Pathway enrichment analysis of differential metabolites identified from the tissue samples of EC and control groups,
showing the results of the top 25 enriched metabolomic pathways.
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Pathway Analysis Integrating Metabolomic
and Proteomic Data of Tissue Samples
To find the relation between the metabolomic and proteomic data
of tissue samples, network analysis was performed for the
differential metabolites and differential proteins according to their
chemical structures and molecular activities. The network diagram
(Supplementary Figure 7) showed a network of 28 metabolites and
135 proteins with 212 connections, from which the nodes highly
connected to others can be seen. Among them, glutamate,
dopamine, noradrenaline, adenosine 5’-monophosphate (AMP),
and guanosine 5’-monophosphate (GMP) were the major centers
of sub-networks. Meanwhile, the sub-networks of dopamine and
noradrenaline shared overlap of some nodes, and the same occurred
for the sub-networks of AMP and GMP. Glutamate, dopamine, and
noradrenaline are critical intermediates in amino acid metabolism,
Frontiers in Oncology | www.frontiersin.org 7
while AMP and GMP play critical roles in ribonucleotide
biosynthesis of purine metabolism. Incorporating the network
analysis results with the pathway enrichment results of differential
metabolites and the function classification results of differential
proteins, we further focused on the pathways of amino acid
metabolism and nucleotide metabolism.

To better understand the metabolomic dysregulation for the
pathways of amino acid metabolism and nucleotide metabolism,
the interaction among differential metabolites and differential
proteins was taken into consideration. Metabolic pathways are
composed by reactions of metabolites catalyzed by proteins, so
pathways owning direct transformation between differential
metabolites or direct interaction between differential metabolites
and differential proteins were chosen for further explanation. There
were 13 pathways selected, i.e., alanine, aspartate, and glutamate
A

D

B C

FIGURE 3 | Proteomic analysis of EC tissue samples. (A) PCA and (B) PLS-DA score plot for proteomic data of tissue samples from EC and control groups by LC-
MS/MS in the positive ion mode. (C) Volcano plots of proteins with log2(FC) as the horizontal axis and −log10(p-value) as the vertical axis. FC, fold change of EC to
control. (D) KOG functional annotation of the 1,445 proteins with significant variations in EC tissue samples compared to controls.
April 2022 | Volume 12 | Article 861142
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metabolism; arginine and proline metabolism; arginine
biosynthesis; tryptophan metabolism; phenylalanine, tyrosine, and
tryptophan biosynthesis; phenylalanine metabolism; cysteine and
methionine metabolism; beta-alanine metabolism; lysine
degradation; tyrosine metabolism; glutathione metabolism;
pyrimidine metabolism; and purine metabolism. To better
summarize the metabolomic changes in a pathway-and-
compound-based way, 6 out of the 13 selected pathways were
illustrated in detail by marking up- and downregulated metabolites
and proteins (Figure 4A). The change in specific metabolites and
proteins is shown in bar plots in Figure 4B and Supplementary
Figures 8, 9. It should be noted that the six pathways are connected
with the metabolites in the TCA cycle, which is an energy-relating
anabolic process that can promote cancer growth (42, 44, 45).
Though most of the intermediates in the TCA cycle were not
detected by the untargeted metabolomic method, the linkage of the
TCA cycle with many significant pathways indicated the essential
role of the TCA cycle in the growth of a tumor.

In alanine, aspartate, and glutamate metabolism, N-
acetylaspartylglutamate (NAAG) and N-acetylaspartylg
lutamylglutamate (NAAG2) were upregulated, and the enzyme
glutamate carboxypeptidase II (GCPII) catalyzing the reaction
from NAAG2 to NAAG as well as NAAG to N-acetylaspartate
(NAA)was also upregulated. NAAG andNAAG2 are peptide-based
neurotransmitters in themammalian nervous system and are related
toneuro functions (46). Besides the studies ofNAAGinbrain cancers
like glioma (47), it has been reported that NAAG can serve as a
reservoir to provide glutamate to tumor cells in cancers expressing
GCPII, such as ovarian cancer, where NAAG is more abundant in
moremalignant tumors and its concentration in plasma is correlated
with tumor size (48). Indeed, we have observed the upregulation of
glutamate, which further supported that the NAAG here acted as a
source of glutamate to promote cancer cell growth (49).

