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APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV.

Since A3G is expressed pre-infection, it has classically been considered an agent of

innate immunity. We and others previously showed that the impact of A3G-induced

mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic

T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL

epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel

A3G action toward CTL escape. Here, we studied the depths and consequences

of this apparent viral genome co-evolution with A3G. We identified all potential CTL

epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated

A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions.

From the immune recognition perspective, we analyzed how A3G-driven mutations are

predicted to impact CTL-epitope generation throughmodulating proteasomal processing

and HLA class I binding. We found that A3G mutations were most often predicted to

result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral

genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences

encoding CTL epitopes and included control sequences in which the HIV genome

was randomly shuffled. We found that sequences encoding immunogenic epitopes

exhibited a selective enrichment of A3G hotspots, which were strongly biased to

translate to non-synonymous amino acid substitutions. When superimposed on the

known mutational gradient across the entire length of the HIV genome, we observed

a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of

A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and

extent of the co-evolution of the viral genome to subvert the host mutator A3G.
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INTRODUCTION

HIV, like other RNA viruses, evolves rapidly and continuously through the accumulation of
mutations (1). The high rate of HIV genome mutation, between 10−4 and 10−5 mutations per
nucleotide per replication cycle, is generated by HIV’s error-prone reverse transcriptase (RT)
(2–7). APOBEC3G (A3G) is a member of the apolipoprotein B mRNA-editing enzyme catalytic
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polypeptide-like editing complex (APOBEC) family of cytidine
deaminase enzymes. Malim and colleagues, in 2002, discovered
that A3G is responsible for the prevalence of G to A mutations in
HIV sequences from HIV infected individuals (8). The APOBEC
family includes 11 members in humans: activation-induced
cytidine deaminase (AID), APOBEC1, APOBEC2, APOBEC3A-
H, and APOBEC4, which, through their cytidine deaminase
activity, are involved in diverse physiological processes including
lipid metabolism, antibody diversification, virus/retroelement
restriction, and cancer genome hypermutation (9–13).

In general, the A3 branch family members are capable of
impeding infectivity of HIV and several other viral infections
such as hepatitis B, human T cell leukemia virus type 1, and
human papillomavirus (14–18) though A3G is the most effective
actor on the HIV genome (19). These enzymes exert their anti-
viral restriction activity by deamination of cytidine to uridine (C
to U) in the minus-strand single-stranded DNA during reverse
transcription of viral genomic RNA which mediates guanosine to
adenosine (G to A) mutation in plus-strand DNA (20–26). A3G
is constitutively expressed in resting CD4+ T cells, macrophages,
and dendritic cells, but can be further induced by interferon
(IFN) (27–29). It is packaged into the HIV virion in A3G-
expressing producer cells and can act on the viral genome in
the subsequently-infected cell (20). It has been shown by single-
virion analysis that A3G can be co-packed with A3F, A3D, or
A3H haplotype II and co-mutate the same viral genome in a
single cycle of HIV replication (30).

A3G has a sequence preference for mutating C in CCC, TCC,
and ACC motifs, but this preference is further modulated by
the DNA secondary structure, together mediating accumulation
of G to A mutations in viral cDNA (18, 21, 22, 24, 30–34).
A3G-mediated mutations on the HIV genome also follow a
twin gradient pattern, as determined by the central and end
polypurine tracts (PPT)’s impact on the reverse transcription
dynamics of the HIV genome altering the time that various
regions are left single-stranded and available for A3G to act
on (34, 35). Depending on the load and positions of A3G-
induced mutations, this could lead to either degradation or G
to A hypermutation in the viral genome (23, 25, 26). One of
the early observations of the contribution of A3G to producing
defective viral proteins was its ability to create premature stop
codons (36, 37). For example, the codon encoding tryptophan
(TGG) is converted by A3G to a stop codon (TGA) (37, 38).
A3G is also able to physically interfere with HIV replication
in a deamination-independent manner by blocking reverse
transcription or binding to tRNA to prevent reverse transcription
initiation (39–41). However, it appears that viral restriction has
a higher requirement for deamination-dependent A3G activity
(42–45).

Over the last decade and a half, several hundred published
studies have focused on A3G’s HIV restriction activity. A3G can
induce as many as five mutations per kilobase (22, 26, 32, 38),
at least an order of magnitude higher than RT’s error rate. It
has been suggested that HIV’s RT is only responsible for 2% of
HIV genome mutagenesis and the other 98% can be attributed
to the action of A3G (46). While high A3G activity correlates
with slower disease progression, lower A3G activity leading to

sub-lethal mutations might enhance HIV diversity and lead to
more rapid disease progression (47). In contrast, other studies
showed a much lower contribution of A3G to genetic variation of
HIV, as compared with RT-driven mutations. One study reported
negligible sub-lethal mutation frequencies as low as 4 × 10−21

and 1× 10−11 for A3G and A3Fmutations, respectively, which is
significantly lower than the frequency of mutations arising from
RT (39). Most reports suggest that HIV can experience both a
beneficial and a harmful influence from A3G expression (47–
50). Other studies reported that A3G is less likely to impose HIV
diversification and facilitate viral diversification and adaptation
in vivo, and that A3G, even at low expression levels, is lethal for
HIV (36, 51, 52).

Most studies reporting the impressively high load of A3G
mutation were carried out using Vif-deficient HIV because A3G
is antagonized by the HIV encoded accessory protein Vif (53–56).
Although Vif is necessary for HIV replication in A3G-expressing
cells, it is not required in A3G-deficient cells (8, 53–58). Vif
binding mediates proteasomal degradation of A3G, but it can
also downregulate the translation of A3G (59–61). It has been
reported that the accessory protein Vpr can also bind A3G and
mediate its proteasomal degradation (62). Thus, in the presence
of HIV’s full complement of accessory anti-A3G factors, only low
levels of mutations are induced by A3G (47, 49, 59, 63, 64).

HIV specific CD8+ cytotoxic T cell (CTL) responses and
their human leukocyte antigen (HLA) restriction are crucial
determinants of viral containment following the initial innate
immune response (65, 66). Multiple parameters such as HLA
genotype, virus sequence, and T cell receptor repertoire
contribute to CTL response effectiveness (67–72). Despite
the significant protective role of CTLs in limiting viral HIV
replication, the immune system ultimately fails to clear HIV,
at least in part because of mutations within or adjacent to
CTL epitope during the early and chronic phases of disease
progression (73). HIV is under intense evolutionary pressure for
escape mutations that lead to evasion of CTL killing and CTL
escape mutations are a major force in driving viral evolution in
acute/early chronic infection (74, 75). These mutations can be
located either inside or outside CTL epitopes, be fast or slow in
appearance, but to be selected, they ought to maintain a balance
with a cost for viral replication fitness and escape from CTL
(76–80). Mutations that facilitate immune evasion are positively
selected and become dominant in the viral population (73, 81,
82). On the other hand, sometimes amino acid alterations under
immune pressure can even confer a de novo immune response
(83).

