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Introduction
DNA double-strand breaks (DSBs) represent the most deleteri-
ous threat to genome stability. If not properly repaired, DSBs 
often lead to chromosome deletions or translocations and, con-
sequently, premature cell death or oncogenic transformation 
(Vilenchik and Knudson, 2003). Three major pathways have 
been identified to repair DSBs: nonhomologous end joining 
(NHEJ), homologous recombination (HR), and single-strand 
annealing (SSA; Baumann and West, 1998; Karran, 2000; Pastink 
et al., 2001). NHEJ usually polishes and then directly joins 
DNA ends in an error-prone process. HR repairs DSBs by copy-
ing the missing information from a homologous sequence, 
which is usually the sister chromatid in mitotic cells. SSA can 
repair a break that occurs between two direct repeats, and the  
final product effectively retains only one of the two repeats. HR 
and SSA are both homology based and require the processing of 
DSB ends into 3 single-strand tails (ss-tails; Symington, 2002). 

In HR, the 3 ss-tail invades the homologous chromosome, 
whereas in SSA the 3 ss-tails from the two sides of the break 
anneal with each other.

Although the general scheme of the major DSB repair 
pathways has been outlined, many fundamental mechanistic 
questions remain poorly understood. For example, many human 
disease proteins, such as Brca1 and Brca2, have been implicated 
in DSB repair, but their exact mechanistic roles are still ambigu-
ous despite intensive research. Another protein of great impor-
tance and the focus of this study is replication protein A (RPA), 
the eukaryotic single-strand DNA (ss-DNA)–binding protein 
(SSB; Wold, 1997). Through both ss-DNA binding and specific 
protein–protein interactions, RPA has been shown to participate 
in DNA replication, nucleotide excision repair, base excision 
repair, mismatch repair, and the ataxia telangiectasia and Rad3 
related (ATR)–mediated checkpoint activation (Fanning et al., 
2006). There is also evidence for RPA to function in DSB  
repair, in particular homology-dependent DSB repair. RPA  
interacts with recombination protein RAD51 and promotes the 

Replication protein A (RPA), the eukaryotic single-
strand deoxyribonucleic acid (DNA [ss-DNA])–
binding protein, is involved in DNA replication, 

nucleotide damage repair, mismatch repair, and DNA 
damage checkpoint response, but its function in DNA 
double-strand break (DSB) repair is poorly understood. 
We investigated the function of RPA in homology- 
dependent DSB repair using Xenopus laevis nucleoplas-
mic extracts as a model system. We found that RPA is 
required for single-strand annealing, one of the homology- 
dependent DSB repair pathways. Furthermore, RPA  

promotes the generation of 3 single-strand tails (ss-tails) 
by stimulating both the Xenopus Werner syndrome pro-
tein (xWRN)–mediated unwinding of DNA ends and  
the subsequent Xenopus DNA2 (xDNA2)–mediated 
degradation of the 5 ss-tail. Purified xWRN, xDNA2, 
and RPA are sufficient to carry out the 5-strand resec-
tion of DNA that carries a 3 ss-tail. These results  
provide strong biochemical evidence to link RPA to a 
specific DSB repair pathway and reveal a novel function 
of RPA in the generation of 3 ss-DNA for homology- 
dependent DSB repair.
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studies suggest that the mechanism for 5-strand resection at 
DSBs is highly conserved in yeast, Xenopus, and mammals.

The helicase activity of xWRN and the 5→3 ss-DNA 
exonuclease activity of xDNA2 are both dramatically stimulated 
by RPA (Chen et al., 2001; Liao et al., 2008). This raises an in-
teresting question about RPA’s own role in homology-dependent 
DSB repair and 5-strand degradation. In this study, we use  
Xenopus egg extracts and biochemical characterizations of the 
relevant purified proteins to investigate these questions. We find 
that RPA is important for the SSA pathway of DSB repair. More-
over, we find that RPA is important for the degradation of the 5 
strand to generate the 3 ss-tail. At the mechanistic level, RPA stim-
ulates both the xWRN-mediated unwinding of ds-DNA ends and 
the subsequent xDNA2-mediated 5→3 degradation of ss-DNA. 
Furthermore, purified xWRN, xDNA2, and RPA are sufficient to 
degrade DNA that carries a 3 ss-tail. These results not only pro-
vide the first biochemical evidence to link RPA to a specific  
homology-based DSB repair pathway in an in vitro system that 
fully reconstitutes SSA but also increase our understanding of 
the mechanism of 5-strand degradation at DNA ends.

Results
RPA is required for SSA
We first analyzed the effect of RPA on the homology-dependent 
SSA pathway of DSB repair. SSA can be efficiently reconsti-
tuted in NPE with a linear DNA carrying two direct repeats 
(Yan et al., 2005). Specific anti-RPA antibodies were used to 
deplete it from NPE to a level below detection (>99% depletion; 
Fig. 1 A). The substrate, pRW4*, was a 5.6-kb linear DNA with 
a 1.2-kb Tet gene on each end (and the two cohesive ends were 
partially filled in with TTP and deoxy-CTP (dCTP) to block the 
simple religation of cohesive ends; Yan et al., 2005). In mock-
depleted NPE, pRW4* was efficiently repaired by SSA (and 
NHEJ) into a series of products that increased in size over time 
as expected (Fig. 1 C, lanes 7–9). SSA was mostly an inter
molecular reaction, and the major products were a 10-kb linear 
DNA (Fig. 1 C, arrow) and higher molecular weight bands  
(Fig. 1 C, bracket). The 10-kb DNA is formed from two pRW4* 
with one of the two junction repeats effectively deleted. 
NHEJ gave rise to three products (Fig. 1 C, asterisks), corre-
sponding to supercoiled circular monomers, relaxed circular 
monomers, and linear dimers. The higher molecular weight 
products are linear arrays formed by the continued addition of 
pRW4*, mostly through SSA. As shown in Fig. 1 C (lanes  
4–6), RPA depletion caused a dramatic reduction in the for-
mation of the SSA products. The formation of NHEJ prod-
ucts, in contrast, was little affected. To ensure that this effect 
was specific, we added the purified RPA back to the RPA- 
depleted NPE to determine whether it can complement the 
defect. As shown in Fig. 1 C (lanes 1–3), in the presence of 
the purified RPA, SSA products were again easily detected 
(the less than complete rescue was largely caused by the tech-
nical difficulty in adding a sufficient amount of RPA to the 
depleted NPE without over diluting it). Together, these data 
indicate that RPA is indeed required for the SSA pathway of 
DSB repair in NPE.

coating of RAD51 onto ss-DNA and strand invasion (Golub  
et al., 1998; Stauffer and Chazin, 2004; Wang and Haber, 2004). 
It also interacts with RAD52 and promotes the complementary-
strand annealing activity and repair center formation of RAD52 
and HR (Mortensen et al., 1996; Park et al., 1996; Sung, 1997; 
Hays et al., 1998; Shinohara et al., 1998; Sugiyama et al., 1998; 
Plate et al., 2008). Genetic analyses have suggested that RPA 
participates in homology-dependent repair between direct repeats, 
gene conversion, and SSA, but the effect can be either stimula-
tory or suppressive depending on allele and assay (Firmenich et al., 
1995; Smith and Rothstein, 1995; Hays et al., 1998; Umezu  
et al., 1998). Knockdown of RPA by siRNAs in mammalian cells 
also suggests that RPA plays an important role in homology- 
dependent DSB repair (Sleeth et al., 2007). However, the fact 
that RPA participates in so many DNA transactions complicates 
a rigorous mechanistic dissection of its role in DSB repair.