In glutathione metabolism, glutathione disulfide (GSSG) was
downregulated, and the enzymes glutathione-disulfide reductase
(GSR) and isocitrate dehydrogenase 2 (IDH2), catalyzing,
respectively, the process of GSSG to glutathione (GSH) and
NADP+ to NADPH, were upregulated. GSH is the most abundant
antioxidant in living organisms, and researchers have found that an
excess concentration of GSH can promote tumor progression and is
correlated with increased metastasis (50). Considering the complex
role of GSH in cancer metabolism, its insignificance of change in
metabolome was not surprising. The dysregulation of the
abovementioned metabolites and proteins indicates an endeavor of
maintaining GSH in the reduced state, with the trend of converting
NADP+ back to NADPH at the same time.

In tyrosine metabolism, dopamine was downregulated while
noradrenaline was upregulated, and the enzyme dopamine b-
hydroxylase (DBH) catalyzing the conversion of dopamine to
noradrenaline was upregulated. Dopamine is a catecholamine
associated with tumorigenesis regulation by affecting
angiogenesis and cell proliferation (51), and it can lower the
chance of cancer stem cell-induced apoptosis (52). On the other
hand, studies have also found that noradrenaline can promote an
angiometabolic switch in endothelial cells to activate tumor
angiogenesis, resulting in cancer progression (53). Thus, the
Frontiers in Oncology | www.frontiersin.org 8
insufficiency of dopamine and redundancy of noradrenaline
emboldened by the activated DBH can both accelerate the
growth of a tumor.

In cysteine and methionine metabolism, cystathionine and
branched-chain amino acid transaminase 1 (BCAT1) were both
upregulated. Cystathionine is a dipeptide generated from serine
and homocysteine. A study in breast cancer found that
cystathionine accumulates in tissue for cancer cells to gain
additional homeostatic stability to their endoplasmic reticulum
and mitochondria, elevating the apoptotic threshold (54).
BCAT1 catalyzes the catabolism of branched-chain amino
acids (BCAAs), and the association of BCAAs with different
cancer phenotypes has been demonstrated in a series of studies
(55, 56). The overexpression of BCAT1 promotes tumor growth
in gynecological cancers, as in ovarian cancer (57) and breast
cancer (58). Therefore, the upregulation of both cystathionine
and BCAT1 promotes the growth of a tumor.

Nucleotide metabolism includes the generation of purine and
pyrimidine molecules for critical procedures like DNA replication,
RNA synthesis, and cellular bioenergetics (59). The activation of
nucleotide metabolism can promote the uncontrolled growth of a
tumor. Genes andproteins relating to the process have already been
considered targets of therapy (59). The dysregulation of nucleotide
metabolism has been extensively studied for cancers like glioma
(60) and breast cancer (61). There are reviews discussing the role of
nucleotide metabolism in cancers from both the proliferative (62)
and the non-proliferative (59) aspects. In this study, many
metabolites and proteins involved in nucleotide metabolism were
found to be significantly dysregulated.

In purine metabolism, pyruvate kinase (PK), adenylate kinase 2
(AK2), adenosine monophosphate deaminase 3 (AMPD3), and
cytosolic 5’-nucleotidase 3A (NT5C3A) catalyze the 4 reactions
from adenosine 5’-triphosphate (ATP) to inosine. They were all
upregulated, and AMP, inosine 5’-monophosphate (IMP), and
inosine on this reaction chain were upregulated as well, indicating
the activation of the whole pathway of purine metabolism. The
sequence of conversion further relates to the synthesis of RNA and
DNA. It has been reported that purinemetabolism could be involved
in tumor myometrial invasion of EC (63). PK has two isoforms,
PKM1 andPKM2. PKM1 expression following PKM2 loss can cause
the proliferation arrest of primary cells and alter nucleotide synthesis,
which can influence cell growth (64). AK2 catalyzes the reaction of
nucleotide phosphorylation (65). Its localization in mitochondrial
intermembrane suggests a unique role of the enzyme in energy
metabolism (66). Recent studies provided evidence that AK2 is
overexpressed in lung adenocarcinoma, and is associated with
tumor progression (67). AK2 has the potential of being a
radiosensitive biomarker to predict the toxicity of radiotherapy to
normal tissue (68). AMPD3 catalyzes the hydrolytic deamination of
AMP to form IMP (69), whose overexpression is associated with the
malignant characteristics of gastrointestinal stromal tumors (70).
AMPD3also showed a significantly enhanced level in prostate tumor
tissue, indicatinghighoxidative stress and frequent transformationof
nucleotides to nucleosides (71).