CTL escape mutations can act through several mechanisms:
by reducing or abrogating binding of viral epitopes to HLA
Class I, disrupting intracellular epitope processing or altering
recognition by T cell receptors (84–89). Viral proteins in
infected cells are first proteolytically degraded in the cytosol
by immunoproteasomes (86, 90, 91). Proteasomal degradation
product peptides including epitope precursors can be up to 32
amino acids long; however, immunoproteasomes are inclined to
generate longer peptides ending with C-terminal hydrophobic
residues that are anchors for most HLA class I molecules. After
post-proteasomal degradation, epitope precursors typically 8–16
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amino acids in length, are transferred into the endoplasmic
reticulum (ER) lumen where HLA class I molecules are folded
and assembled, by the transporter-associated-with-antigen-
processing (TAP1 and TAP2) (92). Further N-terminal trimming
in the ER can occur by enzymes such as the ER aminopeptidases
(ERAP1 and 2) to fit the groove of restricting HLA class I
molecules (93, 94). The peptide-HLA complex is subsequently
transported to the cell surface to be recognized by CTLs.
Thus, proteasomal degradation and antigen processing are key
determinants of epitope availability for the anti-HIV CTL
response (95). In addition to mutations in epitopes, immune
escape can also be altered through mutation of the flanking
regions that impact proteasomal processing (96). It has been
shown that the robustness of the anti-HIV CTL response
correlates with the number of epitopes generated due to
proteasomal cleavage, and thus, mutations that impact processing
can drastically influence CTL escape (77–79, 89, 97–100).

The most restrictive step in antigen processing is the peptide’s
ability to bind to the specific expressed set of HLA class I
molecules using N- and C-terminal anchor residues that bind
into the groove of a specific HLA class I molecule (101).
Mutations at anchor residues can disrupt HLA class I binding,
whereas other mutations such as those at the central bulge of the
peptide (normally residues, 4–6 in the canonical 9-mer peptide)
interfere with TCR recognition of the HLA-peptide complex
(73, 84, 96, 102). It remains to be fully understood how the
host’s condition shapes the availability of beneficial mutations;
however, HLA profile is a major CTL escape driver (85, 103–
105). HLA-B is the most protective among all three HLA class
I loci (A, B, and C) (106). CTL escape and reversion pathways
are more closely associated with epitopes restricted to protective
HLA alleles such as HLA-B27 and -B57, which are associated with
slower disease progression and more robust HIV-specific CTL
responses (78, 107). Escape mutations in these HLA restricted
epitopes incur a high fitness cost by reducing viral replicative
capacity (108). In contrast, HLA-B35 and -B8 are associated with
rapid disease progression based on their ability to present less
effective epitopes to TCRs (109–113).

Mutational diversity of HIV’s genome has a crucial role
in evasion of immune recognition and multiple studies have
implicated A3G as an important player in the interplay between
the adaptive immune anti-viral CTL response viral adaptation
and immune escape (114–119). A3G has been proposed to
induce CTL escape in two ways, either by directly mutating
CTL epitopes or by causing mutations outside epitopes which
influence the peptide degradation and HLA presentation of wild-
type CTL epitopes (117, 119–121). Several reports describe A3G-
induced mutations located within or flanking CTL epitopes.
One report found remarkable evidence for enrichment of non-
synonymous amino acid substitutions by A3G in the anchor or
proximal amino acid residues of HLA-restricted epitopes that
are important in epitope processing leading to immune escape
(115). Consistent with a role for A3G in CTL escape, an earlier
bioinformatics study reported a reduction in CTL recognition as
a result of A3G mutation in epitopes (119). On the other hand,
it was demonstrated that increasing the turnover of truncated
HLA-restricted peptides, generated due to the action of A3G, can

enhance the CTL response in a mouse model of CTL responses
to HIV (120). We previously measured CTL recognition of wild-
type or A3G-mutated epitopes ex vivo by CTL fromHIV-infected
individuals. We considered a limited subset of CTL epitopes
known to elicit CTL recognition, and we focused on A3G-
induced mutations in epitope residue positions 3, 5, and 7, which
would mainly impact TCR recognition. We found that in the vast
majority of instances, A3G-induced mutations in CTL epitopes
abrogated CTL recognition of epitopes in an HLA-dependent
manner (114, 117, 118). Moreover, we showed that A3G
mutational hotspots are enriched in the viral genomic sequences
encoding immunogenic CTL epitopes in Gag, Pol, and Nef (117).
This is in agreement with the earlier study that also found
enriched A3G hotspot motifs within the rapidly diversifying CTL
escape sites in Env (119). Interestingly, and in contrast to our
findings on A3G hotspot motif enrichment in CTL-encoding
epitopes, another study reported that A3G hotspots are less
frequently located at genomic locations encoding for the V1-V5
region, the most variable regions of the gp120 envelope protein,
in order to hold in reserve its potential mutational capacity for
long-term adaption of HIV to the antibody response (122).

Most of our knowledge about epitope-specific CTL responses
in chronic HIV infection comes from studies using the standard
IFN-γ ELISpot assay (123). Besides experimental approaches, a
variety of computational tools for prediction of mutations and
their impact have provided valuable information. Different sets
of algorithms such as artificial neural networks (ANN), average
relative binding (ARB), stabilizing matrix method (SMM) and
others have enabled prediction of CTL epitopes within the viral
proteome based on HLA-binding affinity (124, 125). The web
algorithm HLA binding predictors have a broad allelic coverage
with as much as 90–95% accuracy (124–128). HLA binding and
subsequent recognition by TCR are the most selective steps in the
peptide presentation pathway (129). However, other processes
upstream of HLA binding such as proteasomal cleavage, TAP
transporter and the stability of the peptide-HLA complex also
shape viral epitope availability (130). Prediction tools, such as
NetChop and PaProC have been developed based on protein
degradation by purified proteasomes to predict potential cleavage
sites (131–134). The reliability of these tools has been shown
(135–138).

Thus, mutations that impact protein proteasomal processing
and/or epitopes’ HLA binding can lead to loss of CTL recognition
and immune escape (88, 89, 96, 139, 140), but the extent to
which A3G mutations could potentially impact each of the
successive stages of CTL epitope generation and presentation is
not known. Here we utilized the aforementioned computational
tools to construct a comprehensive CTL epitope map of
HIV based on the steps of antigen presentation: proteasomal
cleavage, TAP transporter efficiency and HLA-binding affinity.
We simulated all possible A3G-mediated mutations within and
outside CTL epitope-encoding sequences of the HIV genome.
We then examined predicted consequences for CTL epitope
generation. We also probed whether the positions and predicted
consequences of A3G-mediated mutations are random, or rather
indicative of co-evolution of the HIV genome with the action of
the host mutator. In cases where such co-evolution was observed,
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we studied the depth and extent of the strategies used by the HIV
genome to influence the outcomes of A3G activity. Since our
experimental system is devoid of the immense in vivo selection
pressure for CTL escape, and hence able to predict enhanced
generation of CTL epitopes as well as the opposite scenario of
immune evasion without bias, the analysis provides a unique lens
for considering how viral genomes co-evolve with host restriction
factors.

MATERIALS AND METHODS

A3G-Induced Mutation Simulation
Simulation of A3G-induced mutations was carried out as
previously described (117). Briefly, the whole genome of theHIV-
1 isolate HXB2 BRUwas obtained fromNCBI. This sequence was
chosen since it was used in previous works and model systems
that studied the role of A3G on HIV CTL escape (117, 119).
A3G-induced mutations (G-to-A) on the 5′-most dG in A3G’s
trinucleotide hotspot motifs considering the sense of the +ve
sense strand (GGG, GGA, and GGT) were manually simulated
and translated to amino acid sequence. For this analysis, we
considered first-round mutations. For multiple back-to-back
A3G hotspots, all possible amino acid alteration consequences of
A3G-induced mutations were considered.