Like other biological processes, a thorough understanding 
of DSB repair should benefit greatly from in vitro systems that 
can reconstitute the various repair pathways. One powerful  
in vitro system is the extract derived from the eggs of the frog 
Xenopus laevis. This system can efficiently join various DNA 
ends via a Ku-dependent NHEJ mechanism (Thode et al., 1990; 
Labhart, 1999). A derivative extract, prepared from nuclei re-
constituted in total egg extracts and, thus, called nucleoplasmic 
extract (NPE), can efficiently reconstitute SSA (Yan et al., 
2005). More recently, we have further explored NPE for study-
ing the processing of double-strand DNA (ds-DNA) ends, which 
is the first reaction for both SSA and HR (Toczylowski and Yan, 
2006). We have found that ds-DNA ends are degraded in an 
ATP-dependent manner and in the 5→3 direction to generate 
3 ss-tails, as expected of homology-dependent DSB repair 
pathways. A major (but not the only) pathway can be divided 
into two steps: the ATP-dependent unwinding of ds-DNA ends 
and the ATP-independent 5→3 degradation of ss-DNA tails. 
Moreover, we have found that the major helicase for end un-
winding is the Xenopus Werner syndrome protein (WRN [xWRN]), 
whereas a major 5→3 single-strand exonuclease is the Xenopus 
DNA2 (xDNA2; Toczylowski and Yan, 2006; Liao et al.,  
2008; Wawrousek et al., 2010). This mechanism is remarkably 
similar to the one suggested for the Escherichia coli RecQ  
helicase and RecJ 5→3 ss-DNA exonuclease (Handa et al., 
2009). It is also supported by many observations in yeast and 
mammalian cells. In budding yeast Saccharomyces cerevisiae, 
the RecQ-type helicase SGS1 and nucleases DNA2 and EXO1 
participate in the 5-strand processing of DSBs (Mimitou and 
Symington, 2008; Zhu et al., 2008; Budd and Campbell, 2009). 
In mammalian cells, the Bloom syndrome protein (BLM), an-
other RecQ-type helicase, and EXO1 act in parallel pathways to 
promote end processing (Gravel et al., 2008). Studies in S. cere-
visiae further suggest that these two pathways act downstream 
of MRX (MRE11-RAD50-XRS2) and Sae2 (Mimitou and 
Symington, 2008; Zhu et al., 2008). Notably, homologues of 
MRX (MRN [MRE11-RAD50-NBS1]) and Sae2 (C-terminal–
binding protein–interacting protein [CtIP]) are also important 
for strand resection in mammalian cells (Jazayeri et al., 2005; 
Sartori et al., 2007; Chen et al., 2008) and Xenopus egg extracts 
(You et al., 2009; Wawrousek et al., 2010). Collectively, these 
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less efficient than RPA in supporting end processing (Fig. 2 B). 
The molar amount of gp32 used was four times that of RPA and, 
thus, sufficient to bind approximately the same amount of ss-DNA 
as RPA could (Chen et al., 2001). Collectively, these data suggest 
that RPA stimulates the 5→3 processing of DNA ends and 
does so by mechanisms that appear to involve not only the stabili-
zation of ss-DNA by the coating of SSBs but also the physical 
interactions between RPA and other end processing proteins.

RPA stimulates the xWRN-mediated 
unwinding of DNA ends
What might be the mechanistic role for RPA in DNA end pro-
cessing? We have previously shown that a major (but not the 
only) end processing pathway in NPE can be divided into at least 
two steps: the unwinding of ds-DNA ends and the 5→3 degra-
dation of the resulting ss-tails (Toczylowski and Yan, 2006). The 
major helicase for end unwinding is xWRN (Toczylowski and 
Yan, 2006). RPA is known to interact physically with xWRN and 
stimulates its helicase activity (Chen et al., 2001), suggesting that 
it might stimulate the unwinding step of end processing. We 
tested this hypothesis by using an assay depicted in Fig. 3 A. The 
substrate for the unwinding assay was a 48-bp oligonucleotide 
duplex (thio 5 duplex). One strand carried a biotin moiety at its 
5 end, and the complementary strand carried 24 normal nucleo-
tides in the 5 half followed by 21 thionucleotides in the 3 half 

RPA is important for DNA end processing
What might be the mechanistic role of RPA in SSA? SSA is ini-
tiated by the 5→3 processing of ends to generate 3 ss-tails, 
which are then annealed, and the resulting gaps and flaps are  
finally repaired. The function of RPA in complementary-strand 
annealing and DNA synthesis to fill in the gap is well estab-
lished, so we focused on the potential effect of RPA on the  
5→3 processing of ends. NPE contains robust activity for the 
5→3 processing of ds-DNA ends (Toczylowski and Yan, 
2006). The DNA substrate for end processing was prepared by 
linearizing pUC19 plasmid with EcoRI and then filling in the 3 
recessive ends with [32P]dATP and dideoxy-TTP (ddTTP). This 
DNA could not engage in either SSA because of the lack of  
homologous sequences at ends or NHEJ because of the block of 
ends by a dideoxynucleotide (Yan et al., 2005). When incubated 
in the mock-depleted NPE, the DNA was gradually degraded as 
judged by both SYBR gold DNA staining and 32P label (Fig. 2 A). 
However, in RPA-depleted NPE, the DNA was much more sta-
ble. Moreover, this defect could be efficiently complemented by 
the addition of the purified RPA protein (Fig. 2 A). Notably, the 
purified RPA protein by itself showed no nuclease activity,  
indicating that the complementation was not caused by the 
inadvertent introduction of some contaminating nuclease into the 
RPA-depleted NPE. An unrelated SSB, the phage T4 gp32  
protein, also provided some complementation but was much 