In pyrimidine metabolism, despite an absence of significantly
differential proteins, the change of metabolism could also be seen
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from the dysregulation of metabolites. Cytidine deaminase
(CDA) catalyzes the hydrolytic deamination of cytidine to
uridine (72), and it has been proven that CDA deficiency leads
to DNA damage (73), associating with cancer development (74).
The upregulation of cytidine and downregulation of uridine in
this study suggests a lack of CDA.
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Verification of the Significant Pathways
Using Urine and Intrauterine
Brushing Samples
Since the collection of tissue samples cannot avoid invasive
procedures like biopsy, hysteroscopy, or surgery, there is a
high demand for diagnosis methods with non-invasive or
A

B

FIGURE 4 | Illustration of the significant pathways and differential metabolites and proteins relating to energy metabolism connected to the TCA cycle. (A) Pathway overview
of amino acid metabolism and nucleotide metabolism. Circles represent metabolites and rectangles represent proteins. Red-filled circles or rectangles indicate that the
metabolites or proteins are upregulated in the EC group compared to the control group, and blue-filled ones indicate downregulation. Gray-filled circles represent the identified
but not significantly changed metabolites, and the white-filled ones represent the unidentified metabolites to better connect and explain the pathways. Solid lines indicate direct
reactions between metabolites, while dashed lines indicate multi-step reactions. (B) Normalized intensity of metabolites and proteins involved in the illustrated pathways. NAAG,
NAAG2, GSSG, GCPII, GSR, IDH2, DBH, BCAT1, PKM, AK2, AMPD3, and NT5C3A represent N-acetylaspartylglutamate, N-acetylaspartylglutamylglutamate, glutathione
disulfide, glutamate carboxypeptidase II, glutathione-disulfide reductase, isocitrate dehydrogenase 2, dopamine b-hydroxylase, branched chain amino acid transaminase 1,
pyruvate kinase M1/2, adenylate kinase 2, adenosine monophosphate deaminase 3, and cytosolic 5’-nucleotidase 3A, respectively. Error bars represent the standard
deviation. “*”, “**”, and “***” indicate p-values smaller than 0.05, 0.01, and 0.001, respectively. See also Supplementary Figures 8, 9 for other significant metabolites
and proteins.
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minimally invasive sampling. Urine and intrauterine brushing
samples can be collected in a non-invasive or minimally invasive
way. The significant pathways identified using tissue samples
were then verified by the metabolomic analysis of urine and
intrauterine brushing samples, focusing on the metabolites
relating to the pathways of amino acid metabolism and
nucleotide metabolism. Urine samples were obtained from
another 10 patients with EC and another 12 controls. Intrauterine
brushing samples were obtained from 10 patients with EC and 11
controls, different from the donors of tissue and urine samples.
Untargeted metabolomic analysis, data processing, and structure
identification were done in the same way as for the tissue samples.
TICs of QC samples (Supplementary Figures 10A, 11A) showed a
good overlap, demonstrating the stability and repeatability of the
measuring system. A total of 8,066 features were obtained for the
urine samples with 349 differential metabolites (p-values < 0.05 or
VIPvalues>1)being structurally identified.A total of 4,296 features
were obtained for the intrauterine brushing samples with 93
differential metabolites (p-values < 0.05 or VIP values > 1) being
structurally identified. Statistical analysis based on features,
including PCA score plots, PLS-DA score plots, and volcano
plots, is shown in Supplementary Figures 10, 11. From the
volcano plots, there is a trend of general downregulation of urine
metabolites in EC patients.

To verify the 13 selected pathways by the analysis of tissue
samples, we focus on the metabolites identified from the urine and
intrauterine brushing samples related to the 13 pathways. The lists
of 285 urine metabolites and 122 intrauterine brushingmetabolites
are shown in Supplementary Dataset 3. For each pathway of both
biosamples, the numbers of metabolites that were detected and
significantly regulated between the ECand control groups (p-values
< 0.05 or VIP values > 1) are shown in Figure 5A and
Supplementary Table 2. Metabolites of all the 13 pathways were
also highly identified and altered for the urine EC samples, and 10
out of 13 for the intrauterine brushing EC samples.