Prediction of CTL Epitopes, HLA Binding,
and Proteasomal Cleavage
To generate a comprehensive list of all potential CTL epitopes
of HIV, we considered all HIV peptides that are predicted
to be efficiently processed by proteasomes and also bind
to HLA class I molecules. We identified the portions of
the HIV genome encoding known CTL epitopes using the
HIV Molecular Immunology Database (http://www.hiv.lanl.gov/
content/immunology/tables/ctl_summary.html). We evaluated
the predicted MHC binding affinity of wild-type and A3G-
mutated variant CTL epitope sequences of Gag, Pol, Env, and
Nef restricted to HLA-A02:01, -A03:01, -B57:01, and -B35:01.We
utilized epitope prediction algorithms enabling us to investigate
the impact of mutations at A3G hotspots within or in flanking
regions of the predicted and known epitopes on HLA affinity
binding, and epitope processing. Here we used NetMHCpan
4 (http://www.cbs.dtu.dk/services/NetMHCpan/) using artificial
networks (ANN) to construct a fine CTL epitope map based on
HLA-I binding. The NetMHCpan 4 server predicts binding of
peptides to any HLA molecule of a known sequence using ANNs
(127, 136, 141). Then the Immune Epitope Databases (IEDB)
server (http://tools.iedb.org/processing/) was applied for further
prediction based on proteasomal cleavage, TAP transporter
efficiency and HLA binding affinity to improve the selection of
potential epitopes. To evaluate the impact of A3G alterations
on HLA-binding, we only considered predicted epitopes with
a high-rank score between 0 and 0.5 percentile as strong HLA
binders and 0.5–2.00 percentile as weak HLA binders (136).
We then calculated a Delta from the wild-type sequence HLA
binding score to evaluate the change in predicted HLA affinity
caused by A3G-induced mutation. We set a Delta of 0.1 as a
threshold of significant difference for enhanced or diminished

HLA binding affinity, based on distribution analysis of the
difference values. We used NetChop 3.1 (http://www.cbs.dtu.
dk/services/NetChop/) to display the impact of the mutation
on proteasomal cleavage. The program C-term 3.0 network is
trained with a database consisting of 1260 publicly available HLA
class I ligands (using only the C-terminal cleavage site of the
ligands). The highest probabilities of cleavage (threshold set at
0.5) were applied based on default program recommendation
(142). To predict proteasomal cleavage sites, wild-type and A3G-
induced mutated polypeptide of Gag, Pol, Env, and Nef were
submitted to NetChop 4.

Analysis of A3G Hotspot Frequency in
Sequences Encoding CTL Epitopes at the
Nucleotide Level and Prediction of Amino
Acid Alteration Consequences
To investigate the enrichment of A3G hotspots of CTL epitopes
Gag, Pol, Env, and Nef restricted to HLA-A2:01, HLA-A3:01,
HLA-B57:01, and HLA-B35:01, we counted the number of
A3G hotspot motifs (GGA, GGG, and GGT) in CTL epitope-
encoding regions vs. non-CTL epitope-encoding sequences.
We normalized for gene size by dividing the frequency of
hotspots by the total number of analyzed nucleotides in each
gene. The normalized hotspot frequencies at the nucleotide
levels were calculated for sequences encoding CTL epitopes
restricted to each individual HLA, and non-CTL epitope
encoding sequences. Then, the ratio of hotspot frequency was
determined for inside to outside epitope-encoding sequences, for
each A3G hotspot motif and each restricting HLA. As controls
to evaluate potential A3G sequence enrichment in sequences
encoding CTL epitopes, we conducted a parallel analysis with
randomly shuffled HIV genomic sequence using the “Shuffle
DNA” function of the Sequence Manipulation Suite (http://www.
bioinformatics.org/sms2/shuffle_dna.html) resource. The HIV
sequence was randomly shuffled six independent times, and A3G
hotspot enrichment analysis was performed for each hotspot
motif and restricting HLA, using the same border locations
of sequences encoding CTL epitope sequences in the actual
HIV genomic sequence. MATLAB was used to describe the
distribution of amino acid alterations in epitope-surrounding
regions, considering a 32-amino acid boundary around each 8–
11 mer epitope, with a limit of either 2 or 4 A3G-induced amino
acid changes on either the N- or C-terminal sides of each CTL
epitope within this boundary considered to be a clustered pattern.
Graphpad Prism 5 was used to generate the schematic graph to
display the distribution of A3G-induced mutation within and in
the flanking regions of CTL epitopes Gag, Pol, Env, and Nef.

For analysis of amino acid alteration consequences of A3G
enrichment in CTL-encoding sequences, affected amino acids
(as a result of non-synonymous A3G-mediated mutations), or
non-affected amino acids (as a result of silent A3G-mediated
mutations) were determined, and frequencies of amino acid
consequences inside or outside epitope-encoding sequences were
normalized to the total amino acid number of regions of each
polypeptide (Gag, Pol, Env, and Nef) present in epitope or
non-epitope regions, for each restricting HLA. Then, the ratio
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of normalized non-synonymous to silent substitutions in CTL
epitope encoding region to non-CTL epitope encoding region
was calculated for A3G-induced mutations of Gag, Pol, Env,
and Nef, restricted to each HLA. The ratio of non-synonymous
and silent A3G-mediated amino acid substitutions in the CTL
epitope encoding region to non-CTL epitope encoding region
was calculated in two ways for each individual A3G hotspot
motif. First, the ratio of A3G-induced mutations resulting in
non-synonymous residue changes to silent mutations inside CTL
epitopes was divided by the same ratio determined for regions
of each polypeptide located outside CTL epitopes. Second, the
frequency of A3G-mediated non-synonymous mutations inside
CTL epitopes was divided by the frequency of A3G-mediated
non-synonymous mutations outside CTL epitopes, ignoring
silent consequences.

To analyze the distribution pattern of A3G hotspot
positioning in the HIV genome, we divided the entire length
of the genome into 60 bp stretches and counted the number of
A3G hotpots whose mutation would result in non-synonymous
amino acid changes or stop codon generation. This pattern
was plotted and compared against the known mutational
gradient of the HIV genome as previously described (35, 143).
In the same manner, to analyze the distribution pattern of
A3G hotspots whose mutation is predicted to result in CTL
escape, we considered, for each HLA, A3G hotpots that fall in
CTL epitope-encoding sequences and whose mutation caused a
predicted decrease in HLA binding affinity, as described above.
For each HLA, we also generated a map of the positions of CTL
epitope-encoding sequences across the entire HIV genome. We
derived a map of normalized escape potential which we defined
as the number of CTL-escape inducing A3G hotspots in each 60
bp segment, normalized (divided) by the total number of A3G
hotspots within the segment. Based on the normalized escape
potential and the number of CTL epitopes encoded in each 60
bp segment, for each HLA, we derived a map of escape factor
which we defined as the product of the number of CTL epitopes
and normalized escape potential. Thus, the escape factor value
represents the potential for A3G-induced mutations to generate
CTL-escape in any given 60 bp increment of the HIV genome.