Figure 1.  Effect of RPA depletion on SSA. (A) Western blot of RPA- or mock-depleted NPE. RPA was detected with a rat antibody against the large subunit 
(p70). The standards for quantitation were extracts loaded at the indicated amounts relative to the depleted extracts. (B) Silver staining of the RPA protein 
purified from Xenopus egg extracts. 0.5 µg of protein was separated by a 12% SDS-PAGE and then detected by silver staining (Bio-Rad Laboratories). 
The right lane is the protein size marker (Invitrogen). (C) SSA repair in RPA- and mock-depleted NPE. 12 ng/µl of the pRW4* substrate was incubated in 
RPA- and mock-depleted NPE at room temperature, and the samples taken at the indicated times were treated with SDS-EDTA–proteinase K, separated on a 
1% TAE-agarose gel, and detected by SYBR gold staining. The NHEJ products are marked by the asterisks, and the SSA products are marked by the arrow 
and the bracket. (n) represents multiple repeats.
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We have previously shown that the 5→3 ss-DNA exonuclease 
activity of xDNA2 is dramatically stimulated by RPA (Liao  
et al., 2008). The substrate used in the study, 48mer-1, might 
form secondary structures, so it is possible that the role of RPA 
is simply to keep 48mer-1 in a single-strand state. To test this 
hypothesis, we also designed an oligonucleotide composed 
mostly of deoxyadenines (dAs; 48mer-5), which was predicted 
to be incapable of forming stable secondary structures at room 
temperature (Zuker, 2003). The two single-strand oligonucleo
tide substrates carried 32P-labeled dA (at positions 46 and 47 in 
48mer-1 and at 20 potential positions distributed between posi-
tion 22 and position 47 in 48mer-5) and bound to Streptavidin 
paramagnetic beads via the 3-terminal biotin-deoxycytidine 
(dC; see Materials and methods). As shown in Fig. 4 A, with 
48mer-1, xDNA2’s 5→3 nuclease activity was greatly stimu-
lated by RPA, confirming our previous observation (Liao et al., 
2008). The degradation stalled 12–17 nt away from beads, pre-
sumably because of steric hindrance. 48mer-5 showed slightly 
more degradation than 48mer-1 in the absence of RPA, suggest-
ing that the lack of secondary structures does improve degrada-
tion by the intrinsic nuclease activity of xDNA2. However,  
in the presence of RPA, xDNA2’s nuclease activity was still 

and two [32P]dATPs near the 3 end. The DNA was first coated 
onto Streptavidin magnetic beads and then incubated in either 
RPA- or mock-depleted NPE. End processing could only proceed 
from the 5 end of the thio-containing strand and then stall at the 
thionucleotides (Toczylowski and Yan, 2006). If there had been 
no unwinding, the thio strand would have remained annealed to 
the biotin strand and, thus, bound to the beads. If there had been 
unwinding, the thio strand would have been released into the  
supernatant. As expected, in mock-depleted NPE, the partially 
degraded thio strand was released into the supernatant (Fig. 3 B). 
In RPA-depleted NPE, in contrast, a very little amount of the thio 
strand was released into the supernatant. This defect could be res-
cued by the purified RPA protein (Fig. 3 C). The T4 gp32 protein 
was, in contrast, much less efficient in supporting end unwinding 
(Fig. 3 D). These data suggest that RPA is required for efficient 
stimulation of the xWRN-mediated unwinding of DNA ends.

RPA physically interacts with xDNA2 and 
stimulates the 5→3 ss-DNA exonuclease 
activity of xDNA2
After the unwinding of DNA ends, the 5 ss-tail is then degraded 
by the 5→3 single-strand exonuclease activity of xDNA2.  

Figure 2.  Effect of RPA on DNA end processing. (A) 4 ng/µl of linear pUC19 DNA labeled by [32P]dATP and blocked by ddTTP at the 3 end was incu-
bated in RPA-depleted NPE (supplemented with either 0.25 µM RPA or buffer) or mock-depleted NPE. One additional reaction, pUC19 incubated with 
the RPA protein only, served as a control. Samples were taken at the indicated times, treated with SDS-EDTA–proteinase K, and separated on a 1% TAE-
agarose gel. The gel was first stained with SYBR gold to detect total DNA and then dried for exposure to phosphoimager to detect 32P. The percentages of 
the substrate remaining were relative to the zero time point. (B) Differential activities of RPA and gp32 in supporting DNA end processing in RPA-depleted 
NPE. The final concentrations for RPA and gp32 were 0.25 and 1 µM, respectively. Molecular markers are given in kilobases.



255RPA and DNA end processing • Yan et al.

To address this question, we prepared an ss-DNA substrate by 
heat denaturing the 3-labeled linear ds-pUC19 DNA. We 
have previously shown that ss-DNA was degraded in NPE by 
5→3 ss-DNA exonucleases, which were mainly xDNA2 
(Liao et al., 2008). The denatured ss-DNA was incubated in 
RPA- or mock-depleted NPE and then analyzed by agarose 
gel electrophoresis. As shown in Fig. 5 A, although the  
ss-DNA was rapidly degraded in mock-depleted NPE, it was 
very stable in RPA-depleted NPE. This effect could be com-
plemented by the purified RPA protein. Interestingly, the mo-
bility of DNA was altered after incubation in RPA-depleted 
NPE in a way suggesting that most of the ss-DNA had been 
reannealed into ds-DNA, presumably by the strand-annealing 
proteins in the extract. RPA might thus facilitate ss-DNA  
degradation simply by preventing the single strands from re-
annealing. To test this hypothesis, we determined whether the 
T4 gp32 protein could substitute for RPA in ss-DNA degrada-
tion. As shown in Fig. 5 B, gp32 indeed led to a strong inhibi-
tion of strand reannealing, but the ss-DNA was degraded 
much less efficiently than in the control-depleted extract.  
Collectively, these data indicate that RPA plays an important 
role in the 5 ss-DNA degradation step of end processing. They 
also suggest that RPA does so both by physically stimulating 
the ss-DNA exonuclease activity of xDNA2 and by preventing 
the reannealing of ss-DNA strands.

xWRN, xDNA2, and RPA are sufficient to 
degrade DNA that carries a 3 ss-tail
xWRN, xDNA2, and RPA are all required for the degrada-
tion of 5 strands at DNA ends. An important mechanistic 
question is whether they are also sufficient for this reaction. 

greatly stimulated. These data suggest that efficient stimula
tion of xDNA’s 5→3 nuclease activity depends on not just 
the single strandedness of DNA but also RPA.

We next determined whether stimulation of xDNA2 is 
specific to RPA or can be accomplished with other unrelated 
SSBs. As shown in Fig. 4 B, in contrast to RPA, gp32 displayed 
no stimulatory effect, even at the 250-nM concentration. This 
dramatic difference between RPA and gp32 suggests that the 
stimulation of xDNA2’s 5→3 exonuclease activity depends 
on a direct physical interaction between RPA and xDNA2.  
To test this hypothesis, we performed a coimmunoprecipitation 
with anti-RPA antibodies. As shown in Fig. 4 C, anti-RPA anti-
bodies brought down not only RPA but also a fraction of xDNA2 
and xWRN (5%). However, the converse experiment with 
anti-xDNA2 antibodies did not bring down RPA, probably be-
cause the antibodies disrupted the interaction. To more defini-
tively demonstrate that RPA interacts directly with xDNA2, we 
expressed xDNA2 as a recombinant protein with a FLAG affin-
ity tag at the C terminus. This protein was precoated onto FLAG 
agarose beads and then incubated with the purified RPA protein. 
As shown in Fig. 4 D, the xDNA2 beads efficiently brought 
down RPA. In contrast, the control beads (preincubated with 
BSA) brought down only trace amounts of RPA. Collectively, 
these data show that RPA physically interacts with xDNA2 and 
suggest that this interaction is required to fully stimulate the 
5→3 ss-DNA exonuclease activity of xDNA2.