We then assessed whether the 285 urine metabolites and the
122 intrauterine brushing metabolites relating to the 13 pathways
could include potential biomarkers for the classification of EC
patients and controls. PLS-DA was used as the classification
method. Cross-validations (described in the “Materials and
Methods” section) were performed to generate the receiver
operating characteristic (ROC) curves (Figures 5B, C). For the
urine samples, the highest area under the curve (AUC) was 0.808
with the top 100 selected metabolites, but the AUC values did not
change much when changing the number of selected top
metabolites from 5 to 100 (Figure 5B). The results indicated
that urine metabolites relating to the 13 pathways selected by the
analysis of tissue samples can serve as potential biomarkers for
the identification of EC, and the models based on top several
significant metabolites showed good classification performance.
Some of the significant urine metabolites, which were selected
most frequently (among the top 15, frequency ≥ 0.94) during the
100-feature-model based cross-validation, are shown in the bar
charts (Figure 5D). Most of the significant metabolites were
downregulated in the urine samples of EC patients compared to
the controls.
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For the intrauterine brushing samples, the AUC values
increased with the number of selected metabolites and reached
the highest AUC value of 0.847 with 100 selected metabolites
(Figure 5C). The result indicated that for intrauterine brushing
samples, limited metabolites (5–25) were not sufficient for
building classification models because of the fluctuation of
different metabolites. Some of the significant intrauterine
brushing metabolites, which were selected most frequently
(among top 25, frequency = 1.0) during the 100-feature-model-
based cross-validation, are shown in the bar charts (Figure 5E).

To compare the metabolomic changes in tissue, urine, and
intrauterine brushings, the 74 significant metabolites identified
from tissue samples were chosen, and the regulations of the
metabolites were compared among the three types of samples. The
log2(FC) values between the EC patients and controls are shown as a
heatmap inFigure6. Among the 74metabolites, 47wereupregulated
and 27were downregulated in the tissue samples. Forty-nine of them
were alsodetected and identified inurine samples,with 6upregulated
and 43 downregulated, showing, in general, an opposite trend
compared to the tissue metabolites. Twenty-one of the 74
metabolites were detected in the intrauterine brushing samples,
with 9 upregulated and 12 downregulated, which showed a
generally consistent trend compared to the tissue metabolites.
DISCUSSION

Metabolomic analysis is an increasingly attractive approach to
researching EC (27–29). Researchers have focussed on the
diagnosis of EC (9–14, 16, 18–26), the differentiation of EC stages
(10, 18, 20, 22), the influence of risk factors (13, 15–17), and the
possible pathogenesis of tumor development (9–14, 17–22, 24–26)
using metabolomic methods. These studies have provided massive
information for EC, like the alteration of metabolomics, the
establishment of possible diagnosis models, and the enrichment of
critical metabolism pathways. Every single study can provide pieces
of enlightening results. However, limited correlation among the
different studies can be identified, and sometimes contradictionmay
even be found. This is mainly due to the diversified sample
collection and measurement strategies used in different studies.
Thus, there are results like alanine, leucine, tyrosine, and valine
upregulated in tissue (9) but downregulated in serum (22), and
serine upregulated according to GC-MS-based analysis (22) but
downregulated according to NMR-based analysis (18) in the
metabolomics study of EC. In addition, as one metabolite can be
involved in multiple reactions, the dysregulation of a specific
metabolite can be a result of several different processes. Therefore,
it is difficult to identify the real altered metabolic pathways in EC
solely by metabolomic analysis.

In this work, we applied multi-omics analyses to multiple
types of biosamples, aiming at exploring the metabolomic change
of EC in a pathway-based instead of metabolite-based way. To
gain a more reasonable illustration of this view, the patients
selected for the EC group were all women suffering from type I
endometrial carcinoma, including endometrial carcinoma G1
and G2. Since type I EC is correlated with prolonged estrogen
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A

B D

C E

FIGURE 5 | Pathway and biomarker analyses with EC urine and intrauterine brushing samples based on the 13 selected pathways by the analysis of EC tissue samples.
(A) Numbers of detected and significant metabolites (p-values < 0.05 or VIP values > 1) from the urine and intrauterine brushing samples relating to the 13 selected
pathways. (B, C) ROC curves for the classification of EC patients and controls using the metabolites detected in (B) urine and (C) intrauterine brushing samples relating
to the 13 selected pathways. PLS-DA was used as the classification method, and 100 rounds of Monte Carlo cross-validation were performed to generate the ROC
curve. Details are described in the “Materials and Methods” section. (D, E) The normalized intensity of representative metabolites detected in (D) urine and (E) intrauterine
brushing samples relating to the 13 selected pathways. NAAG represents N-acetylaspartylglutamate. “*”, “**”, and “***” indicate p-values smaller than 0.05, 0.01, and
0.001, respectively. See also Supplementary Figures 12, 13 for other significant metabolites.
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exposure and does not have progesterone protection, it has been
proved to be sensitive to the change in metabolism (75).