RESULTS

Potential Wild-Type and A3G-Mutated CTL
Epitopes in Gag, Pol, Env, and Nef
We utilized NetMHCpan 4 and IEDB using ANN to construct
a CTL epitope map based on proteasomal cleavage, TAP
transporter efficiency and HLA-binding affinity. Using entire
peptide sequences Gag, Pol, Env, andNef, we generated a list of all
potential HLA-binding peptide epitopes. Although the binding
affinity data covers 172 HLA molecules (136), we restricted our
analysis to HLA-A02:01, -A03:01, -B57:01, and -B35:01 because
HLA-A02:01 and A03:01 are frequent in the population, and
HLA-B57:01 and -35:01 correlate with robust and weak HIV-
specific CTL responses, respectively. Based on the potential
definition of all possible epitopes through the presence of HLA-
binding anchor residues in the HIV proteome, the number of

all putative potential epitopes is significantly higher than those
that actually elicit CTL responses, due to limitation in either
epitope processing, presentation to TCR, and the many complex
physiological and immune response dynamics that underlie
the CTL response that cannot be accounted for by epitope
prediction algorithms (144). Nevertheless, we noted that the set
of epitopes that we generated on the bases of HLA binding
and proteasomal processing predictions included the majority
(∼70%) of experimentally-verified CTL epitopes listed in the
HIV Molecular Immunology Database (Table S1). In addition to
the predicted set of epitopes, we also included in our analyses
experimentally-known CTL epitopes.

Thus, we generated an epitope list which includes all potential
CTL epitopes restricted by HLA-A2:01, -A3:01, -B57:01, and
-B35:01. In total, for Gag, Pol, Env, and Nef, we identified 14-12-
14-10, 19-33-26-21, 22-14-20-8, and 8-6-9-8 epitopes restricted
to HLA-A2:01, -A3:01, -B57:01, and -B35:01, respectively
(Table 1 and Table S1). To dissect the role of A3G at each step
of CTL epitope generation, we simulated A3G mutations in
sequences encoding Gag, Pol, Env, and Nef. A3G mutations (G-
to-A) on the 5′-most dG in A3G hotspot trinucleotide motifs
(GGG, GGA, and GGT) were simulated and translated to the
peptide sequence (Figure 1). We found 16-16-21-13 (Pol), 8-10-
11-7 (Gag), 5-2-6-5 (Nef), and 13-8-15-3 (Env) restricted toHLA-
A2:01, -A3:01-, -B57:01-, and -B35:01-, respectively, whose
encoding sequences contain A3G hotpots. After simulation of
A3G-induced mutations at these motifs, we identified 33-33-44-
20 possible mutated epitopes restricted to HLA-A2:01, -A3:01,
-B57:01, and -B35:01 for Pol, of which 25 alterations include
stop codons (Table 1 and Table S1). These numbers were 8-
20-22-8 and 12 stop codons for Gag, 11-4-14-15 and 9 stop
codons for Nef, 28-20-31-6, and 29 stop codons for Env. These
results indicate that A3G-induced mutations can potentially alter
CTL epitopes restricted to all four examined HLAs in Gag, Pol,
Env, and Nef (Table 1 and Table S1). Considering all predicted
wild-type epitopes, Gag, Pol, Env, and Nef contained 21, 40,
26, and 12% of the predicted CTL epitopes respectively. 25, 30,
26, and 19 of all CTL epitopes were restricted to HLA-A2:01,
-A3:01, -B57:01, and -B35:01, respectively. After simulating A3G-
induced mutations, 22, 42, 25, and 11% of all mutated epitopes
came from Gag, Pol, Env, and Nef and 26, 23, 33, 18% of
all epitopes were restricted to HLA-A2:01, -A3:01, -B57:01,
and -B35:01, respectively. This initial comparison between
the distribution of wild-type vs. A3G-mutated CTL epitopes
suggested a bias for A3G-mediated mutations in HLA-B57-
restricted epitopes, consistent with previous suggestions for a
role of A3G in mediating decreased CTL recognition for peptides
restricted to protective HLAs such as B57 (117, 118).

The Potential Impact of A3G-Induced
Mutations on HLA Binding Affinity
To examine the specific impacts of A3G-induced mutations on
HLA-binding, we considered predicted epitopes with a high-
rank NetMHCpan 4 score between 0 and 0.5 percentile as
strong HLA binders and 0.5–2.0 percentile as weak HLA binders,
according to default parameters of the prediction algorithm
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FIGURE 1 | Study design. First, we predicted all possible CTL epitopes of Gag, Pol, Env, and Nef restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and

HLA-B35:01, simulated A3G-mediated mutations in HIV genomic sequences encoding these epitopes and translated these into peptide mutations (central box). We

evaluated the potential impact of A3G-induced mutations on generation of CTL epitopes (lower boxes). We also examined whether potential for CTL escape has left

an evolutionary imprint on the HIV genome by studying the pattern and distribution of A3G hotspots across the HIV genome, in the context of their potential for

facilitating the generation of CTL escape mutants (Top box).

(136) (Figure 1, Table S1). However, we noted that 30% of
experimentally-verified epitopes exhibit out of range and low
HLA binding affinity scores; hence, their aforementioned absence
in the total predicted pool of CTL epitopes (Table S1). To
evaluate the change in predicted HLA affinity that occurred as
a result of each A3G-induced mutation, we calculated a Delta
value from the wild-type sequence HLA binding score. We set
0.1 as a threshold of difference for increased or reduced HLA
binding affinity because below this value poor correlation was
observed between the predicted HLA affinity rank and absolute
nM affinities.

Although A3G-induced stop codons would not lead to
infectious virus production, viral genomes containing stop
codons can produce immunogenic truncated peptides which
contain CTL epitopes (120). Thus, we considered all A3G-
mutations, including stop codon generators (Figure 2A, top
panel), or excluding stop codons (Figure 2A, bottom panel).
Considering all A3G-induced mutations, 25, 46, 32, and 14% of
HLA-A2:01-, -A3:01-, -B57:01-, and -B35:01-restricted epitopes
exhibited increased HLA-binding affinity after A3G simulation
mutation. Conversely, 75, 54, 68, and 86% of HLA-A2:01-,
-A3:01-, -B57:01-, and -B35:01-restricted epitopes exhibited

decreased HLA-binding affinities as a result of A3G-induced
mutations (Figure 2A, top panel). Excluding A3G-mediated
stop codons, 32, 51, 62, and 24% of HLA-A2:01-, -A3:01-,
-B57:01-, and -B35:01-restricted epitopes increasedHLA-binding
affinity after A3G simulation mutation, whilst 68, 49, 38, and
76% of A3G-induced mutations HLA-A2:01-, -A3:01-, -B57:01-,
and -B35:01-restricted epitopes led to decreased HLA-binding
affinities (Figure 2A, bottom panel).

Next, we sought to break down the effect of A3G-induced
mutations at epitope-HLA anchor vs. non-anchor residues. A3G-
inducedmutations in non-anchor residues were predicted to lead
to enhanced, diminished, or abolished HLA binding affinity for
epitopes restricted to all 4 HLAs, with diminished/abolishedHLA
binding being the most common predicted outcome for HLA-
A2:01-, -A3:01-, - and -B35:01-restricted epitopes (74, 53, 80%
of all A3G mutations, respectively); for HLA-B57:01 however,
that outcome was nearly equal to potential for enhanced HLA
affinity (35%) (Figure 2B). Escape mutations that reduce class
I HLA binding commonly occur at the N-terminal (amino
acid position 2 in the peptide epitope) and/or the C terminal
(e.g., amino acid position 9 in a 9mer peptide epitope) anchor
residues in most epitopes (84, 96, 145). Thus, we then considered
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TABLE 1 | Summary of the number of potential CTL epitopes restricted to

HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 for wild-type and

A3G-mediated mutated Gag, Pol, Env, and Nef proteins.