RPA is important for the xDNA2-mediated 
degradation of 5 ss-DNA tails
Is the stimulation of xDNA2’s ss-DNA exonuclease activity 
by RPA relevant to the degradation of 5 ss-DNA tails in NPE? 

Figure 3.  Effect of RPA on end unwinding. (A) Unwinding assay. Thin line, normal nucleotides; thick line, thio nucleotides; *, 32P label. (B) The thio 5 
oligonucleotide duplex precoated onto Streptavidin magnetic beads was incubated in RPA- or mock-depleted NPE. Samples were separated into bead and 
supernatant fractions and analyzed on a 10% native TAE-PAGE. B, beads; S, supernatant. (C) Rescue of the unwinding defect by the purified RPA protein. 
The thio 5 oligonucleotide duplex precoated onto Streptavidin magnetic beads was incubated in RPA-depleted NPE supplemented with either 0.25 µM  
of the purified RPA protein or buffer. After 30-min incubation, the reactions were terminated and analyzed in the same way as in A. The arrowhead indi-
cates the released product. (D) Differential activities of RPA and gp32 in supporting end unwinding. The final concentrations for RPA and gp32 are 0.25 
and 1 µM, respectively.
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incubated with xWRN, xDNA2, RPA, and ATP, it was efficiently 
processed (Fig. 6). All four components were required for 
this reaction. In particular, RPA could not be replaced by 
gp32, again confirming that RPA’s activity in end processing 
depends on its interaction with xWRN and xDNA2. In the 
absence of xDNA2, the preprocessed DNA was still gradu-
ally unwound, but not degraded, by xWRN and RPA. In the 
absence of RPA, DNA was stable except that the 3 label was 
gradually lost, which was consistent with the weak intrinsic 
3→5 exonuclease of xWNR (Fry, 2002). Together, these 
results demonstrate that xWRN, xDNA2, and RPA are not 
only important but also sufficient for the 5-strand degrada-
tion of preprocessed DNA.

As a 3→5 DNA helicase, xWRN is incapable of initiating 
DNA unwinding from blunt ends (Fry, 2002). Indeed, when 
xWRN, xDNA2, and RPA are incubated with blunt-ended 
linear DNA, only trace amounts of DNA degradation could 
be detected (Fig. 6). Studies in yeast have suggested that 
Sgs1 acts downstream of MRE11 and/or Sae2, which appear 
to process DNA by unknown mechanisms to a limited extent 
to provide a 3 ss-tail for the more extensive processing by 
Sgs1 and DNA2 (Mimitou and Symington, 2008; Zhu et al., 
2008). To test this hypothesis, we prepared a DNA substrate 
with preformed 3 ss-tails by limited digestion of the blunt-
ended DNA with  exonuclease. When such preprocessed 
DNA (carrying 200–750 nt of 3 ss-DNA) exonuclease was 

Figure 4.  Functional and physical interactions between RPA and xDNA2. (A) The effect of RPA on xDNA2’s 5→3 exonuclease activity against two differ-
ent single-stranded oligonucleotides. The substrates were labeled with 32P-labeled dA (marked by the asterisks) and attached to Streptavidin paramagnetic 
beads via the 3 biotin-dC. After incubation at room temperature for 1 h, the reactions were stopped with SDS-EDTA, boiled for 10 min, and separated on 
a 10% TAE-PAGE. The percentage of the substrate undegraded was relative to the total signal for each reaction. The sizes of the products were determined 
by separating on a sequencing gel (not depicted). (B) The effect of RPA and T4 gp32 on the nuclease activity of xDNA2. The substrate, 48mer-1 beads, 
was incubated with various proteins as indicated at room temperature for 1 h and analyzed similarly to that in A. (C) Coimmunoprecipitation of RPA and 
xDNA2. The immunoprecipitates were separated on an 8% SDS-PAGE, transferred to a polyvinylidene fluoride membrane, and probed for different pro-
teins by Western blotting. For RPA, a rat antibody against the p70 subunit was used for Western blotting. Untreated cytosol was loaded at the indicated 
amounts to provide the standard for quantitation. White lines indicate that intervening lanes have been spliced out. (D) Interaction between the purified 
RPA and xDNA2. FLAG beads were precoated with either recombinant xDNA2 or BSA and then incubated with the purified RPA protein. The beads and 
supernatant fractions were analyzed similarly to that in C. xRPA, Xenopus RPA. Ab, antibody.



257RPA and DNA end processing • Yan et al.

and xDNA2, which is involved exclusively in the 5 ss-tail deg-
radation step (Liao et al., 2008). RPA’s role in end unwinding is 
by stimulating the helicase activity of xWRN. It has long been 
observed that RPA can physically interact with WRN and stim-
ulate its helicase activity, but the biological significance of this 
interaction has been unclear (Shen et al., 1998; Brosh et al., 
1999; Chen et al., 2001). Our observation that RPA stimulates 
the xWRN-mediated unwinding of DNA ends for homology-
dependent DSB repair provides a rationale for this interaction. 
RPA can also physically interact with xDNA2 and stimulates its 
5→3 ss-DNA exonuclease activity. Its role in 5 ss-tail degra-
dation is thus most likely by stimulating the exonuclease activ-
ity of xDNA2. In addition to these two active roles mediated by 
protein–protein interaction, RPA also possesses a passive role 
in preventing the reannealing of ss-DNA. This passive role can 
be substituted by an unrelated SSB, such as the T4 gp32 protein, 
but the two active roles in stimulating the helicase activity of 
xWNR and the nuclease activity of xDNA2 cannot. The coupled 
mechanism of 5-strand resection thus most likely depends 
on RPA to physically interact and stimulate both the xWNR- 
mediated end unwinding step and the xDNA2-mediated 5 ss-tail 
degradation step. These three proteins form a unique module to 
catalyze the 5→3 processing of DNA ends for homology- 
dependent DSB repair. Interestingly, the E. coli RecQ helicase 
and RecJ nuclease are also stimulated by SSBs, implying that 
SSBs might play similar stimulatory roles in this 5-strand re-
section pathway (Harmon and Kowalczykowski, 2001; Han  
et al., 2006; Shereda et al., 2007). Similarly, BLM, another 
RecQ helicase that has recently been shown to participate in end 

Discussion
In this study, we use the Xenopus extract system and enzymatic 
characterizations to investigate the role of RPA in DSB repair. 
The major findings are that (a) RPA is required for SSA repair; 
(b) RPA is important for the 5→3 strand-specific degradation 
at DNA ends; (c) RPA interacts with xDNA2 and stimulates its 
5→3 ss-DNA exonuclease activity; (d) RPA promotes both 
the xWRN-mediated unwinding of ends and the subsequent 
xDNA2-mediated degradation of 5 ss-tails; (e) RPA’s function 
in 5-strand processing cannot be fully replaced by the T4 gp32 
SSB; and (f) xWRN, xDNA2, and RPA are sufficient to degrade 
the 5 strand of a 5 preprocessed DNA. As the major SSB in 
eukaryotic cells, RPA participates in probably every DNA trans-
action that involves ss-DNA. It has thus been difficult to rigor-
ously determine its role in a particular pathway without concerns 
over indirect effects from defects in other processes, such as cell 
cycle progression or transcriptional regulation. Our study using 
the Xenopus system, which does not suffer from this drawback, 
provides direct biochemical evidence to link RPA to a specific 
DSB repair pathway. Moreover, it reveals a novel role for RPA 
in stimulating the 5→3 processing of DNA ends to generate  
3 ss-tails.