Starting with the integration of metabolomic and proteomic
analysis of tissue samples, we take advantage of the fact that
proteins catalyze chemical reactions among metabolites and
embody information of genes. While metabolites function as the
substrates or products of metabolomic reactions, the regulation of
proteins can provide clear information on the activation or
inactivation of metabolomic reactions. Blending the alteration of
proteins into the network of metabolites, a more evident map of
changes in metabolomic pathways can be obtained. Herein, by
integrating the proteomic and metabolomic analysis, significant
pathways of amino acid metabolism and nucleotide metabolism
were revealed. Meanwhile, the network illustration connecting
pathways of amino acid metabolism and nucleotide metabolism
not onlyprovides apossible explanation for energymetabolism inEC
but also offsets some shortcomings of metabolomic measurement. A
previous review has pointed out that the downregulation of amino
acids can be a signal of EC, but the changes in amino acids are not
significant (28). Although no significantly changed amino acidswere
identified in the tissue samples in this work, the network illustration
shows that the amino acid metabolism pathways are significantly
changed and can be alternatives to the amino acid themselves as
biomarkers of EC.
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Based on the proteomic and metabolomic analysis results of
tissue samples, we moved forward to the metabolomics of urine
and intrauterine brushings. Non-invasive diagnosis by urine and
vaginal samples has been reported (76). Urine collection is non-
invasive but research on EC urine metabolomics is still limited
(25). Using special brushes to collect intrauterine fluids is a
minimally invasive method now widely used in clinical diagnosis
(77, 78), but to date, there is no metabolomics study on
intrauterine brushings for EC. Non-invasive or minimally
invasive sample collection strategies for disease diagnosis are
an undeniable future trend, but the theoretical and experimental
foundation is indispensable. In contrast to diagnosis by
videography or pathology, the “invisibility” of metabolomics
prompts the method to require more evidence and verification
before clinical usage. Compared with tissues and intrauterine
brushings, which can be regarded as “in situ” collected tumor-
related samples, urine contains additional metabolomic
information of other organs, such as the metabolic process in
the kidney and bladder, wherein the possibility of EC affecting
the functions of the organs cannot be excluded in the urine-based
metabolomics study of EC (79).

The metabolomic analysis of urine and intrauterine brushings
are not only a verification of the results obtained with the tissue
samples, they also preliminarily demonstrate the feasibility of EC
A B

C

FIGURE 6 | The regulation of significant metabolites identified from tissue samples compared to those in urine and intrauterine brushing samples. Heatmaps show
the comparison of log2(FC) values (EC patients to controls) between (A) tissue and urine, (B) tissue and intrauterine brushings, and (C) urine and intrauterine
brushings. Red indicates upregulation; blue indicates downregulation; dark indicates no change.
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diagnosis using urine or intrauterine brushing metabolites.
Monte Carlo cross-validation (MCCV) was performed for the
identification of EC using the models built with urine or
intrauterine brushing metabolites, while the metabolites were
selected based on the 13 significant pathways, relating to the
amino acid metabolism and nucleotide metabolism, suggested by
the analysis of tissue samples. The results again proved the
significance of the 13 pathways in urine and intrauterine
brushing samples. It should be noted that since the metabolites
for building the classification models were not directly chosen by
machine learning from the metabolomic data of urine and
intrauterine brushings, the models were not optimized in
distinguishing EC patients and controls. For minimal and non-
invasive diagnosis of EC, future work is needed for the
metabolomic study of large cohorts of intrauterine brushings
and urine samples to find biomarkers and build reliable
classification models.

The comparison of the FC values (EC/control) of significant
metabolites among the samples of tissue, urine, and intrauterine
brushings showed that many metabolites were regulated in
opposite ways in tissue and urine, while most of the
metabolites kept a consistent regulation trend in tissue and
intrauterine brushings. Intrauterine brushings are more closely
related to tissue, while urine is a biofluid reflecting very
downstream metabolism after the treatment of several organs
(80, 81). The opposite trend could also be related to a hypothesis
that the abnormal metabolism in a tumor may result in the
accumulation of metabolites in lesions, thus decreasing their
concentrations in urine. In this study, results were limited
because different cohorts were involved in the metabolomic
analysis of tissue, urine, and intrauterine brushing samples,
making it difficult to compare in a paired way. Nevertheless, all
the analyses demonstrated the significance of amino acid
metabolism and nucleotide metabolism in EC, which again
strengthen the conclusion.

In summary, this study demonstrated the important roles of
amino acid metabolism and nucleotide metabolism in EC using
multi-biosamples, illustrating the network interaction between
metabolites and proteins, as well as among pathways. We also
provided supporting evidence for the non-invasive or minimally
invasive diagnosis of EC using urine and intrauterine brushing
samples with metabolomic analysis. We expect that more
comprehensive multi-omics analyses will be applied to the
study of EC to further explore the mechanism and that simpler
but effective diagnostic methods can be developed based on
further research on multi-biosamples.
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