Hotspot Wild type Epitope

containing

hotspot

Altered Altered containing

stop codon

NUMBER OF HLA-A2:01, -A3:01, -B57:01, and -B35:01-RESTRICTED

EPITOPES IN Gag

Gag

HLA2:01

14 8

GGG 1 0

GGA 6 2

GGT 1 1

Total 8 3

Gag

HLA-A3:01

12 10

GGG 10 1

GGA 7 0

GGT 3 0

Total 20 1

Gag

HLA-B57:01

14 11

GGG 6 0

GGA 15 6

GGT 1 1

Total 22 7

Gag

HLA-B35:01

10 7

GGG 3 1

GGA 3 0

GGT 2 0

Total 8 1

NUMBER OF HLA-A2:01, -A3:01, -B57:01, and -B35:01-RESTRICTED

EPITOPES IN Pol

Pol

HLA2:01

19 16

GGG 10 1

GGA 15 4

GGT 4 0

Total 33 5

Pol

HLA-A3:01

33 16

GGG 16 3

GGA 15 0

GGT 2 0

Total 33 3

Pol

HLA-B57:01

26 21

GGG 16 4

GGA 22 10

GGT 6 1

Total 44 15

Total 20 2

(Continued)

TABLE 1 | Continued

Hotspot Wild type Epitope

containing

hotspot

Altered Altered containing

stop codon

Pol

HLA-B35:01

21 13

GGG 4 0

GGA 11 1

GGT 5 1

NUMBER OF HLA-A2:01, -A3:01, -B57:01, and -B35:01-RESTRICTED

EPITOPES IN Env

Env

HLA2:01

22 13

GGG 7 0

GGA 17 3

GGT 4 1

Total 28 4

Env

HLA-A3:01

14 8

GGG 5 0

GGA 13 3

GGT 2 0

Total 20 3

Env

HLA-B57:01

20 15

GGG 12 4

GGA 14 12

GGT 5 3

Total 31 19

Env

HLA-B35:01

8 3

GGG 0 0

GGA 6 3

GGT 0 0

Total 6 3

NUMBER OF HLA-A2:01, -A3:01, -B57:01, and -B35:01 RESTRICTED

EPITOPES IN Nef

Nef

HLA2:01

8 5

GGG 5 0

GGA 6 2

GGT 0 1

Total 11 3

Nef

HLA-A3:01

6 2

GGG 2 0

GGA 2 0

GGT 0 0

Total 4 0

(Continued)
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TABLE 1 | Continued

Hotspot Wild type Epitope

containing

hotspot

Altered Altered containing

stop codon

Nef

HLA-B57:01

9 6

GGG 7 0

GGA 4 2

GGT 3 2

Total 14 4

Nef

HLA-B35:01

8 5

GGG 9 0

GGA 6 1

GGT 0 1

Total 15 2

A3G-induced mutations that target the anchor residues. A3G-
induced mutations in anchor residues were predicted to lead
to enhanced, diminished or abolished HLA binding affinity for
epitopes restricted to all 4 HLAs, with diminished/abolished
HLA binding being the most common predicted outcome for
-B57:01-, - and -B35:01-restricted epitopes (33, 7% of all A3G
mutations, respectively). In contrast, for HLA-A2:01- and -
A3:01, A3G-induced mutations at anchor residues mediated
diminished/abolished HLA binding affinity with the same or
much lower levels than enhanced HLA binding affinities (2 and
1%, respectively) (Figure 2C).

Considering all epitopes that were within the aforementioned
HLA-binding threshold range, 2 and 23% of A3G-induced amino
acid changes targeted the N and C-terminal anchor positions,
respectively. Twenty-three percent is approximately two-fold
higher than expected by random chance (84, 146): if A3G-
induced mutations were equally distributed amongst all residues
in a pool of 8–11 mer peptides, then each residue ought to
have a ∼10% probability of being targeted. In total, A3G can
potentially generate a stop codon in 30% of all epitopes that
contain A3G hotspots. Of these, 43% led to a stop codon
at the most C-terminal position, of which the overwhelming
majority (92%) were restricted to HLA-B57:01, since tryptophan
(the TGG codon) is the C-terminal anchor for HLA-B57:01
(Figure 2A, compare top and bottom panels). This codon, which
has a high likelihood of containing an A3G hotspot motif
dependent on the next downstream nucleotide, is the most
susceptible codon for generating a stop due to G-to-A mutation
(37, 38). Also, we observed 30% of all potential A3G-induced
mutations in CTL epitopes were located at residue positions
3, 5, and 7 which are key for TCR recognition (147), while
40% of A3G-mediated substitutions targeted residue positions
1, 4, 6, 8, 9, and 10. These results indicate that the N- and
C-terminal anchor residues are under- and over-targeted by
A3G for mutation, whilst the middle positions are apparently
equally targeted. Furthermore, the increased A3G targeting of
the most C-terminal anchor residue reflects its overwhelming

propensity for stop codon generation in HLA-B57:01-restricted
epitopes (Figure 2A). Based on these analyses, we conclude that
A3G-induced mutations can increase or decrease HLA-binding
affinities of potential CTL epitopes; however, the major outcome
considering all mutations (non-synonymous amino acid changes
and stop codons) at all residues (anchor and non-anchor) was
decreased HLA-binding affinity. These results are consistent with
previous observations that the CTL-epitope-encoding sequences
of HIV have evolved to channel A3G-induced mutations to
mediate CTL escape. On the other hand, we also observed the
generation of 18 neo-epitopes based on enhanced HLA-binding
affinity.

The Role of A3G-Induced Mutations on
Proteasomal Processing of Epitopes
We utilized NetChop 3.1 to examine the impact of A3G-induced
mutations on the proteasomal processing of HIV proteins,
which is the step before peptide epitope generation for HLA
binding. We submitted the entire sequences of Gag, Pol, Env,
and Nef to NetChop, either in wild-type format, or including
all possible A3G-induced mutations. On the entire peptide
sequence, we overlaid the map of HLA-A2:01, -A3:01-, -B57:01,
and -B35:01-restricted CTL epitopes. Each residue within wild-
type or A3G-mutated Gag, Pol, Env, and Nef proteins was then
assigned a cleavage prediction score (default threshold of 0.5
is considered a cleavage site) (142), and scores at each residue
position were compared between wild-type and A3G-mutated
proteins (Supplementary File 1: excel table). For this analysis,
we considered two categories of A3G-induced mutations: those
that fell within individual CTL epitopes, or those that fell
outside but within six amino acids upstream or downstream
of the N-or C- terminal residues of the epitope (148). A3G-
induced mutations that generated new/enhanced cleavage sites
within a CTL epitope, or abolished/decreased cleavage within
the six amino acids adjacent to the epitope would likely lead to
diminished proteasomal processing of the epitope. Conversely,
A3G mutations that enhanced cleavage in the adjacent region
of an epitope or abolished/decreased cleavage within the epitope
itself would likely lead to enhanced proteasomal processing of the
epitope.