The processing of ds-DNA ends into 3 ss-tails is the first 
step of homology-dependent DSB repair. RPA is important for 
the 5 strand–specific degradation of DNA ends and does so by 
promoting both the unwinding of ends and the degradation of  
5 ss-tails. This is in contrast to xWRN, which is involved exclu-
sively in the end unwinding step (Toczylowski and Yan, 2006) 

Figure 5.  Effect of RPA on 5 ss-tail degradation. (A) Denatured pUC19 DNA labeled with 32P at the 3 end was incubated in RPA- or mock-depleted NPE 
supplemented with buffer or the purified RPA protein. Samples were collected at the indicated times, treated with SDS-EDTA–proteinase K, and separated 
on a 1% TAE-agarose gel. Two additional reactions containing ss-DNA incubated with the purified RPA protein or buffer, but no NPE, served as controls.  
(B) Differential activities of RPA and gp32 in supporting ss-DNA degradation. The final concentrations for RPA and gp32 are 0.25 and 1 µM, respectively.
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can also promote some limited end processing in the absence  
of Sgs1 and EXO1. Consistent with these genetic observations, 
depletions of neither xWRN nor xDNA2 can completely 
abolish end processing in Xenopus extracts (Toczylowski and  
Yan, 2006; Liao et al., 2008; Wawrousek et al., 2010). Our  
reconstitution experiment showed that xWRN, xDNA2, and 
RPA cannot degrade a blunt-ended DNA. In addition, Xenopus 
homologues of MRX (xMRN) and Sae2 (xCtIP) are also impor-
tant for the formation of ss-DNA in Xenopus egg extracts (You 
et al., 2009; Wawrousek et al., 2010). Further studies are re-
quired to rigorously test how these other factors/pathways are 
affected by RPA.

Are the in vitro biochemical experiments relevant to 
DNA end processing on chromosomal DNA in cells? An es-
sential function for RPA in SSA is consistent with genetic 
analyses in S. cerevisiae. For example, SSA has been charac-
terized in the rfa1-t11 allele and shown to be 8.5-fold less  
efficient when compared with the wild-type strain. Another 
allele, rfa1-M2, displays a decreased rate of recombination 

processing, is also stimulated by RPA (Brosh et al., 2000).  
Thus, using a module consisting of a RecQ-type helicase,  
a 5→3 ss-DNA exonuclease, and an SSB might be a highly 
conserved mechanism for the 5-strand degradation of DNA  
ends (Fig. 7). The relative contribution of WRN and BLM (or 
other members of the RecQ helicase family) in higher eukary-
otes to 5-strand resection is likely determined by the expres-
sion level of each protein. Consistent with this idea, xWRN, 
which is the dominant RecQ helicase for end processing in 
NPE, is over five times more abundant than Xenopus BLM (un-
published data).

Although gp32 cannot substitute for RPA to stimulate the 
purified xWRN and xDNA2, it does provide a partial comple-
mentation of end processing in RPA-depleted NPE. This sug-
gests that there might be other end processing factors/pathways 
that depend on the stabilization of ss-DNA by an SSB, such as 
RPA or gp32, but do not require physical interactions with RPA. 
Genetic analyses in yeast S. cerevisiae suggest that EXO1 ap-
pears to act in a pathway parallel to Sgs1 and that MRX and Sae2 

Figure 6.  xWNR, xDNA2, and RPA are sufficient to degrade 5 preprocessed DNA. Purified xWRN, xDNA2, and RPA or gp32 were incubated with blunt-
ended DNA or 5 preprocessed DNA (labeled on the 3 end) in various combinations in the presence or absence of ATP. Asterisks indicate the 32P label. 
Samples were taken at the indicated times, treated with SDS-EDTA–proteinase K, and separated on four 1% TAE-agarose gels. The gels were first stained 
with SYBR gold and then dried for 32P. Reactions from the same gel are indicated by a bounding box, a dashed bounding box, a gray dashed box, or no 
bounding box. White lines indicate that intervening lanes have been spliced out. Molecular markers shown on the left are given in kilobases.
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Materials and methods
Extract preparation and nuclear reconstitution
Crude interphase extracts, membrane-free cytosol, and demembranated 
sperm chromatin were prepared according to the published procedures 
(Smythe and Newport, 1991). NPEs were prepared according to the pub-
lished protocol (Walter et al., 1998).

Antibody preparation
The following antibodies were used in this study: rabbit anti-RPA, rat anti-
RPA1 (the p70 subunit of Xenopus RPA), and rabbit anti-xWRN (amino  
acids 1–466). The rabbit anti-RPA antibodies were against all three sub-
units of the native RPA purified from Xenopus egg extracts (Fang and  
Newport, 1993) and used without further purification. The other two anti-
bodies were raised against the corresponding recombinant GST fusion 
proteins according to the standard procedure (Goding, 1986). The anti-
bodies were purified on affinity columns constructed with the correspond-
ing recombinant proteins according to a procedure described previously 
(Yan et al., 1993).

Immunodepletion
Immunodepletion of cytosol was performed by incubating cytosol (40 + 20 µl 
ELB [10 mM Hepes, pH 7.5, 250 mM sucrose, 2.5 mM MgCl2, 50 mM 
KCl, and 1 mM DTT]) with 20 µl protein A–Sepharose beads (Sigma- 
Aldrich) that had been precoated with rabbit anti-RPA serum or control  
serum (30 µl of serum/20 µl of beads). After incubation (with rotation) at 4°C 
for 2.5 h, the beads were removed by low speed centrifugation, and the 
supernatants were treated again with fresh beads. Immunodepletion of 
NPE was performed in a similar way except that the beads were coated 
with 40 µl of serum/20 µl of beads for a total of three rounds.

Interaction between RPA and xDNA2
For the coimmunoprecipitation experiment, 10 µl protein A–Sepharose 
beads coated with 20 µl anti-xDNA2, anti-xRPA, and control sera was  
incubated with 30 µl cytosol (diluted 1.5× with ELB) at 4°C for 1 h. The 
beads were washed sequentially with 500 µl ELB, 500 µl ELB + 50 mM 
NaCl + 0.1% NP-40, and 500 µl ELB. The bound proteins were sepa-
rated on an 8% SDS-PAGE, transferred to a polyvinylidene fluoride mem-
brane, and probed for RPA, xDNA2, and xWRN by Western blotting. 
Detection was achieved with chemiluminescence (SuperSignal; Thermo 
Fisher Scientific).