In this manner, we quantified the impact of A3G-
induced mutations on CTL epitope proteasomal cleavage
(Supplementary File 1, Table 2). Considering all A3G-mediated
mutations, for epitopes restricted to HLA-A2:01, -A3:01-,
-B57:01, and -B35:01, respectively, 42, 53, 43, 45% of all
A3G-induced mutation events resulted in decreased predicted
proteasomal processing, whilst 58, 47, 57, and 55% of mutations
resulted in generation of sites predicted to enhance proteasomal
processing. If epitopes were categorized by protein of origin
rather than restricting HLA, for Gag, Pol, Env, and Nef,
respectively, 54, 43, 41, and 53% of all A3G-induced mutations
resulted in decreased predicted proteasomal processing, whilst
46, 57, 59, and 47% resulted in enhanced predicted processing.
Excluding A3G-mediated stop codon generation, for epitopes
restricted to HLA-A2:01, -A3:01-, -B57:01, and -B35:01,
respectively, 43, 56, 53, and 43% of all A3G-induced mutations
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FIGURE 2 | Impact of A3G-induced mutations on HLA-binding. The impact of A3G-mediated mutations on HLA-binding affinity was predicted using NetMHCpan 4 to

examine epitopes restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 for Gag, Pol, Env, and Nef proteins. Epitopes within the range of strong and

weak HLA-binding affinity were considered as potential CTL epitopes. Delta value between A3G-mutated wild-type epitope scores were calculated with 0.1 rank

difference as a threshold of meaningful difference for increased or reduced HLA binding affinity. (A) The impact of all A3G induced-mutations on HLA binding of

epitopes in Gag, Pol, Env, and Nef restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 considering stop codon (top panel) and excluding stop codon

(bottom panel). (B) The specific impact of A3G induced-mutations at non-anchor residues on HLA binding. (C) The specific impact of A3G-induced mutations on

HLA-binding affinity considering only mutations at the N-terminal anchor position (amino acid residue 2 in a 8-11 mer) and the most C-terminal HLA anchor residue.

resulted in decreased predicted proteasomal processing,
whilst, 57, 44, 43, and 57% resulted in enhanced proteasomal
processing.

In total, including A3G-mediated stop codon generation 54%
of all A3G-induced mutations that could potentially impact
proteasomal cleavage were predicted to lead to enhanced
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CTL epitope production, whilst 46% could potentially decrease
CTL epitope production. These numbers are 51 and 49%,
respectively, whist A3G-mediated stop codon generation is
excluded (Table 2). These results indicate that there has not been
a strong evolutionary pressure maintained on the viral genome
for utilizing A3G toward CTL escape at the level of modulating
proteasomal processing for CTL epitope generation.

We then investigated whether mutations mediated by A3G
are clustered around the CTL epitopes, with more A3G hotspots
being present either near the N- or C-terminal boundaries of
epitopes, than expected at random. Considering a limit of 4
mutational A3G hotspots (A3G hotspots whose mutation would
lead to non-synonymous substitutions) in 32 residues around
each epitope, there appeared to be a marked paucity of such
clustering (Table 3, Figure S1); however, when this limit was
lowered to 2 mutational A3G hotspots, instances of clustering
expectedly rose to 50–70% of epitopes. When all A3G hotspots
were considered, this clustering proportion rose to 70–80%; thus,
if non-mutational A3G hotspots can alter aspects of epitope
production pre-translation (e.g., splicing, expression, etc.) this
could be considered a significant trend.

Patterns and Consequences of A3G
Hotspot Distribution Within or Outside CTL
Epitope-Encoding Regions
We then investigated the enrichment of A3G hotspots (GGA,
GGG, and GGT) inside vs. outside genomic sequences encoding
CTL epitopes restricted toHLA-A2:01, HLA-A3:01, HLA-B57:01,
and HLA-B35:01 in Gag, Pol, Env, and Nef genes (Table S2,
Figure 3). First, we normalized for total nucleotide length of
each gene and calculated the ratio of normalized A3G hotspot
frequencies inside to outside epitope-encoding sequences for
each protein’s CTL epitopes. Thus, an inside: outside ratio
>1 would be indicative of A3G hotspot enrichment in CTL-
encoding sequences. As a control, we subjected the entire HIV
genomic sequence to a random shuffling process, six independent
times, but retained the positions/borders of the CTL epitope-
encoding sequences. We then conducted the same analysis
and expectedly arrived at ratios of ∼1 (Figure 3A). We did
not observe a generalizable trend of hotspot enrichment (ratio
>1) in CTL-encoding sequences; however, when compared to
the hypothetical ratio of 1 and the randomly shuffled control
analyses, we noted that sequences encoding epitopes restricted
to HLA-A2:01 and HLA-B57:01 often exhibited the highest
enrichment ratios of 2-2.5 for at least 1-2 out of the 3 A3G hotspot
motifs (Table S2, Figure 3A). These data are consistent with our
previous observations that viral genomic sequences encoding
more immunogenic CTL epitopes (restricted to more common
HLA alleles, or those that elicit a more effective CTL response)
have evolved to maintain A3G hotspots. Since A3G-mediated
mutations which lead to stop codon generation would most often
lead to non-infectious genomes, it is difficult to envision how
maintenance of such A3Gmotifs to alter CTL epitopes at the cost
of producing a non-infectious virus could be advantageous for
the virus. Thus, in our enrichment analyses which was conducted
to measure the extent to which the viral genome has evolved to T
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utilize A3G toward CTL escape, we excluded A3G hotspots that
would lead to stop codons. Rather, we considered these separately
by examining the frequency and positional distribution of stop
codon-generating A3G motifs in Gag, Pol, Env, and Nef. We
found that between 18 and 43% of stop codons are positioned
in the first quarter of each peptide (Figure S2), and there was
a general trend of more frequent A3G-mediated stop codon
generation in Pol and Env, as compared to Gag and Nef.

Having examined gene sequence A3G hotspot enrichment, we
sought to measure the potential consequences at CTL epitope
protein level. To this end, all simulated A3G-induced mutations
were translated to protein sequences as described above. Since
it is known that A3G can mutate the entire viral genome at
low levels, epitopes with multiple hotspots and multiple mutated
versions were considered independently. We then quantified
A3G-induced non-synonymous and silent substitutions that
fell within or outside of CTL epitopes of Gag, Pol, Env, and
Nef restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01 and
HLA-B35:01. Next, we determined the ratio of A3G-induced
mutations that caused non-synonymous residue changes to A3G-
induced mutations which resulted in silent mutations within
CTL epitopes and divided this by the same ratio determined
for regions of each polypeptide that fell outside CTL epitopes.
This analysis was carried out for each individual A3G hotspot
motif, and as a total for all amino acids affected by A3G
mutations within each polypeptide (Table S2 and Figure 3B).
Thus, a ratio of >1 would indicate that the genomic sequence
of HIV has evolved to channel A3G-induced mutations into
amino acid changes, more often within CTL epitope-encoding
regions as compared to sequences outside these portions. Indeed,
we observed numerous instances of significant preferential
channeling (ratios up to 4.5) toward non-synonymous residue
changes in CTL epitopes of Gag, Pol, Env, and Nef as a result
of A3G-induced mutations (Figure 3B). If we ignored A3G-
driven silent consequences and evaluated the ratio of only
A3G-mediated non-synonymous mutations inside CTL epitope-
encoding regions to A3G-mediated non-synonymous mutations
outside CTL epitope-encoding regions, we observed that in 28/48
graphed bars (58% of all measurements) the ratio was ≥ 1, with
some ratios in the 2–3 range (Figure 3C). In general, the bias
for A3G mutations to translate to non-synonymous rather than
silent amino acid mutations was more pronounced for Gag, Pol
and Nef as compared to Env, consistent with the former three
polypeptides housing the vast majority of HIV’s CTL epitopes
(Figures 3B,C compared to Figure 3A).

In principle, non-synonymous amino acid changes arising
from A3G mutations can enhance or diminish antigen
presentation as the proteasomal processing and HLA binding
levels (Figure 2, Table 2). To examine the distribution patterns
of A3G hotspots that could potentially lead to CTL escape,
we generated a map of all A3G hotspots across the entire
HIV genome and overlaid this map on the experimentally-
determined and well-known gradient of G to A mutations across
the HIV genome (Figure 4A). In the context of A3G action,
this twin gradient has been suggested to be a consequence
of HIV genome’s replication dynamics. Certain portions of
the HIV minus strand genome remain single-stranded for a

longer period compared to other segments, due to dynamics
of RNA digestion by RT, the role of the Polypurine tracts
(PPT), and subsequent positive sense strand polymerization.
These segments are thus more available for A3G targeting
resulting in a mutation gradient (34, 35, 143). We observed
that regions near the central PPT and the C-terminal end
(Nef) that are more highly mutated are rich in A3G hotspots,
consistent with the notion that the viral genome has positioned
hotspots in genomic locations that are more prone to being
targeted by the A3G enzyme (Figure 4A). For each HLA, we
plotted the number of CTL-epitope encoding sequences (in
Gag, Pol, Env, and Nef) at incremental positions along the
entire viral genome length (Figure 4B, top graph of each panel).
We also plotted a normalized escape potential graph which
represents the likelihood that an A3G hotspot located inside
a CTL epitope-encoding sequence can generate a CTL-escape
mutation. This was calculated by counting the A3G hotspots
predicted to lower HLA binding affinities and normalizing these
by the total abundance of A3G hotspots in the given CTL-
epitope encoding region (Figure 4B, middle graph of each panel).
Considering the number of CTL-epitopes encoded by a given
genomic location (top panel), as well as the normalized escape
potential of the sequences encoding this epitope (middle panel),
we then generated an escape factor map which represents the
compound potential for A3G to cause CTL escape across the HIV
genome, for each HLA (Figure 4B, bottom graph of each panel).
First, we noted that the potential for A3G-generated CTL escape
was present throughout the length of the genome, for epitopes
restricted to all 4 HLAs; however, it was generally more frequent
in regions of the genome with a higher mutational potential
and less frequent in regions known to be mutated at lower rates
(comparing escape factor maps in Figure 4B to the mutational
gradient in Figure 4A). Secondly, epitopes restricted to HLA-
A2:01 and HLA-B57:01 exhibited overall higher abundance
and frequent positioning of escape-inducing A3G hotspots,
with HLA-B57:01-restricted epitopes also containing the highest
escape factor values (Figure 4B). Thirdly, regions encoding
for Gag, Pol and Nef contained generally a higher density of
potentially CTL escape-inducing A3G hotspots, as compared to
Env. The polypeptide and HLA-specific patterns observed are
consistent with the A3G hotspot enrichment analysis (Figure 3)
and taken together suggest the evolution of HIV genome
to position A3G hotspot motifs in CTL-encoding regions,
and highly mutable regions of the HIV genome, such that
they preferentially yield CTL escape-inducing non-synonymous
amino acid changes.

DISCUSSION

Here, we aimed to follow up on previous works suggesting
that A3G is a source of CTL escape-inducing mutations.
We first mapped all potential CTL epitopes within Gag, Pol,
Env, and Nef, and considered the impact of A3G-induced
mutations on these epitopes. To this end, we embarked on
a two-pronged analysis: first, from the immune recognition
perspective, we examined the effect of A3G-induced mutations
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TABLE 3 | Enrichment of A3G hotspot motifs in flanking regions of sequence encoding CTL epitopes restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and

HLA-B35:01 for Gag, Pol, Env, and Nef.

Protein HLA All instances

epitope

(surrounded by 2

mutations) (%)

All instances

epitope

(surrounded by 4

mutations) (%)

Non-synonymous

mutation

(surrounded by 2

mutations) (%)

Non-synonymous

mutation

(surrounded by 4

mutations) (%)

Gag HLA-A2:01 69 7.6 61 0

HLA-A3:01 53 0 30 0

HLA-B57:01 78 7.1 64 0

HLA-B35:01 80 10 50 0

Pol HLA-A2:01 42 0 31 0

HLA-A3:01 66 12 45 6

HLA-B57:01 44 12 29 4

HLA-B35:01 50 10 35 0

Env HLA-A2:01 54 14 40 9

HLA-A3:01 53 13 46 13

HLA-B57:01 57 15 42 11

HLA-B35:01 62 25 50 25

Nef HLA-A2:01 75 12.5 75 0

HLA-A3:01 83 33 60 0

HLA-B57:01 75 25 50 0

HLA-B35:01 75 37 50 12.5

on the various stages of CTL epitope production, including
proteasomal processing and HLA-binding affinities. Second,
from the viral genome evolution perspective, we examined
whether, where and to what consequence, A3G hotspots have
been maintained or enriched in genomic sequences that encode
for CTL epitopes. At each stage of all analyses, we considered
three individual A3G hotspots (GGA, GGG, and GGT), and
potential impact on CTL epitopes restricted to four HLA alleles
that have been previously shown to have differential abilities
to present immunogenic CTL peptides of HIV. Furthermore,
opposite to the notion of CTL escape mediated by A3G-
induced mutations, we also considered A3G mutations that can
potentially generate novel or more immunogenic CTL epitopes.
Despite a wealth of information about the role of A3Gs in
CTL escape, knowledge of novel CTL epitopes mediated by
endogenous mutators remains poor. We found that although
A3G-mediated mutations could potentially enhance or diminish
the proteasomal cleavage of Gag, Pol, Env, and Nef into CTL
epitopes, the overwhelming impact on HLA binding affinities
of CTL epitopes as a result of A3G mutations was decreased
affinity.

Here we also provide strong and novel lines of evidence for
the co-evolution of the HIV genome with A3G, so as to utilize
this host factor toward CTL escape. First, A3G hotspot motifs
were positioned in CTL-encoding epitopes so as to preferentially
cause non-synonymous mutations. Secondly, most A3G-induced
mutations in CTL epitopes resulted in diminished/abrogated
HLA binding capacity. Thirdly, the distribution pattern of
CTL escape-inducing A3G hotspots across the HIV genome
varies with restricting HLAs and generally correlates with the
known mutational gradient across the entire HIV genome. These
observations shed light on the multiple layers of depth to

which the HIV genome has resorted to position A3G hotspots
for CTL escape. An earlier study which examined the overall
pattern of A3G-mediated non-synonymous vs. silent mutations
concluded that A3G has not left an evolutionary footprint
on the HIV genome (149). This study broadly examined all
A3G/F target motifs but not in the context of a specific
biological force which may encourage genome evolution in
response to A3G/F. In contrast, we argue that evidence for
co-evolution of a pathogen’s genome with a host factor may
not be broadly apparent but must be sought for in the
specific context of the pro/anti-viral biological impacts driven
by the host factor and specific locations of the pathogen’s
genome impacted and under pressure by the host factor action.
Thus, we considered HIV genome co-evolution with A3G/F in
the context of the potential for CTL escape by focusing on
sequences that encode for such epitopes. We find that when
considered in this context, there is substantial evidence for the
evolution of the HIV genome to subvert the activity of A3G/F
toward its own gain. In our analyses of predicted immune
response to HIV (HLA binding and proteasomal processing
of CTL epitopes) we considered A3G-mediated stop codons;
though these would yield non-infectious viruses, truncated
proteins that are immunogenic could still be produced (120).
On the other hand, we excluded A3G-mediated stop codons
from our analyses of viral genome evolution (A3G hotspot
enrichment and positioning) since they cannot be considered
as an advantageous mode of utilizing A3G to the virus’s
benefit.