To detect the interaction between the purified RPA and recombinant 
xDNA2, the full-length xDNA2 ORF was cloned by PCR using primers de-
rived from the sequence in the database (Liu et al., 2000). After confir-
mation by sequencing, the xDNA2 ORF was subcloned into pFastBac 
(Invitrogen) to create a fusion protein with a FLAG tag at the C terminus. 
SF9 cells expressing the recombinant xDNA2 protein were collected, and 
nuclear extracts were prepared according to the manufacturer’s instruc-
tions (Invitrogen). The extracted proteins were fractionated sequentially by 
HiTrap Q (peak at 250 mM NaCl) and HiTrap Heparin (peak at 425 mM 
NaCl) columns. 50 µl of the peak heparin fraction containing recombinant 
xDNA2 or 5 µg BSA (New England Biolabs, Inc.) was coated onto 10 µl 
anti-FLAG M2 agarose beads (Sigma-Aldrich). The xDNA2 and BSA beads 
were then incubated with 20 µl of the purified RPA (80 ng/µl) at 4°C for  
1 h and then washed twice with 500 µl of buffer A50 (40 mM Tris-HCl,  
pH 8, 1 mM EDTA, 10% glycerol, 50 mM NaCl, and 1 mM DTT). Proteins 
in the beads and supernatant fractions were analyzed by Western blotting 
to detect RPA and xDNA2.

SSA and end processing assays
These assays were performed essentially as previously described (Yan  
et al., 2005; Toczylowski and Yan, 2006). The substrate for SSA, pRW4*, 
was a 5.7-kb linear DNA carrying two 1.2-kb direct repeats at the ends.  
A typical SSA assay contained 5 µl RPA- or mock-depleted NPE, 0.5 µl of 
10× ATP mix (20 mM ATP, 200 mM phosphocreatine, 0.5 mg/ml creatine 
kinase, and 50 mM DTT), and 12 ng/µl DNA in 7.5 µl of volume. The sub-
strate for end processing, linearized pUC19, carried a 32P-labeled dA and 
a ddC at the 3 ends. ss-DNA was prepared by denaturing linear pUC19 
at 95°C for 2 min and then immediately chilling it on ice for 5 min. A typi-
cal end processing reaction contained 5 µl of depleted NPE, 0.5 µl of 10× 
ATP mix, and 4 ng/µl DNA in 7.5 µl of volume. The reactions were incu-
bated at room temperature, and samples were taken at the indicated times 
and mixed with an equal volume of 2% SDS/25 mM EDTA. At the end, the 
samples were brought up to 10 µl with H2O and supplemented with 1 µl 
proteinase K (10 mg/ml). After incubation at room temperature for at least 

between direct repeats (Longhese et al., 1994). Allele rfa1-D228Y, 
which by itself does not have much effect on SSA, can par-
tially rescue the SSA defect in the rad52 mutant (Smith and 
Rothstein, 1999). There has been no direct in vivo study on 
the role of RPA in 5-strand resection in cells, but some ex-
periments do provide indirect evidence for such a role in other 
organisms. For instance, in S. cerevisiae, the rfa1-D228Y allele 
is associated with the lack of long single-stranded intermediates  
in the rad52 mutant background (Smith and Rothstein, 1999).  
A reasonable explanation is that this mutant RPA is defective 
in 5-strand resection. In addition, it has been observed that 
RPA knockdown inhibits the recruitment of the cell cycle 
checkpoint kinase ATR to ionizing radiation–induced foci 
(Zou and Elledge, 2003). ATR is activated by ss-DNA, so this 
observation is consistent with a role for RPA in stimulating 
the generation of ss-DNA in addition to its role in directly 
recruiting ATR through protein–protein interaction with ATR-
interacting protein. The insights gained from the Xenopus system 
should continue to provide detailed understanding of the mech-
anism responsible for DSB end processing, repair, and check-
point activation in cells.

Figure 7.  The WRN-DNA2-RPA–mediated DNA end processing pathway. 
After initial processing by a yet to be defined (probably a MRE11 and CtIP 
dependent) mechanism, WRN (and other RecQ-type helicases, such as 
Sgs1 and BLM) unwinds DNA ends. The 5 ss-tail is then degraded by an 
ss-DNA exonuclease, such as DNA2. RPA stimulates both reactions.
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2 h, the samples were analyzed by 1% TAE (Tris–acetic acid–EDTA)- 
agarose gel electrophoresis. Gels were first stained with SYBR gold (Invitro-
gen) and then dried and exposed to phosphoimager (BAS-2500; Fujifilm). 
The RPA protein was purified from cytosol according to a procedure similar 
to the one previously published (Fang and Newport, 1993). The final con-
centration of RPA for complementation was 0.05 µM in the DSB foci ex-
periment and 0.25 µM in the SSA and end processing assays. The T4 
gp32 protein (Affymetrix) was used at a 1-µM final concentration in the 
SSA and end processing experiments.

DNA unwinding assay
The substrate for the unwinding assay was a 48mer double-stranded oligo
nucleotide with one strand carrying a 5 biotin and the other strand carrying 
21 thionucleotides on the 3 half and a 32P label at the 3 end (Toczylowski 
and Yan, 2006). The DNA was coated onto Streptavidin magnetic beads  
(Invitrogen) according to the standard procedure. A typical unwinding re
action contained 5 µl of depleted NPE, 0.5 µl of 10× ATP mix, 0.5 µl DNA 
beads (0.5 ng/µl), and 1.5 µl ELB buffer. After incubation at room tem-
perature, 3.75 µl of each reaction was withdrawn at the indicated times and 
mixed with 11.25 µl of washing buffer (10 mM Tris-HCl, pH 8, 1 mM EDTA, 
1-M NaCl, and 0.05% NP-40). The beads were separated from the superna-
tants (10 µl of saved), washed with 15 µl of washing buffer, and resuspended 
in 10 µl of washing buffer. The supernatant and bead fractions were incubated 
with 3.3 µl of 4% SDS/50 mM EDTA, 6.7 µl H2O, and 2 µl proteinase K  
(10 mg/ml) at room temperature for 2 h and analyzed by 10% TAE-PAGE.