Rather than considering existing A3G hotspots as evidence
for their role in selection as we have, the case can also be made
for the opposite view; that if the usage of A3G hotspots toward
advantageous outcomes for the virus was key, then current
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FIGURE 3 | Enrichment of A3G hotspot motifs in CTL-encoding sequences at the nucleotide level and consequences for amino acid substitutions in epitopes.

(A) Frequency of A3G hotspot motifs inside vs. outside CTL-epitopes restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 in Gag, Pol, Env, and Nef

proteins. For Gag, Pol, Env, and Nef genes, the number of A3G hotspots inside vs. outside CTL epitope-encoding sequences were counted. The frequency of A3G

hotspots (GGG, GGA and GGT) was then calculated by normalizing to total nucleotide length analyzed, in genomic sequences that either encode (inside) or do not

encode (outside) CTL epitopes. Thus, an inside: outside ratio of >1 indicates enrichment of A3G hotspots in sequences encoding CTL epitopes. As controls for this

evaluation, we included parallel sequences in which the HIV genome was randomly shuffled using “Shuffle DNA” (http://www.bioinformatics.org/sms2/shuffle_dna.

html) resource 6 independent times. Retaining the same CTL epitope-encoding/non-encoding genomic positions, we repeated the analyses for the shuffled

sequences. (B) A3G-induced mutations at the nucleotide level were translated to amino acid sequence changes, for CTL epitopes of Gag, Pol, Env, and Nef restricted

to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01. We counted the number of non-synonymous substitutions as well as silent consequences within and

outside CTL epitopes and normalized for total amino acid protein length, followed by calculating a ratio to measure whether A3G-driven non-synonymous

substitutions are more frequent than silent ones within vs. outside CTL epitopes. (C) A ratio of non-synonymous substitutions inside vs. outside CTL-epitopes

restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 in Gag, Pol, Env, and Nef proteins.

sequences circulating at the population level ought to be rather
devoid of A3G hotspots and instead rich in the mutated versions.
Whilst this argument may hold true in several different contexts,

considering it in the context of CTL escape is more difficult.
First, CTL escape mutations are usually not broadly selectable
at the population level but are highly individual host-dependent
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FIGURE 4 | Distribution pattern of CTL escape-inducing A3G hotspots in the context of the entire HIV genome and its mutational gradient. (A) To analyze the

distribution pattern of A3G hotspots across the HIV genome, we counted the number of A3G hotpots that could result in non-synonymous amino acid changes within

windows of 60 bp length across the entire length of Gag, Pol, Env, and Nef. The number of A3G hotspots in each 60 bp window is plotted as gray bars, and the

overall pattern is shown as a black line. We then overlaid this pattern against the known mutational gradient of the HIV genome as previously described (red line) (143)

(Continued)
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FIGURE 4 | (Copy Right License Number: 4460241074666). (B) To analyze the distribution pattern of predicted CTL escape-inducing A3G for each HLA, a map of

the positions of CTL epitope-encoding sequences for Gag, Pol, Env, and Nef, restricted to HLA-A2:01, HLA-A3:01, HLA-B57:01, and HLA-B35:01 was created (Top

panel of each box). A map of normalized escape potential was also generated (middle panel of each box). We defined normalized escape potential as the number of

CTL escape-inducing A3G hotspots in each 60 bp segment, normalized (divided) by the total number of A3G hotspots within the segment. Based on the normalized

escape potential and the number of CTL epitopes encoded in each 60 bp segment, for each HLA we then constructed a map of escape factor which we defined as

the product of the number of CTL epitopes and normalized escape potential (bottom panel). In this map, black indicates no potential for CTL escape (escape factor=

0), orange indicates low potential (escape factor=1), pink indicates modest potential (escape factor range of 2–4), red indicates high potential (escape factor range

of 5–7).

since they are intimately connected to HLA genotype. Second,
from the virus’s perspective, there may be two advantages to
maintaining the A3G/F hotspots: first, conflicting demands of
replication fitness on one hand and immune evasion on the
other, which is best illustrated by the high rates at which
certain CTL escape mutations revert to wildtype presumably
fitter sequence, especially upon transmission to a new host
with a different HLA genotype wherein CTL escape mutations
from the previous host are no longer advantageous. Second,
it may not be to the advantage of the virus to benefit from
maximum CTL escape, as it would limit its replication capacity
by quickly eliminating infected host cells (150, 151). Thus, it may
be advantageous to conserve some CTL escape potential in the
form of A3G hotspots to be available to use when it suits the
virus. An example of this very conservation of A3G/F-mutational
hotspots has been shown in terms of antibody epitopes in Env
(122).

These findings bring to light novel aspects of the interplay
between the host mutator A3G and the co-evolution of the
viral genome. Overall, A3G-induced mutations were predicted
to influence CTL epitope production and HLA binding, both
toward the production of more immunogenic epitopes and
conversely, toward CTL escape. It is important to consider
these results in the context of two additional concepts: first,
although the overall action of A3G on the HIV genome is
predicted to result more often in CTL escape than in generation
of new, more immunogenic epitopes, it is important to note that
even if the latter and former occurred with equal probability,
the escape mutations would be the dominant outcome under
immune pressure in vivo (9, 87, 119). Second, in this analysis,
we did not take into account the fitness consequences of A3G-
induced mutations. Predicting the in vitro replicative fitness
cost and peptide HLA binding affinity of clinically derived
sequences has shown that escape mutations in CTL epitopes of
Gag restricted to protective HLA class I alleles carried higher
fitness costs and lower levels of reduction in HLA class I
binding affinity compared to mutations in epitopes restricted
to other HLA class I alleles. This suggests that one way by
which protective HLA molecules act is by binding epitopes
whose CTL escape mutations incur a high fitness cost with
relatively low benefit in terms of HLA-binding affinity reduction
(108).

The practical application of this work will lie in determining
epitope choice for vaccine design. Epitope clusters and altered
epitopes with the potential to be better processed or bound by
HLA because of A3G mutations ought to be superior platforms
for the development of prophylactic or post-infection CTL-
based vaccines. Thus, accounting for and indeed exploiting

the action of endogenous genome mutators to design more
effective vaccines would represent a strategic advance in HIV
vaccine design. In addition, the analyses carried out here should
be considered in the context of extensive A3 family enzyme
mutations of tumor genomes, as understanding the mechanisms
by which a tumor cell can escape, or boost CTL response is
critical to developing vaccination and therapies based on CTL
epitopes. We and others have postulated that the function of
A3 family members in cancer genome mutagenesis may bear
parallels to its role in viral genome mutagenesis, as tumor
cells are also under pressure to avoid detection by CTL and
could use A3-induced mutagenesis to this end (152–159). At
present, whether and how frequently this may occur is unknown,
and using similar analyses to gain insights will have important
implications for the design of personalized anti-tumor CTL-
based strategies.
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