DNA nuclease assay
Two pairs of oligonucleotides were used to prepare the 32P-labeled, 
3-biotinylated single-stranded oligonucleotides as substrates for nu-
clease assays: 5-GGAAACAGCTATGACCATGATTAC-3/3-CCTTTGT
CGATACTGGTACTAATGCACAACCACCCACAACACACCTTG-5 and  
5-GAAAGAAGAAAAAGAAAAAGG-3/3-CTTTCTTCTTTTTCTTTTTCCTT
TCTCCTCCCTTTTTTTTTTTTTTTG-5. Each pair was annealed, extended 
with Sequenase 2.0 (Affymetrix) in the presence of [32P]dATP (diluted 15× 
with cold dATP for the second pair), dGTP, TTP, and biotin-dCTP, coated 
onto Streptavidin paramagnetic beads, and denatured with NaOH accord-
ing to the procedure described previously (Toczylowski and Yan, 2006).  
This resulted in two 48mer single-stranded oligonucleotides bound to  
beads through the biotin-dC at the 3 end. The first 48mer (48mer-1) 
has the sequence of 5-GGAAACAGCTATGACCATGATTACGTGTTG-
GTGGGTGTTGTGTGGAAC-3) and contained two 32P-labeled dA 
(underlined) near the 3 terminus. The second 48mer (48mer-5) has the  
sequence of 5-GAAAGAAGAAAAAGAAAAAGGAAAGAGGAGGG
AAAAAAAAAAAAAAAC-3 and could be labeled by 32P-dA at 20 po-
tential positions (underlined). A typical nuclease reaction contained 4 µl 
of proteins to be assayed (in A100 buffer [40 mM Tris-HCl, pH 8, 1 mM 
EDTA, 10% glycerol, 100 mM NaCl, and 1 mM DTT] or equivalent buffer), 
4 µl ELB buffer, and 0.1 µl of oligonucleotide beads (0.5 ng/µl). After  
incubation at room temperature for 60 min with rotation, the reactions 
were stopped with an equal volume of 2% SDS/25 mM EDTA, heated at 
95°C for 10 min, and analyzed by 8% TAE-PAGE.

End processing of 5 preprocessed DNA
Purified xWRN and xDNA2 have been previously published (Yan et al., 
1998; Liao et al., 2008). The DNA substrate with 5 preprocessed DNA 
(carrying 3 single-strand ends) was prepared by treating a 6-kb blunt-
ended DNA (digested with BamHI and filled in with dGTP, [32P]dATP, TTP, 
and ddCTP) with  exonuclease (New England Biolabs, Inc.; 1 U for 300 ng 
DNA in 15 µl ELB) at room temperature for 30–120 s. The reaction was 
terminated with 1.75 µl of 50-mM EDTA, heated at 75°C for 15 min, and 
supplemented with 1.75 µl of 50-mM MgCl2. Approximately 200–750 nt 
were removed from the 5 strand. 1.7 µl of purified xWRN, xDNA2, and 
RPA (0.05 µM) or gp32 (0.2 µM) in various combinations was incubated 
with either fully blunt-ended or preprocessed DNA (1 ng/µl of final concen-
tration) in 7.5-µl reactions. For reactions containing ATP, 0.5 µl of the 10× ATP 
mix was included. Samples were taken at the indicated times, processed 
as described for the regular end processing assays, and analyzed by 1% 
TAE-agarose gel electrophoresis.

The authors would like to thank Dr. Yoshihiro Matsumoto for reading the manu-
script before submission.

This study was supported by a grant from the National Institutes of 
Health to H. Yan (R01 GM57962-02).

Submitted: 20 May 2010
Accepted: 21 December 2010

dx.doi.org/10.1016/S0968-0004(98)01232-8
dx.doi.org/10.1074/jbc.274.26.18341
dx.doi.org/10.1074/jbc.M001557200
dx.doi.org/10.1371/journal.pone.0004267
dx.doi.org/10.1083/jcb.152.5.985
dx.doi.org/10.1074/jbc.M710245200
dx.doi.org/10.1074/jbc.M710245200
dx.doi.org/10.1093/nar/gkl550
dx.doi.org/10.1093/nar/26.23.5388
dx.doi.org/10.1093/nar/26.23.5388
dx.doi.org/10.1101/gad.503108
dx.doi.org/10.1093/nar/gkj503
dx.doi.org/10.1101/gad.1780709
dx.doi.org/10.1074/jbc.M006555200
dx.doi.org/10.1038/ncb1337
dx.doi.org/10.1016/S0959-437X(00)00069-1
dx.doi.org/10.1093/nar/gkn616
dx.doi.org/10.1074/jbc.275.3.1615
dx.doi.org/10.1038/nature07312
dx.doi.org/10.1038/nature07312


261RPA and DNA end processing • Yan et al.

Wold, M.S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-
binding protein required for eukaryotic DNA metabolism. Annu. Rev. 
Biochem. 66:61–92. doi:10.1146/annurev.biochem.66.1.61

Yan, H., A.M. Merchant, and B.K. Tye. 1993. Cell cycle-regulated nuclear  
localization of MCM2 and MCM3, which are required for the initiation 
of DNA synthesis at chromosomal replication origins in yeast. Genes Dev. 
7:2149–2160. doi:10.1101/gad.7.11.2149

Yan, H., C.Y. Chen, R. Kobayashi, and J. Newport. 1998. Replication focus-
forming activity 1 and the Werner syndrome gene product. Nat. Genet. 
19:375–378. doi:10.1038/1263

Yan, H., J. McCane, T. Toczylowski, and C. Chen. 2005. Analysis of the Xenopus 
Werner syndrome protein in DNA double-strand break repair. J. Cell Biol. 
171:217–227. doi:10.1083/jcb.200502077

You, Z., L.Z. Shi, Q. Zhu, P. Wu, Y.W. Zhang, A. Basilio, N. Tonnu, I.M. 
Verma, M.W. Berns, and T. Hunter. 2009. CtIP links DNA double-
strand break sensing to resection. Mol. Cell. 36:954–969. doi:10.1016/ 
j.molcel.2009.12.002

Zhu, Z., W.H. Chung, E.Y. Shim, S.E. Lee, and G. Ira. 2008. Sgs1 helicase and 
two nucleases Dna2 and Exo1 resect DNA double-strand break ends. 
Cell. 134:981–994. doi:10.1016/j.cell.2008.08.037

Zou, L., and S.J. Elledge. 2003. Sensing DNA damage through ATRIP rec-
ognition of RPA-ssDNA complexes. Science. 300:1542–1548. doi:10 
.1126/science.1083430

Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization 
prediction. Nucleic Acids Res. 31:3406–3415. doi:10.1093/nar/gkg595

Mortensen, U.H., C. Bendixen, I. Sunjevaric, and R. Rothstein. 1996. DNA 
strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. 
Acad. Sci. USA. 93:10729–10734. doi:10.1073/pnas.93.20.10729

Park, M.S., D.L. Ludwig, E. Stigger, and S.H. Lee. 1996. Physical interac-
tion between human RAD52 and RPA is required for homologous re-
combination in mammalian cells. J. Biol. Chem. 271:18996–19000. 
doi:10.1074/jbc.271.31.18996

Pastink, A., J.C. Eeken, and P.H. Lohman. 2001. Genomic integrity and the re-
pair of double-strand DNA breaks. Mutat. Res. 480-481:37–50.

Plate, I., S.C. Hallwyl, I. Shi, L. Krejci, C. Müller, L. Albertsen, P. Sung, and 
U.H. Mortensen. 2008. Interaction with RPA is necessary for Rad52 
repair center formation and for its mediator activity. J. Biol. Chem. 
283:29077–29085. doi:10.1074/jbc.M804881200

Sartori, A.A., C. Lukas, J. Coates, M. Mistrik, S. Fu, J. Bartek, R. Baer, J. Lukas, 
and S.P. Jackson. 2007. Human CtIP promotes DNA end resection. 
Nature. 450:509–514. doi:10.1038/nature06337

Shen, J.C., M.D. Gray, J. Oshima, and L.A. Loeb. 1998. Characterization of 
Werner syndrome protein DNA helicase activity: directionality, substrate 
dependence and stimulation by replication protein A. Nucleic Acids Res. 
26:2879–2885. doi:10.1093/nar/26.12.2879

Shereda, R.D., D.A. Bernstein, and J.L. Keck. 2007. A central role for SSB in 
Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282:19247–
19258. doi:10.1074/jbc.M608011200

Shinohara, A., M. Shinohara, T. Ohta, S. Matsuda, and T. Ogawa. 1998. Rad52 
forms ring structures and co-operates with RPA in single-strand DNA  
annealing. Genes Cells. 3:145–156. doi:10.1046/j.1365-2443.1998 
.00176.x

Sleeth, K.M., C.S. Sørensen, N. Issaeva, J. Dziegielewski, J. Bartek, and T. 
Helleday. 2007. RPA mediates recombination repair during replication 
stress and is displaced from DNA by checkpoint signalling in human 
cells. J. Mol. Biol. 373:38–47. doi:10.1016/j.jmb.2007.07.068

Smith, J., and R. Rothstein. 1995. A mutation in the gene encoding the 
Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 
stimulates a RAD52-independent pathway for direct-repeat recombina-
tion. Mol. Cell. Biol. 15:1632–1641.

Smith, J., and R. Rothstein. 1999. An allele of RFA1 suppresses RAD52- 
dependent double-strand break repair in Saccharomyces cerevisiae. 
Genetics. 151:447–458.

Smythe, C., and J.W. Newport. 1991. Systems for the study of nuclear assembly, 
DNA replication, and nuclear breakdown in Xenopus laevis egg extracts. 
Methods Cell Biol. 35:449–468. doi:10.1016/S0091-679X(08)60583-X

Stauffer, M.E., and W.J. Chazin. 2004. Physical interaction between replica-
tion protein A and Rad51 promotes exchange on single-stranded DNA.  
J. Biol. Chem. 279:25638–25645. doi:10.1074/jbc.M400029200

Sugiyama, T., J.H. New, and S.C. Kowalczykowski. 1998. DNA annealing by 
RAD52 protein is stimulated by specific interaction with the complex 
of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. 
USA. 95:6049–6054. doi:10.1073/pnas.95.11.6049

Sung, P. 1997. Function of yeast Rad52 protein as a mediator between replication 
protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194–28197. 
doi:10.1074/jbc.272.45.28194

Symington, L.S. 2002. Role of RAD52 epistasis group genes in homologous 
recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 
66:630–670. doi:10.1128/MMBR.66.4.630-670.2002

Thode, S., A. Schäfer, P. Pfeiffer, and W. Vielmetter. 1990. A novel path-
way of DNA end-to-end joining. Cell. 60:921–928. doi:10.1016/ 
0092-8674(90)90340-K

Toczylowski, T., and H. Yan. 2006. Mechanistic analysis of a DNA end process-
ing pathway mediated by the Xenopus Werner syndrome protein. J. Biol. 
Chem. 281:33198–33205. doi:10.1074/jbc.M605044200

Umezu, K., N. Sugawara, C. Chen, J.E. Haber, and R.D. Kolodner. 1998. Genetic 
analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. 
Genetics. 148:989–1005.

Vilenchik, M.M., and A.G. Knudson. 2003. Endogenous DNA double-strand 
breaks: production, fidelity of repair, and induction of cancer. Proc. Natl. 
Acad. Sci. USA. 100:12871–12876. doi:10.1073/pnas.2135498100

Walter, J., L. Sun, and J. Newport. 1998. Regulated chromosomal DNA repli-
cation in the absence of a nucleus. Mol. Cell. 1:519–529. doi:10.1016/ 
S1097-2765(00)80052-0

Wang, X., and J.E. Haber. 2004. Role of Saccharomyces single-stranded DNA-
binding protein RPA in the strand invasion step of double-strand break 
repair. PLoS Biol. 2:E21. doi:10.1371/journal.pbio.0020021

Wawrousek, K.E., B.K. Fortini, P. Polaczek, L. Chen, Q. Liu, W.G. Dunphy, 
and J.L. Campbell. 2010. Xenopus DNA2 is a helicase/nuclease that is 
found in complexes with replication proteins And-1/Ctf4 and Mcm10 
and DSB response proteins Nbs1 and ATM. Cell Cycle. 9:1156-1166. 
doi:10.4161/cc.9.6.11049

dx.doi.org/10.1146/annurev.biochem.66.1.61
dx.doi.org/10.1101/gad.7.11.2149
dx.doi.org/10.1038/1263
dx.doi.org/10.1083/jcb.200502077
dx.doi.org/10.1016/j.molcel.2009.12.002
dx.doi.org/10.1016/j.molcel.2009.12.002
dx.doi.org/10.1016/j.cell.2008.08.037
dx.doi.org/10.1126/science.1083430
dx.doi.org/10.1126/science.1083430
dx.doi.org/10.1093/nar/gkg595
dx.doi.org/10.1073/pnas.93.20.10729
dx.doi.org/10.1074/jbc.271.31.18996
dx.doi.org/10.1074/jbc.M804881200
dx.doi.org/10.1038/nature06337
dx.doi.org/10.1093/nar/26.12.2879
dx.doi.org/10.1074/jbc.M608011200
dx.doi.org/10.1046/j.1365-2443.1998.00176.x
dx.doi.org/10.1046/j.1365-2443.1998.00176.x
dx.doi.org/10.1016/j.jmb.2007.07.068
dx.doi.org/10.1016/S0091-679X(08)60583-X
dx.doi.org/10.1074/jbc.M400029200
dx.doi.org/10.1073/pnas.95.11.6049
dx.doi.org/10.1074/jbc.272.45.28194
dx.doi.org/10.1128/MMBR.66.4.630-670.2002
dx.doi.org/10.1016/0092-8674(90)90340-K
dx.doi.org/10.1016/0092-8674(90)90340-K
dx.doi.org/10.1074/jbc.M605044200
dx.doi.org/10.1073/pnas.2135498100
dx.doi.org/10.1016/S1097-2765(00)80052-0
dx.doi.org/10.1016/S1097-2765(00)80052-0
dx.doi.org/10.1371/journal.pbio.0020021
dx.doi.org/10.4161/cc.9.6.11049



